Linear Algebra and Geometry. 7th intermediate test, june 6, 2014.

Let $T: \mathcal{V}_3 \to \mathcal{V}_4$ be the linear transformation defined by

$$T((x, y, z, t)) = (x + y + z, x - 2y - z, x + y - z, -x + y).$$

- (a) find dimension and a basis of $T(\mathcal{V}_3)$, N(T), $N(T)^{\perp}$.
- (b) For T varying on **R** let $\underline{v}_t = (1, 0, t, 2)$. Find all $t \in \mathbf{R}$ such that $\underline{v}_t \in \mathcal{V}_3$.
- (c) Find two different vectors $\underline{u}, \underline{w} \in \mathcal{V}_3$ such that $T(\underline{u}) \neq T(\underline{w})$

Solution

Note that
$$T(X)^T = AX^T$$
, where $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 0 \end{pmatrix}$. Gaussian elimination:
$$A \to \begin{pmatrix} 1 & 1 & -1 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

It is clear that rk(A) = 3. Therefore $rk(T) = \dim T(V_3) = \dim L(A^1, A^2, A^3) = 3$. This means that the three columns are independent, hence $\{A^1, A^1, A^3\}$ is a basis of $T(\mathcal{V}_3)$. Moreover, due to the (nullity)+(rank) Theorem, dim N(T) = 0. Hence there no basis for N(T).

Therefore $N(T)^{\perp} = \{O\}^{\perp} = \mathcal{V}_3$: its dimension is 3 and one can take the standard basis, for example. (In general, $N(T)^{\perp}$ is the linear span of the lines of A, and has dimension equal to rk(A)).

(b) $\underline{v}_t \in T(\mathcal{V}_3)$ if and only if the system $AX = \underline{v}_t$ has some solutions. Gaussian elimination of the augmented matrix:

$$A|\underline{v}_t \to \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -3 & 0 & -1 \\ 0 & 0 & 0 & t-1 \\ 0 & 2 & -1 & 3 \end{pmatrix})$$

It follows easily that the system has solution if and only if t = 1.

(c) Since $N(T) = \{O\}$, T is injective. therefore it is impossible to find different vectors \underline{u} and \underline{w} such that $T(\underline{u}) \neq T(\underline{w})$.