
ADDENDUM CONCERNING LINEAR
TRANSFORMATIONS AND MATRICES, I

Up to Section 5 you should study the material in the book with no
changes. You should also study Section 9 (Linear transformation with pre-
scribed values) with no changes (but keeping in mind the examples provided
in the lectures).

1. Replacement of sections 6 and 7 : Inverses and one-to-one
transformations

Concerning the topic of sections 6 and 7, we will will content ourselves of
the following simpler version.

We recall the following well known concepts concerning functions.
Let X and Y be two sets and T : X → Y a function. We recall that:

• T is said to be injective (or one-to-one) if the following condition holds:
let x, x′ ∈ X, with x 6= x′. Then T (x) 6= T (x′). In words: T sends distinct
elements of X to distinct elements of Y .
• T is said to be surjective if for each y ∈ Y there is a x ∈ X such that
T (X) = y. In words: every element of Y is the value, via T , of an element
of X.
• T is said to be bijective if it is injective and surjective. This means that
for each y ∈ Y there is a UNIQUE x ∈ X such that T (x) = y. In words:
every element of Y corresponds, via T , to a unique element of X.
• T is said to be invertible if there is a function S : Y → X such that
ST = IX and TS = IY (where IX and IY denote the identity functions of
X and Y ). We have the following proposition:

Proposition 1.1. (a) T is invertible if and only if it is bijective.
(b) In this case S is the unique function with the above properties. It is
denoted T−1, the inverse of T .
(c) Assume that T is bijective. Let S : Y → X such that TS = IY . Then
S = T−1. In particular, ST = IX .
(d) Assume that T is bijective. Let S : Y → X such that ST = IX . Then
S = T−1. In particular TS = IY .

Proof. (a) If T is bijective one defines S as follows: given y ∈ Y , S(y) is be
the unique x ∈ X such that T (x) = y. Conversely, if ST = IX then T is
injective, since if T (x) = T (x′) then S(T (x)) = S(T (x′)). But S(T (x)) = x
and S(T (x′)) = x′. If TS = IY , then T is surjective, since, for each y ∈ Y ,
y = T (S(y)).
(b) This follows from the proof of point (a).
(c) Assume that T is bijective. Since T (S(y)) = y for all y ∈ Y , S(y) must
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be the unique x ∈ X such that T (x) = y.
(d) is similar. �

Note that, without the hypothesis of bijectivity, (c) and (d) of the previous
proposition are false (see for example Exercise 16.8-27 Vol. I, corresponding
to 2.8.27 Vol. II).

In general, injectivity, surjectivity and bijectivity are quite unpredictable
properties of functions. However, for linear transformations, especially in
the finite-dimensional case, everything is much simpler. In the rest of the
section we will exploit this point. We begin with injectivity.

Proposition 1.2. Let V and W be linear spaces and T : V →W be a linear
transformation. Then T is injective if and only if N(T ) = {OV }.

Proof. We know that, since T is linear, T (OV ) = OW . If T is injective,
there is no other v ∈ V such that T (v) = OW . Therefore N(T ) = {OV }.
For the other implication, let us assume that N(T ) = {OV }. Let v, v′ ∈ V
such that T (v) = T (v′). This can be rewritten as T (v) − T (v′) = OW or,
since T is linear, T (v − v′) = OW , that is v − v′ ∈ N(T ). But we assumed
that N(T ) = {OV }. Hence v − v′ = OV , that is v − v′. Therefore T is
injective. �

The next proposition deals with the finite-dimensional case

Proposition 1.3. Let V and W be finite-dimensional linear spaces and
T : V →W be a linear transformation. Then the following are equivalent:
(a) T is injective;
(b) dim T (V ) = dim V ;
(c) If {e1, . . . , en} is a basis of V then {T (e1), . . . , T (en)} is a basis of W .

Proof. (a)⇔(b) follows from Prop. 1.2 and the Nullity + Rank theorem. In
fact, N(T ) = {O} if and only if dim N(T ) = 0. Since, by Nullity + Rank,
dimT (V ) = dim V − dim N(T ), T is injective if and only if dim T (V ) =
dim V .
(b)⇒(c) is as follows. In the first place we note that, since e1, . . . , en span
V , then in any case T (e1), . . . , T (en) span T (V ), because, given v ∈ V , v =∑

ciei. by the linearity if T , T (v) =
∑

T (ciei) =
∑

ciT (ei). If dim T (V ) =
dim V = n then {T (e1), . . . , T (en)} is a basis, since it is a spanning set
formed by n elements. (c)⇒(b) is obvious. �

Concerning bijectivity and invertibility, we start by recording the follow-
ing easy fact, which does not need finite-dimensionality

Proposition 1.4. Let V and W be linear spaces and T : V → W be a
linear transformation. If T is invertible then also T−1 : W → V is a linear
transformation.

Proof. Let w1, w2 ∈W and let v1, v2 be the unique elements of V such that
T (v1) = w1 and T (v2) = w2. hence v1 = T−1(w1) and v2 = T−1(w2). Since
T is linear, T (v1 + v2) = T (v1) + T (v2) = w1 + w2. Therefore

T−1(w1 + w2) = v1 + v2 = T−1(w1) + T−1(w2).
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Moreover, let c ∈ R. We have that T (c v1) = c T (v1) = c w1. Therefore

T−1(c w1) = c v1 = c T−1(w1) �

In the finite-dimensional case, Proposition 1.3 has the following conse-
quences

Corollary 1.5. Let V and W be finite-dimensional linear spaces and T :
V →W be a linear transformation.
(a) If T is bijective (or, equivalently, invertible) then dim V = dim W . (b)
Conversely, assume that dim V = dim W . Then the following are equivalent
(i) T is injective;
(ii) T is surjective,
(iii) T is bijective.

Proof. It is sufficient to prove the equivalence of (i) and (ii). Assume that
T is injective. Then, by Prop. 1.3, dim T (V ) = dim V = dim W . Therefore
T (V ) = W , that is T is surjective.
Assume that T is surjective, that is dim T (V ) = dim W (= dim V ). By
nullity+rank, this implies that dim N(T ) = 0. Thus Prop. 1.3 implies that
T is injective. �

For example, let T : V3 → V3 defined by T ((x, y, z)) = (x − 2y + 3z, x +
y + z, x− y − z). By the previous Corollary and Theorem 1.3 T is bijective
(hence invertible) if and only if N(T ) = {O}. N(T ) is the space of solutions
of the system of linear equations

x− 2y + 3z = 0
x + y + z = 0
x− y − z = 0

By what we studied in the first semester, hence N(T ) = {O} means that
this system has only the trivial solution (0, 0, 0) (or, equivalently, that the
columns of the system are linearly independent). This can be checked by
computing the determinant

det

1 −2 3
1 1 1
1 −1 −1

 = −13

Since the determinant is non-zero then (go back to the lectures of the first
semester, or to Chapter 15 of Vol. I !) (0, 0, 0) is the only solution. Therefore
T is bijective. Later on we’ll see an efficient way to compute the inverse
transformation T−1.

2. Matrices and linear transformations: supplementary notes

It is conceptuallly easier to study the remaining sections of the chapter on
linear transformation and matrices as follows: read the beginning of Section
10 for generalities about matrices. Then skip, for the moment, the Theorem
and the subsequent examples, and go directly Section 13 (Linear spaces of
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matrices). Then skip, for the moment, Section 14 and go directly to Section
15 (Multiplication of matrices). At this point go back to the Theorem and
Examples of Section 10 and Section 14, which are about the correspondence
between matrices and linear transformations. Here are some supplementary
notes about this material, which hopefully may helpful to understand the
meaning of these results. Note: the contents of Section 11 (Construction of
a matrix representation in diagonal form) should be skipped.

We will use the following notation: Mm,n will denote the set of all m ×
n matrices. Equipped with the operations of matrix addition and scalar
multiplication Mm,n is in fact a linear space (Section 13.)

Moreover, given a matrix A ∈ Mm,n = (aij), the transpose of A, is the
matrix At ∈ Mn,m defined as At = (aji). In practice, the columns of A are
the rows of At and the rows of A are the columns of At.

Example 2.1. Let A =
(

1 2 −3
−1 2 1

)
. Then At =

 1 −1
2 2
−3 1

.

In the sequel it will more confortable to write n-yuples of Vn as column
vectors, that is matrices with one column. Given X = (x1, . . . , xn) ∈ Vn the

corresponding column vector is Xt =


x1

·
·

xn

.

Definition 2.2 (Standard linear transformation associated to a m× n ma-
trix). Let A ∈ MM,n. The standard linear transformation associated to A
is the linear trasformation

TA : Vn → Vm

defined as follows. We see the elements of Vn and Vm as column vectors

Xt =


x1

.

.

.
xn

 ∈Mn,1 Y t =


y1

.

.
ym

 ∈Mm,1

Then TA is defined as
TA(Xt) = AXt

where AXt denoted the multiplication of the m× n matrix A with the n× 1
matrix (= column vector of length n) Xt. The result is a m × 1 matrix
(=column vector of length m). In coordinates:

TA(Xt) =


a11 . . . a1n

. . .

. . .

. . .
am1 . . . amn




x1

.

.

.
xn

 =


a11x1 + · · ·+ a1nxn

.

.

.
am1x1 + · · ·+ amnxn
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Here are some remarks:
(a) The column vector TA(Xt) = AXt can be written also as

x1


a11

.

.

.
am1

+ · · ·+ xn


a1n

.

.

.
amn

 = x1A
1 + · · ·+ xnAn.

(b) A system of linear equations

A1 ·X = b1

. . .

. . .

. . .

Am ·X = bm

can be written in compact form as

AXt = B

where B is the (column) vector of constant terms. This has the conceptual
advantage of seeing a system composed by many equations as a single vector
equation, that is an equation whose unknown is a vector. For example,{

2x + 3y − z = 3
2x + y + 2z = 4

⇔
(

2 3 −1
2 1 2

)x
y
z

 =
(

3
4

)
(c) TA(Vn), the range of TA, is, by definition, the subspace of Vm formed by
the B ∈ Vm such that the system of linear equations AX = B (see the above
remarks) has some solutions. This shows that TA(Vn) = L(A1, . . . , An).
(d) The linear transformation TA is nothing else but the ”linear transforma-
tion defined by linear equations” of Example 4 of Section 1 of the textbook.
As remarked in Example 4 of Section 2 of the book, N(TA), the null-space of
TA, is the subspace of Vn formed by the solutions of the homogenous system
AX = 0.
(e) Denoting

E1 =


1
0
.
.
.
0

 , . . . . . . , En =


0
.
.
.
.
1


the ”coordinate unit vectors” of Vn – that is the vectors of the so-called
”canonical basis” of Vn written as column vectors – then

AEi = Ai

(where Ai are the column vectors of A).
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3. The rank of a matrix

Let us start with the following

Definition 3.1. Let A ∈MM,n be a matrix. The rank of A, denoted rk(A),
is defined as the rank of the linear transformation TA : Vn → Vm, X 7→ AXt

(compare Def. 2.2).

By Remark (c) after Definition 2.2 we know that rk(A) = dim L(A1, . . . , An),
where A1, . . . , An are the columns of A. In other words, rk(A) is the max-
imal number of independent columns of A (see Thms 15.5 and 15.7 of Vol.
I, corresponding to Thms 1.5 and 1.7 of Vol. II). We have the remarkable

Proposition 3.2. rk(A) = dim L(A1, . . . , Am), where A1, . . . , Am are the
rows of A. In other words, the maximal number of independent columns of
A equals the maximal number of independent rows of A.

Proof. By the nullity + rank Theorem, rk(TA) = n − dim N(TA). On the
other hand, by definition,

N(TA) = L(A1, . . . , Am)⊥.

This is because N(TA) is the set of solution of the homogeneous system
A1 ·X = 0
. . .

. . .

Am ·X = 0

Therefore dim N(TA) = dim L(A1, . . . , Am)⊥ = n − dim L(A1, . . . , Am), see
Lemma 3.4 below. (Note that the rows A1, . . . , Am have n(= number of
columns od A) components, hence they are vectors of Vn). Putting evething
together Rk(A) = rk(TA) = n−dim N(TA) = n−(n−dim L(A1, . . . , Am)) =
dim L(A1, . . . Am). �

Example 3.3. Let A1 = (1, 2, 3), A2 = (3, 4, 5) and let A3 := A1 + A2 =
(4, 6, 8). Let us consider the matrix

A =

A1

A2

A3

 =

1 2 3
3 4 5
4 6 8


Since the maximal number of independent rows is 2 then the maximal num-
ber of independent columns is 2. In particular, the columns are dependent.
Exercise: check this!

Lemma 3.4. Let V be a finite-dimensional linear space and let W ⊂ V be
a linear subspace of V . Then dim W⊥ = dim V − dim W .

Proof. Let n = dim V and k = dim W . Let {w1, . . . , wk} be a basis of W . We
complete it to a basis of V : B = {w1, . . . , , wk, uk+1, . . . , un} (Apostol, Vol.
I, Thm 15.7(b)). Applying Gram-Schmidt orthogonalization to B (Apostol,
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Vol. I, Thm 15.13) we find an orthogonal basis {e1, · · · , ek, fk+1, . . . , fn}
such that L(e1, . . . , ek) = L(w1, . . . , wk) = W . Therefore {fk+1, . . . , fn} is
an orthogonal basis of W⊥. In particular dim W⊥ = n− k. �

4. Computation of the rank of a matrix, with application to
systems of linear equations

We have the following easy result, summarizing the qualitive behaviour of
systems of linear equations. We will need the followimg terminology: given
a linear system AX = B, with A ∈ Mm,n and B ∈ Mm,1 (see Remark
(b) after Definition 2.2), we denote A|B the m× (n + 1)-matrix whose first
n columns are the columns of A and the last one is B. This is called the
augmented or complete matrix of the linear sistem.

Theorem 4.1 (Rouché-Capelli). Let AXt = B be a linear system. Then
(a) A has some solutions if and only if rk(A) = rk(A|B) (if this happens
the system is sometimes called compatible),
(b) In this case, the set of all solutions of the system is of the form v +W =
{v + w | w ∈ W}, where v ∈ Vn is a solution of the system and W is the
linear subspace of Vn formed by all solutions of the homogeneous system
AXt = O. In particular, there is a unique solution if and only if (a) holds
and dim W = 0.
(c) dimW = n− rk(A).

Proof. (a) The system has some solutions if and only if the column vector
B is a linear combinations of the columns A1, . . . , An. This means exactly
that the rank(= number of independent columns) of A|B is the same as the
rank of A.
(b) Let v1 and v two solutions of the system, that is Avt

1 = B and Avt = B.
Then A(vt

1 − vt
2) = 0. therefore v1 − v is a solution of the homogeneous

system AXt = O, that is v1 − v ∈W . Therefore v1 = v + w for a w ∈W .
(c) This is just a restatement of the nullity + rank Theorem. �

In order to solve a linear system by computing the rank of the matrices
A and A|B one can use the row-elimination method of Gauss-Jordan. Here
are some examples (see also the examples given in the lectures and those in
the book at Section 18).

Example 4.2.


x + 2y + z + t = 1
x + 3y + z − t = 2
x + 4y + z − 3t = 3
2x + y + z = 2

.

We will make use of the following modifications of the equations of the sys-
tem:
(a) exchanging to equations;
(b) multiplying an equation by a non-zero scalar,
(c) adding to an equation a scalar multiple of another equation.
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Clearly such modifications produce equivalent(= having the same solutions)
systems. Since the equations correspond to the rows of the associated aug-
mented matrix A|B, the above modifications correspond to modifications
of the rows of A|B. Note that, even if after operating one such modifica-
tions the rows of the modified matrix do change, the linear span of the rows
remains the same. Therefore such modifications leave unchanged the rank.

A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −3 3
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −4 2
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 0 0
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 0 0


Now we arrived to a matrix in row-echelon form, corresponding to the equiv-
alent system 

x + 2y + z + t = 1
y − 2t = 1
− z − 7t = 3

Let us denote A′X = B′ this new system. We have that rk(A|B) =
rk(A′|B′) = 3, since the non-zero rows of a row-ladder matrix are clearly in-
dependent (exercise!). For the same reason, rk(A) = rk(A′) = 3. Therefore
the system has solutions (note that, in general, there are solutions if and
only if, in the final ladder matrix there is no row of the form

(
0 . . . 0 a

)
with a 6= 0). Even before computing the explicit solutions, we know that
the set of solutions will have the form

v + W, with dim W = 1

since n− rk(A|B) = 4− 3 = 1. We compute the solutions starting from the
last equation: z = −3− 7t, y = 1 + 2t, x = 1− 2y− z− t = 1− 2(1 + 2t)−
(−3− 7t)− t = 2 + 2t. Therefore the solutions are the 4-tuples of the form

2 + 2t
1 + 2t
−3− 7t

t

 =


2
1
−3
0

+ t


2
2
−7
1

 = v + w, where w ∈W = L(


2
2
−7
1



Example 4.3.


x + 2y + z + t = 1
x + 3y + z − t = 2
x + 4y + z − 3t = 2
2x + y + z = 2

.
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A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −3 2
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −4 1
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 0 −1
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 0 −1


The system has no solution because the last equation is 0 = −1. This
corresponds to the fact that rk(A) = 3 while rk(A|B) = 4. In general, the
rank of a matrix in row-echelon form is the number of non-zero rows).

Example 4.4.


x + 2y + z + t = 1
x + 3y + z − t = 2
x + 4y + z − 2t = 3
2x + y + z = 2

.

A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −2 3
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −3 2
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 1 0
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 1 0


In this case rk(A) = rk(A|B) = 4. Therefore there is a unique solution,
since dim W = 4− 4 = 0 (this simply means that the four columns of A are
independent). Note that, since rk(A) = 4 for all possible vectors of constant
terms B′ ∈ V4 the system AX = B′ has a unique solution!) Exercise: find
the solution.

5. Exercises

Ex. 5.1. Let T : V4 → V4 be the linear transformation T (


x1

x2

x3

x4

) =


x1 + x3

2x1 + x2 + 2x3 + 2x4

x1 + x2 + x3 + 4x4

x1 + x2 + x3 + 2x4


(a) Find a basis of T (V4).
(b) Let v = (−3,−3, 0, 0). Does v belong to T (V4)? Is case of positive
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answer, find the components of v with respect to the basis of T (V4) found
in (a).
(c) Find a basis of N(T ).

Ex. 5.2. For t varying in R, let us consider the linear system
x1 + x2 − x3 = 1
x1 + 2x2 = 0
x1 + x2 + (t− 1)x3 = 2
x1 + x2 − x3 = t

Find the values of t such that the system has solutions, and those such that
the system has a unique solution. For such values of t, solve the system.

Ex. 5.3. Let us consider the lines of V3 L :

{
x + y = 0
x + 2y + z = 0

and

M :

{
x− y = 1
x + 5y + z = 0

. What is the correct statement among the following:

(a) they meet at a point; (b) they are parallel; (c) they don’t meet but they
are not parallel (in which case they are called skew lines).

Ex. 5.4. Solve the following systems (non necessarily with row elimina-
tion!):

(a)


2x1 − x2 + x3 = 1
3x1 + x2 − x3 = 3
x1 + 2x2 − x3 = −2

(b)


4x + y + z + 2v + 3w = 0
14x + 2y + 2z + 7v + 11w = 0
15x + 3y + 3z + 6v + 10w = 0

(c)


5x + 4y + 7z = 3
x + 2y + 3z = 1
x− y − z = 0
3x + 3y + 5z = 2

(d)


19x− y + 5z + t = 3
18x + 5z + t = 1
6x + 9y + t = 1
12x + 18y + 3t = 3

Ex. 5.5. Let us consider the homogeneous linear system


x1 + x2 + x4 = 0
x1 + 2x3 + x4 = 0
x2 − 2x3 = 0

.

(a) Find the dimension and a basis of the space of solutions;
(b) Find the dimension and a basis of the linear span of the columns of the
linear system.
(c) Find the dimension and a basis of the linear span of the rows of the
linear system.
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Ex. 5.6. For which values of t ∈ R the system
x1 + 2x2 + x3 = 1
x1 + (t + 4)x2 − 3x3 = 1/2
−2x1 + (t− 2)x2 + (2t− 6)x3 = 5/2

has respectively no solutions, a unique solution, infinitely many solutions?

Ex. 5.7. Find for which values of t, a ∈ R, the system
x1 + x2 + tx3 = 1
2x1 + tx2 + x3 = −1
6x1 + 7x2 + 3x3 = a

has respectively no solution, a unique solution, infinitely many solutions.
For this last case, describe the set of solutions.


