L.A.G. . Solution of some exercises on the textbook, I

Section 14.13

Exercise n. 11 Sect. 14.13. Vol. I. First we find a parametrization of the curve. Clearly $x(t) = t^2$, $y(t) = t^3$ works. Hence $\mathbf{r}(t) = (t^2, t^3)$. Therefore, with this parametrization, $\mathbf{v}(t) = (2t, 3t^2)$ and $v(t) = \sqrt{4t^2 + 9t^4} = |t|\sqrt{4 + 9t^2}$. A primitive of $t\sqrt{4 + 9t^2}$ is $(1/27)(4 + 9t^2)^{3/2}$.

Note that, in the parametrization above, (1, -1) corresponds to t = -1 and (1, 1) corresponds to t = 1. In conclusion, the lenght of the arc joining the points (1, -1) and (1, 1) is

$$\int_{-1}^{0} -t\sqrt{4+9t^2}dt + \int_{0}^{1} t\sqrt{4+9t^2}dt = \left[(1/27)(4+9t^2)^{3/2}\right]_{0}^{-1} + \left[(1/27)(4+9t^2)^{3/2}\right]_{0}^{1} = \frac{1}{27}\left(13\sqrt{13}-8\right) + (13\sqrt{13}-8) = \frac{26\sqrt{13}-16}{27}$$

Exercise n. 12 Sect. 14.13. Vol. I. Parametrization of the circle of radius 1 and center **0**: $\mathbf{r}(\theta) = (\cos \theta, \sin \theta)$. The speed is constant, equal to 1. Length of the arc: $\int_{\theta_1}^{\theta^2} 1d\theta = \theta_2 - \theta_1$. Area of the sector: $(1/2) \int_{\theta_2}^{\theta^2} 1^2 d\theta = (1/2)(\theta_2 - \theta_1)$.

Exercise n. 13 Sect. 14.13. Vol. I. (a) $\mathbf{r}(x) = (x, e^x)$, $\mathbf{v}(x) = (1, e^x)$, $v(x) = \sqrt{1 + e^{2x}}$. Length: $\int_0^1 \sqrt{1 + e^{2x}} dx$. (b) $\mathbf{r}(t) = (t + \log t, t - \log t)$, $\mathbf{v}(t) = (1 + (1/t), 1 - (1/t))$, $v(t) = \sqrt{(1 + (1/t))^2 + (1 - (1/t))^2} = \frac{\sqrt{2}\sqrt{1 + t^2}}{t}$. Length: $\sqrt{2} \int_1^e \frac{\sqrt{1 + t^2}}{t} dt$. The integral in (a) is equal to the integral in (b) via the substitution $t = e^x$.

Exercise n. 19 Sect. 14.13. Vol. I. $\mathbf{r}(t) = tA + t^2B + 2(\frac{2}{3}t)^{3/2}A \times B$. $\mathbf{v}(t) = A + 2tB + 3(\frac{2}{3}t)^{1/2}\frac{2}{3}A \times B = A + 2tB + 2(\frac{2}{3}t)^{1/2}A \times B$. $v(t) = \sqrt{\mathbf{v}(t) \cdot \mathbf{v}(t)} = \sqrt{\parallel A \parallel^2 + 4t^2 \parallel B \parallel^2 + 4(\frac{2}{3}t) \parallel A \times B \parallel^2 + 4tA \cdot B} = \sqrt{1 + 4t^2 + \frac{8}{3}\sin^2\frac{\pi}{3}t + 4\cos^2\frac{\pi}{3}t} = \sqrt{1 + 4t^2 + 4t} = |1 + 2t|$. We are lloking for the t > 0 such that $\int_0^t (1 + 2u)du = 12$, that is: $12 = \left[\frac{(1 + 2u)^2}{2}\right]_0^t = \frac{(1 + 2t)^2}{2} - \frac{1}{2}$. Computing

Section 14.15

one gets $(1+2t)^2 - 1 = 24$. The solution is t = 3.

Exercise n. 7 Sect. 14.15. Vol. I. Since the speed is constant we have that $\| \mathbf{a} \| = v \| T' \|$. On the other hand $\kappa = \| T' \| / v = \| \mathbf{a} \| / v^2$.

Exercise n. 11 Sect. 14.15. Vol. I. We know that $\kappa(t) = |\alpha'(t)|/v(t)$ (as in Example 2 of §14.14 $\kappa(t) = |d\alpha/ds| = |(d\alpha/dt)(dt/ds)| = |(d\alpha/dt)|/(ds/dt)| = |\alpha'/v|$). In our case: $2t = |\alpha'(t)|/5$. The hypothesis tells that $\alpha(0) = \pi/2$ and then $\alpha(t) \le \pi/2$. Hence $\alpha'(t) = -10t$ (it cannot be $\alpha'(t) = 10t$ because, if this was the case, $\alpha(t)$ would be bigger than $\pi/2$ for t > 0. Therefore

$$\alpha(t) = -5t^2 + c$$

where c is a constant. Since we know that $\alpha(0) = \pi/2$ we have that $c = \pi/2$. In conclusion $\alpha(t) = -5t^2 + \pi/2$. Therefore

$$\mathbf{v}(t) = v(\cos\alpha(t), \sin\alpha(t)) = 5(\cos(-5t^2 + \frac{\pi}{2}), \sin(-5t^2 + \frac{\pi}{2}))$$

Section 14.19

Exercise n. 6 Sect. 14.19. Vol. I. (a) For c = 0 it is a circle of radius one. Otherwise it is a spiral, going from the interior to the exterior for c = 1, and from the exterior from the interior for c = -1. (b) Calculation of the speed in polar coordinates: since in this exercise the parameter is the angle θ the

 $\begin{array}{l} \text{(c)} \quad \text{curvation of the speed in point coordinates the first in the last lines of §15.16. Therefore <math>v(\theta) = \sqrt{(\rho')^2 + \rho^2} = \sqrt{c^2 e^{2c\theta} + e^{2c\theta}} = e^{c\theta}\sqrt{c^2 + 1}.\\ \text{Hence } L(c) = \int_0^{2\pi} v(\theta) d\theta = \sqrt{c^2 + 1} \int_0^{2\pi} e^{c\theta} d\theta = \frac{\sqrt{c^2 + 1}}{c} \left[e^{c\theta}\right]_0^{2\pi} = \frac{\sqrt{c^2 + 1}}{c} (e^{2c\pi} - 1). \end{array}$

$$R(c) = \frac{1}{2} \int_0^{2\pi} \rho^2(\theta) d\theta = \int_0^{2\pi} e^{2c\theta} = \frac{1}{2c} (e^{4c\pi} - 1)$$

Exercise n. 14 Sect. 14.19. Vol. I. We assume that the parameter is the angle θ . Hence (formulas at the end of §15.16) $\mathbf{v} = \frac{d\rho}{d\theta}\mathbf{u}_{\rho} + \rho\mathbf{u}_{\theta}$. Since $\{\mathbf{u}_{\rho}, \mathbf{u}_{\theta}\}$ is an orthonomal basis (varying with θ) we have that , since $\mathbf{r} = \rho\mathbf{u}_{\rho}$,

$$\rho v \cos \phi = \mathbf{r} \cdot \mathbf{v} = \rho \frac{d\rho}{d\theta}$$

and

$$\rho v \sin \phi = \| \mathbf{r} \times \mathbf{v} \| = \| \rho \mathbf{u}_{\rho} \times \rho \mathbf{u}_{\theta} \| = \rho^2$$

Exercise n. 15 Sect. 14.19. Vol. I. This exercise is closely related to the previous two. Indeed, note that if we have a plane motion expressed by the polar equation $\rho = Ke^{c\theta}$ (see Exercise n.6 above) then the angle $\phi = \phi(\theta)$ between **r** and **v** is *constant* (note: this is a property of the *curve*, and not of the parametrization). This is seen, for example, as follows: from the previous exercise $\tan \phi = \rho'/\rho \equiv c$.

Also the converse is true: in fact, if $\tan \phi \equiv c$, again from the previous exercise, $\rho'/\rho \equiv c$ and, integrating, $\log \rho = c\theta + d$. Exponentiating: $\rho = Ke^{c\theta}$, with $K = e^d$.

Thus we have seen that:

a regular plane curve has the property that the angle between the position and velocity vectors is constant if and only if its polar equation is of the form $\rho = Ke^{c\theta}$, for $K, c \in \mathbf{R}$ (such curves are called *logarithmic* spirals).

Having said that, the solution of this exercise is easy: we take the target as origin. The "direction in actual flight" at a given time is the direction of the velocity vector, so the hypothesis is that the angle between **v** and $-\mathbf{r}$ is constant equal to α . Hence the angle between **v** and **r** is constant equal to $\pi - \alpha$. Therefore the path is a logarithmic spiral of polar equation $\rho = e^{c\theta}$, with $c = \tan(\pi - \alpha)$. Hence it is a circle for $\alpha = \pi/2$, the distance from the origin goes to ∞ when $t \to \infty$ if $\alpha > \pi/2$ (that is c > 0), and the distance from the origin goes to 0 for $t \to \infty$ if $\alpha < \pi/2$ (that is c < 0). In this last case one could say that "yes, the missile will reach the target" in the sense that it will get closer and closer to the target.

Exercise n. 5 Sect. 14.19. Vol. I. For $\theta = 0$ we have that $\rho = 8$, when θ increases in $[0, \pi] \rho$ decreases. For $\theta = \pi$ we have $\rho = 0$. The curve is symmetric with respect to the *x* axis, so the piece of curve corresponding to $[\pi, 2\pi]$ is the curve – under the *x*-axis – symmetric to the previous one. Note that the curve is not *regular*, that is to say $\mathbf{v} = \mathbf{0}$ for $\theta = \pi$ (exercise!). The overall picture is a "horizontal" heart (whence the name *cardioid*).

Length:
$$v(\theta) = \sqrt{(\rho')^2 + \rho^2} = \sqrt{(4\sin\theta)^2 + (4(1+\cos\theta))^2} = 4\sqrt{2} + 2\cos\theta = 4\sqrt{2}\sqrt{1+\cos\theta} = 4\sqrt{2}\sqrt{1+\cos^2(\theta/2)} - \sin^2(\theta/2) = 8|\cos(\theta/2)|$$

Therefore the length is $\int_0^{2\pi} v(\theta)d\theta = 8(\int_0^{\pi}\cos(\theta/2) - \int_{\pi}^{2\pi}\cos(\theta/2)d\theta) = 32.$

Exercise n. 12-13 Sect. 14.19. Vol. I. Curvature in polar coordinates (if the parameter is the angle θ). $\mathbf{v} = a'\mathbf{u} + a\mathbf{u}_0$ $\mathbf{v} = \sqrt{(a')^2 + a^2}$

$$\begin{aligned} \mathbf{v} &= \rho' \mathbf{u}_{\rho} + \rho \mathbf{u}_{\theta}, \quad v = \sqrt{(\rho')^2 + \rho^2} \\ \mathbf{a} &= (\rho'' - \rho) \mathbf{u}_{\rho} + 2\rho' \mathbf{u}_{\theta}, \\ \mathbf{v} \times \mathbf{a} &= 2(\rho')^2 \mathbf{u}_{\rho} \times \mathbf{u}_{\theta} + \rho(\rho'' - \rho) \mathbf{u}_{\theta} \times \mathbf{u}_{\rho} = 2(\rho')^2 - \rho(\rho'' - \rho) \mathbf{u}_{\rho} \times \mathbf{u}_{\theta} \\ \kappa &= \parallel \mathbf{v} \times \mathbf{a} \parallel / (v^3) = |2(\rho')^2 - \rho(\rho'' - \rho)| / ((\rho')^2 + \rho^2)^{3/2} \end{aligned}$$

Radius of curvature: $= 1/\kappa$. At this point the Exercises 13 are easy.

Exercise n. 3 Sect. 14.19. Vol. I. We recall that cylindrical coordinates in \mathcal{V}_3 are coordinates (ρ, θ, z)

such that (ρ, θ) are the usual polar coordinates of the point (x, y) in the (x, y)-plane. (a) Since $\rho = \sin \theta$ we have that $(x, y) = \rho(\cos \theta, \sin \theta) = \sin \theta(\cos \theta, \sin \theta)$. Therefore $x^2 + (y - 1/2)^2 = \sin^2 \theta \cos^2 \theta + (\cos^2 \theta - (1/2))^2 = \sin^2 \theta \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^4 \theta - \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) \cos^2 \theta + \cos^2 \theta + (1/4) = (1 - \cos^2 \theta) = (1 - \cos^2 \theta) \cos^2 \theta + (1 - \cos^2 \theta) = (1 - \cos$ (1/4) = 1/4. (Note that this means that if (x, y, z) belongs to the curve of the exercise then (x, y) belongs to the circle of radius 1/2 and center (0, 1/2) in the (x, y)-plane).

(b) In cylindrical coordinates $\mathbf{r} = \rho \mathbf{u}_{\rho} + z \mathbf{k}$. Therefore $\mathbf{v} = \rho' \mathbf{u}_{\rho} + \rho \theta' \mathbf{u}_{\theta} + z' \mathbf{k}$. Since in this case the parameter is θ itself (that is to say: $t = \theta$) this simplifies as $\mathbf{v} = \rho' \mathbf{u}_{\rho} + \rho \mathbf{u}_{\theta} + z' \mathbf{k}$. Therefore the angle between ${\bf v}$ and the z-axis is

$$\arccos \frac{z'}{v}$$

Now (in the hypothesis $\theta = t$) we have $v = \sqrt{(\rho')^2 + \rho^2 + (z')^2}$. In our case: $v = \sqrt{\cos^2 \theta + \sin^2 \theta + (z')^2} = \sqrt{\cos^2 \theta + \sin^2 \theta + (z')^2}$ $=\sqrt{1+(z')^2}$. In conclusion the angle between **v** and the z-axis is

$$\operatorname{arccos} \frac{z'}{\sqrt{1+(z')^2}}$$

In our case:

$$z = z(\theta) = \log(\frac{1}{\cos \theta})$$
 Hence $z' = \cos \theta \frac{-(-\sin \theta)}{\cos^2 \theta} = \tan \theta$

Therefore the required angle is

$$\arccos(\frac{\tan\theta}{\sqrt{1+\tan^2\theta}}) = \arccos(\frac{\sin\theta}{\cos\theta} \frac{1}{\sqrt{\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta}}}) = \arccos(\frac{\sin\theta\cos\theta}{\cos\theta}) = \arccos(\sin\theta) = \frac{\pi}{2} - \theta$$