
L.A.G. . Solution of some exercises on the textbook, I

Section 14.13

Exercise n. 11 Sect. 14.13. Vol. I. First we find a parametrization of the curve. Clearly x(t) = t2,
y(t) = t3 works. Hence r(t) = (t2, t3). Therefore, with this parametrization, v(t) = (2t, 3t2) and v(t) =√

4t2 + 9t4 = |t|
√

4 + 9t2. A primitive of t
√

4 + 9t2 is (1/27)(4 + 9t2)3/2.
Note that, in the parametrization above, (1,−1) corresponds to t = −1 and (1, 1) corresponds to t = 1.

In conclusion, the lenght of the arc joining the points (1,−1) and (1, 1) is∫ 0

−1

−t
√

4 + 9t2dt+
∫ 1

0

t
√

4 + 9t2dt =
[
(1/27)(4 + 9t2)3/2

]−1

0
+
[
(1/27)(4 + 9t2)3/2

]1
0

=

=
1
27
(
13
√

13− 8) + (13
√

13− 8) =
26
√

13− 16
27

Exercise n. 12 Sect. 14.13. Vol. I. Parametrization of the circle of radius 1 and center 0: r(θ) =

(cos θ, sin θ). The speed is constant, equal to 1. Length of the arc:
∫ θ2
θ1

1dθ = θ2 − θ1. Area of the sector:

(1/2)
∫ θ2
θ2

12dθ = (1/2)(θ2 − θ1).

Exercise n. 13 Sect. 14.13. Vol. I. (a) r(x) = (x, ex), v(x) = (1, ex), v(x) =
√

1 + e2x. Length:∫ 1

0

√
1 + e2xdx.

(b) r(t) = (t+ log t, t− log t), v(t) = (1 + (1/t), 1− (1/t)), v(t) =
√

(1 + (1/t))2 + (1− (1/t))2 =
√

2
√

1+t2

t .
Length:

√
2
∫ e
1

√
1+t2

t dt.
The integral in (a) is equal to the integral in (b) via the substitution t = ex.

Exercise n. 19 Sect. 14.13. Vol. I. r(t) = tA+t2B+2( 2
3 t)

3/2A×B. v(t) = A+2tB+3( 2
3 t)

1/2 2
3A×B =

A+ 2tB + 2( 2
3 t)

1/2A×B.

v(t) =
√

v(t) · v(t) =
√
‖ A ‖2 +4t2 ‖ B ‖2 +4( 2

3 t) ‖ A×B ‖2 +4tA ·B =
√

1 + 4t2 + 8
3 sin2 π

3 t+ 4 cos2 π
3 t =

=
√

1 + 4t2 + 4t = |1 + 2t|.
We are lloking for the t > 0 such that

∫ t
0
(1 + 2u)du = 12, that is: 12 =

[ (1+2u)2

2

]t
0

= (1+2t)2

2 − 1
2 . Computing

one gets (1 + 2t)2 − 1 = 24. The solution is t = 3.

Section 14.15

Exercise n. 7 Sect. 14.15. Vol. I. Since the speed is constant we have that ‖ a ‖= v ‖ T ′ ‖. On the
other hand κ =‖ T ′ ‖ /v = ‖ a ‖ /v2.

Exercise n. 11 Sect. 14.15. Vol. I. We know that κ(t) = |α′(t)|/v(t) (as in Example 2 of §14.14
κ(t) = |dα/ds| = |(dα/dt)(dt/ds)| = |(dα/dt)|/(ds/dt)| = |α′/v|). In our case: 2t = |α′(t)|/5. The hypothesis
tells that α(0) = π/2 and then α(t) ≤ π/2. Hence α′(t) = −10t (it cannot be α′(t) = 10t because, if this
was the case, α(t) would be bigger than π/2 for t > 0. Therefore

α(t) = −5t2 + c

where c is a constant. Since we know that α(0) = π/2 we have that c = π/2. In conclusion α(t) = −5t2+π/2.
Therefore

v(t) = v(cosα(t), sinα(t)) = 5(cos(−5t2 +
π

2
), sin(−5t2 +

π

2
))
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Section 14.19

Exercise n. 6 Sect. 14.19. Vol. I. (a) For c = 0 it is a circle of radius one. Otherwise it is a spiral,
going from the interior to the exterior for c = 1, and from the exterior from the interior for c = −1.
(b) Calculation of the speed in polar coordinates: since in this exercise the parameter is the angle θ the
formulas simplify as in the last lines of §15.16. Therefore v(θ) =

√
(ρ′)2 + ρ2 =

√
c2e2cθ + e2cθ = ecθ

√
c2 + 1.

Hence L(c) =
∫ 2π

0
v(θ)dθ =

√
c2 + 1

∫ 2π

0
ecθdθ =

√
c2+1
c

[
ecθ
]2π
0

=
√
c2+1
c (e2cπ − 1).

R(c) = 1
2

∫ 2π

0
ρ2(θ)dθ =

∫ 2π

0
e2cθ = 1

2c (e
4cπ − 1).

Exercise n. 14 Sect. 14.19. Vol. I. We assume that the parameter is the angle θ. Hence (formulas at
the end of §15.16) v = dρ

dθuρ + ρuθ. Since {uρ,uθ} is an orthonomal basis (varying with θ) we have that ,
since r = ρuρ,

ρv cosφ = r · v = ρ
dρ

dθ

and
ρv sinφ =‖ r× v ‖=‖ ρuρ × ρuθ ‖= ρ2

Exercise n. 15 Sect. 14.19. Vol. I. This exercise is closely related to the previous two. Indeed,
note that if we have a plane motion expressed by the polar equation ρ = Kecθ (see Exercise n.6 above)
then the angle φ = φ(θ) between r and v is constant (note: this is a property of the curve, and not of the
parametrization). This is seen, for example, as follows: from the previous exercise tanφ = ρ′/ρ ≡ c.

Also the converse is true: in fact, if tanφ ≡ c, again from the previous exercise, ρ′/ρ ≡ c and, integrating,
log ρ = cθ + d. Exponentiating: ρ = Kecθ, with K = ed.

Thus we have seen that:
a regular plane curve has the property that the angle between the position and velocity vectors is constant
if and only if its polar equation is of the form ρ = Kecθ, for K, c ∈ R (such curves are called logarithmic
spirals).

Having said that, the solution of this exercise is easy: we take the target as origin. The ”direction
in actual flight” at a given time is the direction of the velocity vector, so the hypothesis is that the angle
between v and −r is constant equal to α. Hence the angle beween v and r is constant equal to π − α.
Therefore the path is a logarithmic spiral of polar equation ρ = ecθ, with c = tan(π−α). Hence it is a circle
for α = π/2, the distance from the origin goes to∞ when t→∞ if α > π/2 (that is c > 0), and the distance
from the origin goes to 0 for t→∞ if α < π/2 (that is c < 0). In this last case one could say that ”yes, the
missile will reach the target” in the sense that it will get closer and closer to the target.

Exercise n. 5 Sect. 14.19. Vol. I. For θ = 0 we have that ρ = 8, when θ increses in [0, π] ρ decreases. For
θ = π we have ρ = 0. The curve is symmetric with respect to the x axis, so the piece of curve corresponding
to [π, 2π] is the curve – under the x-axis – symmetric to the previous one. Note that the curve is not regular,
that is to say v = 0 for θ = π (exercise!). The overall picture is a ”horizontal” heart (whence the name
cardioid).

Length: v(θ) =
√

(ρ′)2 + ρ2 =
√

(4 sin θ)2 + (4(1 + cos θ))2 = 4
√

2 + 2 cos θ = 4
√

2
√

1 + cos θ =

= 4
√

2
√

1 + cos2(θ/2)− sin2(θ/2) = 8| cos(θ/2)|
Therefore the length is

∫ 2π

0
v(θ)dθ = 8(

∫ π
0

cos(θ/2)−
∫ 2π

π
cos(θ/2)dθ) = 32.

Exercise n. 12-13 Sect. 14.19. Vol. I. Curvature in polar coordinates (if the parameter is the angle
θ).
v = ρ′uρ + ρuθ. v =

√
(ρ′)2 + ρ2

a = (ρ′′ − ρ)uρ + 2ρ′uθ.
v × a = 2(ρ′)2uρ × uθ + ρ(ρ′′ − ρ)uθ × uρ = 2(ρ′)2 − ρ(ρ′′ − ρ)uρ × uθ
κ =‖ v × a ‖ /(v3) = |2(ρ′)2 − ρ(ρ′′ − ρ)|/((ρ′)2 + ρ2)3/2
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Radius of curvature: = 1/κ.
At this point the Exercises 13 are easy.

Exercise n. 3 Sect. 14.19. Vol. I. We recall that cylindrical coordinates in V3 are coordinates (ρ, θ, z)
such that (ρ, θ) are the usual polar coordinates of the point (x, y) in the (x, y)-plane.
(a) Since ρ = sin θ we have that (x, y) = ρ(cos θ, sin θ) = sin θ(cos θ, sin θ). Therefore x2 + (y − 1/2)2 =
sin2 θ cos2 θ+ (cos2 θ− (1/2))2 = sin2 θ cos2 θ+ cos4 θ− cos2 θ+ (1/4) = (1− cos2 θ) cos2 θ+ cos4 θ− cos2 θ+
(1/4) = 1/4. (Note that this means that if (x, y, z) belongs to the curve of the exercise then (x, y) belongls
to the circle of radius 1/2 and center (0, 1/2) in the (x, y)-plane).
(b) In cylindrical coordinates r = ρuρ + zk. Therefore v = ρ′uρ + ρθ′uθ + z′k. Since in this case the
parameter is θ itself (that is to say: t = θ) this simplifies as v = ρ′uρ + ρuθ + z′k. Therefore the angle
between v and the z-axis is

arccos
z′

v

Now (in the hypothesis θ = t) we have v =
√

(ρ′)2 + ρ2 + (z′)2. In our case: v =
√

cos2 θ + sin2 θ + (z′)2 =

=
√

1 + (z′)2. In conclusion the angle between v and the z-axis is

arccos
z′√

1 + (z′)2

In our case:

z = z(θ) = log(
1

cos θ
) Hence z′ = cos θ

−(− sin θ)
cos2 θ

= tan θ

Therefore the required angle is

arccos(
tan θ√

1 + tan2 θ
) = arccos(

sin θ
cos θ

1√
cos2 θ+sin2 θ

cos2 θ

) = arccos(
sin θ cos θ

cos θ
) = arccos(sin θ) =

π

2
− θ
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