L.A.G. . Solution of some exercises on the textbook, I

Section 14.13

Exercise n. 11 Sect. 14.13. Vol. I. First we find a parametrization of the curve. Clearly z(t) = t2,
y(t) = t3 works. Hence r(t) = (t2,¢3). Therefore, with this parametrization, v(t) = (2¢,3t?) and v(t) =
VA2 + 9t = |t|v/4 + 9t2. A primitive of tv/4 + 92 is (1/27)(4 + 9t2)3/2.

Note that, in the parametrization above, (1,—1) corresponds to t = —1 and (1,1) corresponds to t = 1.
In conclusion, the lenght of the arc joining the points (1,—1) and (1,1) is

/0 /4 1 Of2dt & /lt\/mdt =[(1/27)(4 + 9152)3/2];1 + [(1/27)(4 + 9t2)3/2](1) —
1

— 0
1 261/13 — 16
= 5 (13VI3 - 8) + (13VI3 - 8) = = —

Exercise n. 12 Sect. 14.13. Vol. I. Parametrization of the circle of radius 1 and center 0: r(f) =

(cos®,sin@). The speed is constant, equal to 1. Length of the arc: f;f 1d6 = 65 — 1. Area of the sector:
2
(1/2) [, 12d60 = (1/2)(02 — 61).

Exercise n. 13 Sect. 14.13. Vol. I. (a) r(z) = (z,e%), v(z) = (1,€*), v(x) = V1+e?*. Length:
fol V1+e?rdx.

(b) x(t) = (t+logt,t—logt), v(t) = (1+(1/t),1=(1/t), () = /(T + 1/8)? + (1= (1/1)? = YL,
Length: ﬂff 7vlt'*'f’2dt.

The integral in (a) is equal to the integral in (b) via the substitution ¢ = e®.

Exercise n. 19 Sect. 14.13. Vol. L. r(t) = tA+t>B+2(3t)*?AxB. v(t) = A+2tB+3(3t)"/?2AxB =
A+2tB +2(2t)1/2A x B.

v(t) = \/v(t)-v(t) = \/|| A2 4482 || B ||> +4(3t) || Ax B ||> +4tA- B = \/1 + 412 + Ssin® 2t + 4 cos? Tt :I
=V1+4t2 +4t = |14 2t|.

We are lloking for the ¢ > 0 such that fg(l +2u)du = 12, that is: 12 = [(1+22“)2](t) = (1+22t)2 — 3. Computing
one gets (1 + 2t)%2 — 1 = 24. The solution is t = 3.

Section 14.15

Exercise n. 7 Sect. 14.15. Vol. I. Since the speed is constant we have that || a ||= v || 77 ||. On the
other hand x =[| T || /v =] a | /v2.

Exercise n. 11 Sect. 14.15. Vol. I. We know that x(t) = |&/(¢)|/v(t) (as in Example 2 of §14.14
k(t) = |da/ds| = |(da/dt)(dt/ds)| = |(de/dt)|/(ds/dt)| = | /v]). In our case: 2t = |a/(t)]|/5. The hypothesis
tells that a(0) = 7/2 and then «a(t) < /2. Hence o/(t) = —10¢ (it cannot be o’(t) = 10¢ because, if this
was the case, «(t) would be bigger than /2 for ¢ > 0. Therefore

a(t) = =5t* + ¢

where c is a constant. Since we know that a(0) = 7/2 we have that ¢ = 7/2. In conclusion a(t) = —5t2+7 /2.
Therefore T T
v(t) = v(cos a(t),sin a(t)) = 5(cos(—5t* + 5),sim(—5t2 + 5))



Section 14.19

Exercise n. 6 Sect. 14.19. Vol. I. (a) For ¢ = 0 it is a circle of radius one. Otherwise it is a spiral,
going from the interior to the exterior for ¢ = 1, and from the exterior from the interior for ¢ = —1.

(b) Calculation of the speed in polar coordinates: since in this exercise the parameter is the angle 6 the
formulas simplify as in the last lines of §15.16. Therefore v(6) = \/(p/)2 + p2 = V/c2e2F + 260 = ¢¥\/c2 + 1.

Hence L(c) = Ozﬂ v(0)dh = Ve? + 1f027T eldh = Yetl [ecefﬂ = Ve dl(g2em 1),

c 0 c
2 27 9. o
R(c) = % 0 p2(9)d¢9 =Jy e2ct — —21C (64 — 1).

Exercise n. 14 Sect. 14.19. Vol. I. We assume that the parameter is the angle . Hence (formulas at
the end of §15.16) v = %up + pug. Since {u,, up} is an orthonomal basis (varying with 6) we have that ,
since r = pu,,

dp
pUCOSP =1 -V = Py
and
pusing =t x v [|=]| pu, x pug ||= p?

Exercise n. 15 Sect. 14.19. Vol. I. This exercise is closely related to the previous two. Indeed,
note that if we have a plane motion expressed by the polar equation p = Ke® (see Exercise n.6 above)
then the angle ¢ = ¢(0) between r and v is constant (note: this is a property of the curve, and not of the
parametrization). This is seen, for example, as follows: from the previous exercise tan¢ = p'/p = c.

Also the converse is true: in fact, if tan ¢ = ¢, again from the previous exercise, p’'/p = ¢ and, integrating,
log p = cf + d. Exponentiating: p = Ke®, with K = e

Thus we have seen that:

a regqular plane curve has the property that the angle between the position and velocity vectors is constant
if and only if its polar equation is of the form p = Ke®®, for K,c € R (such curves are called logarithmic
spirals).

Having said that, the solution of this exercise is easy: we take the target as origin. The ”direction
in actual flight” at a given time is the direction of the velocity vector, so the hypothesis is that the angle
between v and —r is constant equal to . Hence the angle beween v and r is constant equal to ™ — a.
Therefore the path is a logarithmic spiral of polar equation p = e/, with ¢ = tan(m — ). Hence it is a circle
for a = /2, the distance from the origin goes to co when ¢ — oo if @ > /2 (that is ¢ > 0), and the distance
from the origin goes to 0 for ¢ — oo if a < 7/2 (that is ¢ < 0). In this last case one could say that ”yes, the
missile will reach the target” in the sense that it will get closer and closer to the target.

Exercise n. 5 Sect. 14.19. Vol. I. For § = 0 we have that p = 8, when 6 increses in [0, 7] p decreases. For
0 = m we have p = 0. The curve is symmetric with respect to the x axis, so the piece of curve corresponding
to [m, 2] is the curve — under the z-axis — symmetric to the previous one. Note that the curve is not regular,
that is to say v = 0 for § = 7 (exercise!). The overall picture is a ”horizontal” heart (whence the name
cardioid).

Length: v(60) = \/(p')2 + p2 = /(4sin0)2 + (4(1 + cos 0))? = 4/2 + 2cos § = 4v/2y/1 + cos 0 =
= V21 + cos?(6/2) — sin®(6/2) = 8| cos(0/2)|
Therefore the length is fozﬂ v(0)do = 8( [, cos(6/2) — f:w cos(0/2)df) = 32.

Exercise n. 12-13 Sect. 14.19. Vol. I. Curvature in polar coordinates (if the parameter is the angle
0).

v=yp'u,+pup. v=./(p)+p?

a=(p" —pu, +2p"uy.

v xa=2(p')u, xug+ p(p” = pJug x u, = 2(p')*> = p(p” — p)u, x uy

k=l vxal /(W) =[20) = p(p” = p)I/((P)* + p*)*/*

2



Radius of curvature: = 1/k.
At this point the Exercises 13 are easy.

Exercise n. 3 Sect. 14.19. Vol. I. We recall that cylindrical coordinates in Vs are coordinates (p, 0, z)
such that (p,0) are the usual polar coordinates of the point (z,y) in the (z,y)-plane.
(a) Since p = sin® we have that (z,y) = p(cos@,sinf) = sinf(cosf,sind). Therefore 2% + (y — 1/2)? =
sin? @ cos? 0 + (cos? 0 — (1/2))? = sin” f cos? § + cos* O — cos? O + (1/4) = (1 — cos? ) cos? O 4 cos* § — cos? O +
(1/4) = 1/4. (Note that this means that if (z,y, z) belongs to the curve of the exercise then (z,y) belongls
to the circle of radius 1/2 and center (0,1/2) in the (z, y)-plane).
(b) In cylindrical coordinates r = pu, + zk. Therefore v = p'u, + pf'uy + 2z'k. Since in this case the
parameter is 6 itself (that is to say: t = ) this simplifies as v = p'u, + pug + z’k. Therefore the angle
between v and the z-axis is ,

arccos —

v

Now (in the hypothesis § = t) we have v = 1/(p')% + p% + (2/)2. In our case: v = y/cos2 0 +sin® 0 + (/)2 =
= /1 + (2')2. In conclusion the angle between v and the z-axis is

Zl
arccos ————
14+ (2)?
In our case: ) (—sinf)
—(—sin
=2(0) =1 H "= cos) ———~ =tan¥
z = z(0) Og(cosﬁ) ence z' = cos p—y an
Therefore the required angle is
( tan 6 ) (sinﬂ 1 )= a (sinﬁcosﬁ) N (sin ) T _ g
arccos(——————) = arccos = arccos(——————) = arccos(sinf) = — —
V14 tan? 0 cos 6 cos? 0sin? 6 cosé 2
cos2 0



