
ADDENDUM CONCERNING LINEAR
TRANSFORMATIONS AND MATRICES, II

1. Linear transformations and matrices (continuation)

In the next Theorem, we consider the linear space L(Vn, Vm) of all linear
transformations from Vn to Vm (see Section 4, Theorem 16.4 Vol. I, corre-
sponding to Theorem 2.4 Vol. II) and the linear space Mm,n of all m × n
matrices. We define the following function

T : Mm,n → L(Vn, Vm), A 7→ TA

Theorem 1.1 (Correspondence between matrices and linear transforma-
tions, provisional form). The above function T is a bijective linear transfor-
mation (terminology: a bijective linear transformation is called an isomor-
phism of linear spaces). Hence it is invertible and its inverse is linear.

Proof. It is easy to see that T is a linear transformation (exercise!) and that
it is injective (exercise!). To prove that it is surjective let T ∈ L(Vn, Vm):
we have to prove that there exists a (unique, by the injectivity) A ∈ Mm,n

such that T = TA. To see this, we note that given

Xt =


x1

.

.

.
xn


we have that Xt = x1E

1 + · · ·xnEn (see Remark (e)). Therefore T (X) =
T (x1E

1 + · · ·xnEn) = x1T (E1)+ · · ·+xnT (En). Let A be the matrix whose
colums are A1 := T (E1), ... ,An := T (En). Then T (X) = x1A

1 + · · · +
xnA

n = AX = TA(X), see Remark (a). Therefore T = TA = T (A). Hence
T is surjective. �

From the previous theorem it follows

Corollary 1.2 (Matrix representation with respect to canonical bases). Any
linear transformation T : Vn → Vm is of the form TA for a (unique) matrix
A ∈ MM,n. In other words: T (X) = AX for all X ∈ Vn (seen as a column
vector). Following the book, we will denote

A = m(T )

We have the following definition

Definition 1.3. m(T ) is called the matrix representing the linear transfor-
mation T (with respect to the canonical bases of Vn and Vm).

1
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Example 1.4. Let us consider the identity map I : Vn → Vn. We have
that m(I) = In, the identity matrix of order n. This is obvious, since
I(X) = X = InX

t. Analogously, let c be a scalar and Tc : Vn → Vn
the ”multiplication by c” (or ”omothety”) linear trasformation defined as
Tc(X) = cX. Then

m(Tc) = cIn =


c 0 . . . 0
. . .
. . .
0 . . . 0 c


Indeed Tc(X) = cX = (cIn)Xt

Example 1.5. Let Rθ : V2 → V2 be the rotation (counterclockwise) of angle
θ of V2. Then

m(Rθ) =
(

cos θ − sin θ
sin θ cos θ

)
.

(Exercise)

A very important feature of the correspondence between linear transfor-
mations and matrices is that matrix multiplication corresponds to composi-
tion of functions

Theorem 1.6. Let T : Vn → Vm and S : Vk → Vm be linear transformations.
Let us consider the composition TS : Vk → Vm. Then

m(TS) = m(T )m(S)

Proof. This follows immediately from the associativity of matrix multipli-
cation (see Section 15 in the book). Indeed, let A = m(T ) and B = m(S).
From Theorem 1.1, the assertion of the present Theorem is equivalent to the
assertion

TAB = TATB

that is
(AB)Xt = A(BXt) for any X ∈ Vk

which is a particular case of the associativity property of matrix multiplica-
tion. �

2. Invertible matrices and their inverses

We have see that the identity matrices In are neutral elements with respect
to matrix multiplication. It is therefore natural to ask which matrices have
an inverse element with respect to multiplication.

Definition 2.1. Let A ∈Mn,n be a square matrix. A is said to be invertible
if there is another matrix B ∈Mn,n such that AB = BA = In.

Remark 2.2. If A is invertible the matrix B is unique. Indeed, if B′ is
another such matrix, then B′ = B′In = B′(AB) = (B′A)B = InB = B.
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Definition 2.3. If A is invertible then the matrix B is called the inverse of
A, and denoted A−1.

It is not hard to imagine that invertible matrices correspond to invertible
linear transformations:

Proposition 2.4. Let A ∈Mn,n. The following are equivalent:
(a) A is invertible,
(b) the linear transformation TA : Vn → Vn is invertible, and (TA)−1 = TA−1;
(c) rk(A) = n.

Proof. (a) ⇔ (b) Assume that A is invertible. Then, by Theorem 3.3 and
Example 1.4,

I = TIn = TAA−1 = TATA−1 .

Analogously,
I = TA−1TA.

Therefore TA is invertible.
Conversely, assume that TA is invertible. Then we know that (TA)−1 is a
linear transformation too (Prop. 1.4 of Addendum, I). Hence, by Theorem
1.1 there is matrix B such that (TA)−1 = TB. By Theorem 3.3 we have that
AB = m(TATB) = m(I) = In and BA = m(TBTA) = m(I) = In. Therefore
A is invertible and B = A−1.
(b) ⇔ (c) The linear transformation TA is invertible if and only if it is
bijective. by Corollary 1.5 of Addendum I, this happens if and only if it is
surjective, that is rk(TA) = n. But, by definition, rk(A) = rk(TA). �

The following proposition ensures that, in order to check invertibility and
find the inverse of a matrix, it is sufficient to check only one of the conditions
AB = In and BA = In.

Proposition 2.5. (a) Let A ∈ Mn,n. If there is a matrix B ∈ Mn,n such
that AB = In then A is invertible and B = A−1.
(b) Let A ∈ Mn,n. If there is a matrix B ∈ Mn,n such that BA = In then
A is invertible and B = A−1.

Proof. (a) If AB = In then TATB = TAB = TIn = I (Theorem 3.3 and
Example 1.4. This implies that TA is surjective since, for all X ∈ Vn,
X = (TATB)(X) = TA(TB(X), hence there is a Y such that X = TA(Y ).
By Cor. 1.4 of Addendum I, TA is bijective, hence invertible. Therefore, by
Prop. 2.4 A is invertible.

(b) If BA = In then TBTA = TBA = TIn = I. This implies that TA is in-
jective since, for all X,X ′ ∈ Vn, if TA(X) = TA(X ′) then X = TB(TA(X)) =
TB(TA(X ′)) = X ′. Then by Corollary 1.5 of Addemdum I, TA is bijective,
hence invetrible. Therefore, by Prop. 2.4 A is invertible.

Remark 2.6 (Inverse matrix and linear systems). Let us consider a square
linear system, that is a system of linear equations such that the number of
equations equals the number of unknowns. In other words, a linear system
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AX = B where A ∈ Mn,n is a square matrix. Then we know that for all
B ∈ Vn there is a solution if and only if A has rank n and in this case the
solution is actually unique. Now A has rank n if and only if it is invertible
and in the case the unique solution is

X = A−1B.

This is simply obtained multiplying both members of AX = B by A−1 on
the left. Note the analogy with a linear equation

ax = b

where a, b ∈ R. Under the condition a 6= 0, which means that a is invertible
with respect to the multiplication of real numbers, then there is always a
solution, such solution is unique, and more precisely such solution is

x = a−1b.

2.1. Computation of the inverse matrix. Given an invertible matrix
A ∈ Mn,n, Prop. 2.5 assures that, in order to find its inverse, it is enough
to solve the matricial equation

(1) AX = In

where the unknown X is a n×n matrix. In the next examples we show how
to solve such equation using row elimination.

Example 2.7. Let A =
(

1 2
3 4

)
. Equation (1) can be solved by finding the

two columns of X, denoted, as usual, X1 and X2. Therefore equation (1)
is equivalent to the two systems

AX1 = E1 and AX2 = E2

that is(
1
3

)
x11 +

(
2
4

)
x21 =

(
1
0

)
and

(
1
3

)
x12 +

(
2
4

)
x22 =

(
0
1

)
This can be summarized in the single equation(

1
3

)
(x11, x12) +

(
2
4

)
(x21, x22) =

(
1 0
0 1

)
This can be seen as a usual system of linear equations(

1
3

)
X1 +

(
2
4

)
X2 =

(
1 0
0 1

)
that is {

X1 + 2X2 = (1, 0)
3X1 + 4X2 = = (0, 1)
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where the unknowns X1 and X2 are the rows of the inverse matrix. This
can be solved in the usual way(

1 2 | 1 0
3 4 | 0 1

)
→
(

1 2 | 1 0
0 −2 | −3 1

)
This corresponds to the system{

X1 + 2X2 = (1, 0)
−2X2 = (−3.1)

Solving as usual we get X2 = (3/2,−1/2), and X1 = (1, 0)− 2X2 = (1, 0) +
(−3, 1) = (−2, 1). Therefore the inverse matrix is

A−1 =
(
X1

X2

)
=
(
−2 1
3/2 −1/2

)
Check that it is really the inverse matrix!

Example 2.8. A =

 1 2 1
−2 2 3
1 1 1

 .

Arguing as before, we are lead to solve the system of linear equations
X1 + 2X2 + X3 = (1, 0, 0)
−2X1 + 2X2 + 3X3 = (0, 1, 0)
X1 + X2 + X3 = (0, 0, 1) 1 2 1 | 1 0 0

−2 2 3 | 0 1 0
1 1 1 | 0 0 1

→
1 2 1 | 1 0 0

0 6 5 | 2 1 0
0 −1 0 | −1 0 1


Note that from this calculation if follows that rk(A) = 3 (exercise!), that is
that A is invertible. Solving we have X2 = (1, 0,−1),
X3 = 1/5

(
(2, 1, 0) − 6X2) = 1/5((2, 1, 0) − (6, 0,−6)

)
= 1/5(−4, 1, 6) =

(−4/5, 1/5, 6/5),
X1 = (1, 0, 0) − 2X2 − X3 = (1, 0, 0) − 2(1, 0,−1) − (−4/5, 1/5, 6/5) =
(−1/5,−1/5, 4/5).
Therefore the inverse matrix is

A−1 =

 −1/5 −1/5 4/5
1 0 −1

−4m/5 1/5 6/5


Check that this is really the inverse matrix!

3. Correspondence between matrices and linear
transformations: general version

It turns out that Theorem 1.1 , Corollary 1.2 and Theorem 3.3 are par-
ticular cases of much more general statements. The point is that, rather
than using the usual coordinates (that is the components with respect to
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the canonical basis, formed by the usual unit coordinate vectors) one can use
the coordinates with respect to an arbitrary basis. The general formulation
of Corollary 1.2 is Theorem 16.13 of Vol. I (2.13 of Vol. II) plus Theorem
16.16 of Vol. I (Theorem 2.16 of Vol. II). Before stating these results we
introduce the following setup:

(1) Let V and W be finite-dimensional linear spaces, of dimension re-
spectively n and m.

(2) Let B = {e1, . . . , en} and C = {f1, . . . , fn} be bases of V and W
respectively.

(3) Let A ∈Mm,n be a m× n matrix.
(4) Given a vector v ∈ V , let

Xt
B,v =


x1

.

.

.
xn


be the column vector of components of v with respect to the basis
B. In other words, x1, . . . , xn are the unique scalars such that v =
x1e1 + · · ·+ xnen.

(5) Given a vector w ∈W , let

Y t
C,w =


y1

.

.

.
ym


be the column vector of components of w with respect to the basis
C. In other words, y1, . . . , ym are the unique scalars such that w =
y1f1 + · · ·+ ynfm.

Definition 3.1. (1) In the previous setting, we define a linear transforma-
tion

T : V →W

as follows. Let v ∈ V then

Y t
C,T (v) = AXt

B,v

In words: we define T by defining, for all v ∈ V , the (column) vector of
components of T (v) with respect to the basis C. This is, by definition, the
product of the matrix A times the (column) vector of components of v with
respect to the basis B.

(Note that, by construction, the (column) vectors

Y t
C,T (e1), · · · , Y

t
C,T (en)

are the columns
A1, . . . , An
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of the matrix A.)

(2) The linear transformation T is called the linear transformation rep-
resented by the matrix A with respect to the bases B and C and we denote

A = mBC (T ).

The analogue of Corollary 1.2 in this more general setting is the following

Theorem 3.2 (Matrix representation, general form). Let

T : V →W

be a linear trasformation. let B be a bses of V and let C be a basis of W .
Then there is a unique matrix A ∈Mm,n such that

A = mBC (T ).

The matrix A is the one whose colums are the (column) vector of components
of T (e1), . . . , T (en) with respect to the basis C.

Theorem 3.3 (Composition of transformations corresponds to matrix mul-
tiplication). Keeping the notation of the previous Theorem, let U be another
finite-dimensional linear space, of dimension k, and let D be a basis of U .
Furthermore let S : U → V be a linear transformation. Then

mDC (TS) = mBC (T )mDB (S)

The proofs are similar to those of Theorem 1.1, Corollary 1.2 and Theorem
3.3, and they are omitted. As a useful exercise, you should try at least to
outline them.

Example 3.4. Let T = PrL((1,2)) : V2 → V2 be the projection along L(1, 2).
Let S = RefL((1,2)) be the reflection with respect to L((1, 2)). Let B =
{(1, 2), (2,−1)}. Then:

mBB(T ) =
(

1 0
0 0

)
and mBB(S) =

(
1 0
0 −1

)
.

This is as follows: let v ∈ V2, and write v in components with respect to the
basis B:

v = x1(1, 2) + x2(2,−1)
Then, by definition of orthogonal decomposition (note that {(2,−1)} is a
basis of (L(1, 2))⊥ ),

T (v) = x1(1, 2)
Therefore the (column) vector of components of T (v) with respect to B is(

x1

0

)
=
(

1 0
0 0

)(
x1

x2

)
(Alternatively, one can note that T ((1, 2)) = (1, 2) = 1(1, 2) + 0(2,−1) and
T ((2,−1)) = (0, 0) = 0(1, 2) + 0(2,−1), so that the columns mBB(T ) are

respectively
(

1
0

)
and

(
0
0

)
).
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Concerning S, note that

S(v) = x1(1, 2)− x2(2,−1)

At this point, the computation of the matrix representing S with respect to
the basis B goes as above.

Example 3.5 (Projections and reflections). More generally, let W be a
k-dimensional subspace of Vn and let T : Vn → Vn be the projection onto
W , namely T (v) = PrW (v). Let {w1, . . . , wk} be a basis of W and let
{uk+1, . . . , un} be a basis of W⊥. Let B = {w1, . . . , wk, uk+1, . . . , un}. It is
a basis of Vn (why?). Then

mBB(T ) = diag(1, · · · , 1, 0, · · · , 0)

where diag means diagonal matrix and the 1’s are k.
Moreover let S = RefW : Vn → Vn be the reflection with respect to W .
Then

mBB(S) = diag(1, · · · , 1,−1, · · · ,−1)
where the 1’s are k and the −1’s are n− k.

Example 3.6. We consider the following linear transformation of V3. Let
v ∈ V3 be the vector of cylindrical coodinates (see Apostol, Vol. I, Section
14.18)

(ρ, θ, z)
namely

v = (x, y, z) = (ρ cos θ, ρ sin θ, z)
Then T (v) is the vector of cylindrical coordinates

(ρ, θ + θ0, z)

where θ0 ∈ [0, 2π) is a fixed angle. Hence

T (v) = (ρ cos(θ + θ0), ρ sin(θ + θ0), z)

In practice, T is nothing else than the rotation of angle θ0 around the z-
axis. The rotation is counterclockwise, with respect to the orientation of
the z axis given by (0, 0, 1). Using the trigonometric addition formulas, the
explicit formula for T (v) is:

T (x, y, z) = (x cos θ0 + y sin θ0,−x sin θ0 + y cos θ0, z)

In matrix notation:

T (

xy
z

) =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

xy
z


Therefore the matrix mEE(T ), the matrix representing T with respect to the
canonical basis (both in the domain and in the target space) is

mEE(T ) =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1


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Example 3.7. Let W = L(1, 2,−3). We consider the following transfor-
mation of V3. Given v ∈ V3, T (v) is the vector contained in the same plane
orthogonal to (1, 2, 3) containing v, obtained rotating v of an angle equal to
θ, with θ ∈ [0, 2π). The rotation will be counterclockwise with respect to
the orientation of W given by the vector (1, 2,−3). In practice, let us denote
v = (1, 2,−3) and let {u1, u2} be an orthonormal basis of the plane W⊥,
such that the determinant of the matrix having as columns u1, u2, v (in this
order) is positive1. Let us consider the following basis of V3: B = {u1, u2, v}.
Then, exactly for the same reason of the previous example, the matrix rep-
resenting T with respect to the basis B is very simple, namely

mBB(T ) =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1


In fact: T (u1) = cos θ0u1 + sin θ0u2 + 0v, T (u2) = sin θ0u1 + cos θ0u2 + 0v,
T (v) = 0u1 + 0u2 + 1v. Note that two vectors u1 and u2 as requested are
obtained, for example, as follows: solving the equation

x+ 2y − 3z = 0

we get that W⊥ = L((2, 1, 0), (−3, 0, 1)). Orthogonalizing we get the basis
W⊥ = L((2, 1, 0), (−3/5, 6/5, 1)). Dividing by the norms, we get
{1/
√

5(2, 1, 0), 5/
√

46(−3, 6, 1)} = {u1, u2}. Since, as one can easily check,
the determinant of the matrix whose columns are u1, u2, v is negative, we
exchange the order of u1 and u2 and find

B = {u2, u1, v}

Example 3.8. Let V be a n-dimensional linear space and let B be any basis
of V . Let, as above, I : V → V the identity transformation and, for a given
scalar c, Tc : V → V the linear transformation v 7→ cv. Then

(2) mBB(I) = In and mBB(Tc) = cIn

This is because, if X are is the vector of components of a given vector v ∈ V
with respect to the basis B, then cX is the vector of components of the
vector cv with respect to the same basis B. Note that the basis of the
source and the target space has to be the same, otherwise (2) is false.

Proposition 3.9 (Inverse transformation and inverse matrix). Let T : V →
W be an invertible trasformation, and let B and C be respectively bases of V
and W . The matrix representing the inverse transformation T−1 : W → V
with respect to the bases C and B is

mCB(T−1) = (mBC (T ))−1

Proof. This follows from Theorem 3.3, because

In = mBB(idV ) = mBB(T−1 ◦ T ) = mCB(T−1)mBC (T )

1this means that the vectors u1, u2, v satisfy phisicists’ ”right-hand rule”
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and
In = mCC(idW ) = mCC(T ◦ T−1) = mBC (T )mCB(T−1)

�

Example 3.10 (Change-of-basis matrices). Let C ∈Mn,n be square matrix
of maximal rank, namely n. We know that the columns of C, C1, ..., Cn are
n independent vectors of Vn, hence (why?) a basis of Vn, which we call B. I
claim that

C = mBE (id)

where id : Vn → Vn is the identity transformation. This follows from the
definition: given a vector v ∈ Vn such that its components with respect to
B are x′1, . . . , xn′, that is v = x′1C

1 + · · ·x′nCn, then the column vector of
the usual coordinates of id(v) = v is exactly

C(X ′)t = x′1C
1 + · · ·x′nCn

Therefore it follows from Proposition 3.9 that

mEB(id) = C−1

This is nothing new: if we want the components of X = (x1, · · · , xn) with
respect to te basis B we have to solve the system

C(X ′)t = Xt

whose solution is
(X ′)t = C−1Xt

Example 3.11. Let v1 = (1, 2,−1), v2 = (0, 1, 2) and v3 = (1, 0, 3). It is
easy to check that the matrix

C =

 1 0 1
2 1 0
−1 2 3


has non-zero determinant, hence rk(C) = 3. Therefore B = {v1, v2, v3} is a
basis of V3 and

C = mBE (Id)

Let v = (x, y, z) be a vector of V3. To find the components of (x, y, z) with
respect to the basis B we need to solve the system

x′

 1
2
−1

+ y′

0
1
2

+ z′

1
0
3

 =

xy
z


The unique (why?) solution isx′y′

z′

 =

 1 0 1
2 1 0
−1 2 3

−1xy
z

 =

3
8x

1
4y −1

8z
3
4x

1
2y

1
4z

5
8x −1

4y
1
8z


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4. Change of basis

In this section we address the following question: what is the relation be-
tween matrices representing the same transformation with respect to different
bases? The answer is the following

Theorem 4.1 (Change of basis, general form). Let T : V →W be a linear
transformation. Let also B,U and C,V be respectively two bases of V and
two bases of W . Then

mUV (T ) = mCV(idW )mBC (T )mUB(idV )

Proof. This follows because, in the diagram

VB
T // WC

idW

��
VU

idV

OO

T // WV

the composition idW ◦T ◦idV = T . Then the assertion follows from Theorem
3.3. �

As a particular case we have

Theorem 4.2. Let T : V → V be a linear transformation. Let also B and
U be two bases of V . Then

mUU (T ) = (mUB(id))−1mBB(T )mUB(id)

Proof. From the previous Theorem we have that

mUU (T ) = mBU (id)mBB(T )mUB(id)

and, by Example 3.10, mBU (id) = (mUB(id))−1. �

As a (fundamental) example, we have

Theorem 4.3. Let T : Vn → Vn be a linear transformation. let E be the
canonical basis of Vn and let U another basis of Vn. Let

A = mEE(T ) D = mUU (T ) and C = mUE (id)

(note that C is the matrix whose columns are the usual coordinates of the
vectors of U , see Example 3.11). Then

D = C−1AC

Conversely
A = C DC−1

Example 4.4. Let us consider the two transformations of Example 3.4,
namely T = PrL((1,2)) : V2 → V2 be the projection along L(1, 2) and S =
RefL((1,2)) be the reflection with respect to L((1, 2)). Let

=
(

1 2
2 −1

)
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We have that

mEE(T ) = C diag(1, 0)C−1 =
(

1 2
2 −1

)
·
(

1 0
0 0

)
· 1

5

(
1 2
2 −1

)
=
(

1
5

2
5

2
5 −1

5

)
This says that

PrL((1,2))(
(
x
y

)
) =

(
1
5x+ 2

5y
2
5x−

1
5y

)
You can check this by computing PrL((1,2))(

(
x
y

)
) in the usual way.

Do the same with S.

Example 4.5. Let us consider the rotation around a line in V3 of Example
3.7 and let us assume that the angle θ0 is π/6. Then

D = mBB(T ) =

 1
6 −

√
2

3 0√
2

3
1
2 0

0 0 1


where the basis B is

B = { 5√
46

(−3, 6, 1),
1√
5

(2, 1, 0), (1, 2,−3)}

Therefore the matrix of T with respect to the canonical basis of V3 – that
is: the law defining T in our usual coordinates – is

mEE(T ) = C DC−1

where C = mBE (id) is the matrix whose columns are the vectors of the basis
B.

Example 4.6. Let u1 = (1, 1,−2), u2 = (1, 0, 3), u3 = (2, 0,−1). As above,
it is easy to check that

B = {u1, u2, u3}
is a basis of V3. Let T : V3 → V3 be the unique linear transformation such
that

T (u1) = (2, 2, 1) T (u2) = (3,−1, 2) T (u3) = (3, 7, 1)

How do we compute N(T ) and T (V3)? Concerning T (V3) there is no prob-
lem, it is L((2, 2, 1), (3,−1, 2), (3, 7, 1)). A simple calculation with gaussian
elimination shows that this space has dimension 2 and that, for example,
{(2, 2, 1), (3,−1, 2)} is a basis of T (V3).

Now we compute the null-space. By the nullity+ rank Theorem, we know
that dimN(T ) = 1. The simplest way of finding a generator ofN(T ) is the
following: N(T ) is:

the space of vectors λ1u1+λ2u2+λ3u3 such that T (λ1u1+λ2u2+λ3u3) =

λ1T (u1)+λ2T (u2)+λ3T (u3) = λ1(2, 2, 1)+λ2(3,−1, 2)+λ3(3, 7, 1) = (0, 0, 0)
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Therefore we are (λ1, λ2, λ3) are solutions of the linear system2 3 3
2 −1 7
1 2 1

xy
z

 =

0
0
0


One finds easily that the space of solutions is L((−3, 1, 1). Therefore, by the
above description of N(T ):

N(T ) = L(−3u1 + u2 + u3) = L((0,−3, 8))

NOTE: N(T ) is not L((−3, 1, 1)).

Example 4.7. By the way, given the T of the previous example, what is
MEE (T ) ? The matrix

D =

2 3 3
2 −1 7
1 2 1


is not mEE(T ). We have rather

D =

2 3 3
2 −1 7
1 2 1

 = mBE (T )

(the columns of D are the usual coordinates of T (u1), T (u2), T (u3)). The
diagram

(V3)E
T //

id
��

(V3)E

(V3)B

T
;;wwwwwwwww

shows that We have at our disposal

C =

 1 1 2
1 0 0
−2 3 −1

 = mBE (id)

Therefore

mEE(T ) = DC−1 =

2 3 3
2 −1 7
1 2 1

 1 1 2
1 0 0
−2 3 −1

−1

Exercise: finish the calculation.
NOTE: one could have gotten to the same matrix by a simple-minded rea-
soning as follows: express (λ1, λ2, λ3) = (λ1(x, y, z), λ2(x, y, z), λ3(x, y, z)) 2.

2this amounts to finding the inverse matrix C−1, because it amounts to solve the system0@ 1 1 2
1 0 0
−2 3 −1

1A 0@λ1

λ2

λ3

1A =

0@xy
z

1A
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Then

T (

xy
z

) =

2λ1(x, y, z) + 3λ2(x, y, z) + 3λ3(x, y, z)
2λ1(x, y, z)− 1λ2(x, y, z) + 7λ3(x, y, z)
λ1(x, y, z) + 2λ2(x, y, z) + λ3(x, y, z)

 =

=

2 3 3
2 −1 7
1 2 1

λ1(x, y, z)
λ2(x, y, z)
λ3(x, y, z)

 = DC−1

xy
z


5. Exercises

Ex. 5.1. Let B = {u, v, w} be a basis of V3.
(a) Is there a linear transformation T : V3 → V3 such that T (u) = w,
T (v) = w and T (w) = 3v − 2w? If the anwer is yes:
(b) Find dimensions and bases of N(T ) and T (V3).
(c) Compute mBC (T ).
(d) Is there a linear transformation S : V3 → V3 such that S(u) = v,
S(v) = w, S(3u− 2v) = u? If the answer is yes answer to questions (b) and
(c) as above.

Ex. 5.2. Let u = (1, 1,−1), v = (1, 1, 0), w− (1,−1, 1). For t varying in R,
let St : V3 → V3 be the linear transformation defined by St(u) = (1, 0,−1),
St(v) = (1, t+ 1, 1), St(w) = (1, 4, t+ 2).
(a) Find the value of t such that St is injective.
(b) For t = −5 find a basis of N(St), a basis of St(V3) and a a system of
cartesian equations whose space of solutions is N(St).
(c) Compute mBE (St), where B = {u, v, w} and E is the canonical basis.

Ex. 5.3. Let T : V3 → V2 be the linear transformation such that T ((1, 0,−1) =
(2,−1), T ((0, 1, 1)) = (0, 1) and T ((0, 1, 0)) = (1, 0).
(a) Find N(T ).
(b) Find a line L in V3 passing trough P = (3, 4, 5) such that T (L) is a
point.
(c) Find a plane Π in V3 passing trough P = (3, 4, 5) such that T (Π) is a
line.
(d) Is there a plane M of V3 such that T (M) is a point?
(e) Let B = {{(1, 0,−1), (0, 1, 1), (0, 1, 0)}. Let C = {(2,−1), (0, 1)}. Let E3
and E2 be the canonical base sof V3 and V2. Compute mBE2(T ) and mBC (T ).

Ex. 5.4. Let us consider the linear transformation

RL((1,2))RL((1,3)) : V2 → V2,

. This has the solution 0@λ1

λ2

λ3

1A = C−1

0@xy
z

1A
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where RU denotes the reflection with respect to the linear subspace U . Com-
pute its null-space and range.

Ex. 5.5. Let us consider the linear transformations

PL((1,2−1),(1,1,1))RL((1,0,−1),(11,3)) : V3 → V3

and
PL((1,2,−1),(1,1,1))PL((1,0,−1),(1,1,3)) : V3 → V3,

where, as above, RU denotes the reflexion with respect to the linear subspace
U , and PV denotes the projection on the linear subspace V . Compute null-
space and range of such transformations.

Ex. 5.6. For t varying in R let ut = (1, t + 1, 1), vt = (1, t + 2, 2) and
wt = (2, 1, t + 1). Let St : V3 → V3 be the linear transformation such that
S(E1) = ut, S(E2) = vt, S(E3) = wt, where {E1, E2, E3} are the unit
coordinate vectors.
(a) Find for which t ∈ R the transformation St is surjective.
(b) For all t ∈ R such that St is not surjective, find a basis of St(V3).
(c) Find, if possible, a vector v ∈ V3 such that S−1(v) = (1, 0, 0).

Ex. 5.7. Let V be a linear space and let {v1, v2} ⊂ V be a linearly indepen-
dent set made of two elements. Let T : V → V be a linear transformation
such that T (v1 + 2v2) = 2v1 − v2, and T (v1 − v2) = v1 + 3v2.
(a) Express T (v2) as linear combination of v1 and v2.
(b) Is there a u ∈ V such that T (u) = v1? If the answer is yes, find it.

Ex. 5.8. True/false? (Then explain all anwers)
(a) For a matrix A ∈ M5,6, T (X) = AXt defines a linear transformation
T : V5 → V6.
(b) Every linear transformation T : V6 → V4 is surjective.
(c) Every linear transformation T : V4 → V6 is injective.
(d) Every linear transformation T : V6 → V4 such that dimN(T ) = 2 is
surjective.
(e) Every linear transformation T : V4 → V6 such that dimT (V4) = 4 is
surjective.
(f) If dimV = dimW a linear transformation T :→ W is injective if and
only if it is surjective.

Ex. 5.9. Let V and W be linear spaces and T : V →W a linear transfor-
mation. Let v1, ..., vk ∈ V .
(a) Prove that if T (v1), ..., T (vk) are linearly independent then v1, ..., vk are
linearly independent.
(b) Prove that if v1, ..., vk are linearly independent and T is injective then
T (v1), ..., T (vk) are linearly independent.

Ex. 5.10. Let u1 = (1, 0, 0, 1), u2 = (1,−1, 1, 0), u3 = (2,−3, 0, 1), and
u4 = (2, 0, 0,−1). Let T : V4 → V3 such that T (u1) = (1, 2, 1), T (u2) =
(1, 0, 2), T (u3) = (1, 4, 0), T (u4) = (4, 2, 7).
Find dimension and bases of N(T ) and T (V4).
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Ex. 5.11. Let u1 = (1, 3), u2 = (1, 1), v1 = (0, 2), v2 = (1, 2). Let
T : V2 → V2 be the linear transformation such that T (u1) = 2v1 + v2 and
T (u2) = −3v1 − 2u2. Given (x, y) ∈ V2, who is T ((x, y)) ?

Ex. 5.12. Do linear transformations with the below properties exist? If
the answer is yes exhibit an example.
(a) T : V2 → V4 such that T (V2) = L((1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 0));
(b) S : V4 → V3 surjective and such that N(S) = L((1, 2,−1, 1)).

Ex. 5.13. Fort varying in R, let At =

 t t+ 1 t+ 3
−1 0 2
2 0 t+ 1

 .

(a) For t varying in R, compute dim(N(TAt)) e dim(TAt(V3)).
(b) Exhibit a basis B of TA−1(V3) and find a basis of V 3 containing B.

Ex. 5.14. (a) Let T : Vn → Vm be a linear transformation. Prove that,
via T , the image of a parallelogram is either a parallelogram, or a segment
or a point. For each case exhibit an example
(b) Describe the image of the unit square of V2 (that is [0, 1]× [0, 1]) via the
linear transformations TA, where:

(i) A =
(

2 0
0 1

)
, (ii) A =

(
1 0
0 2

)
, (iii) A =

(
1 2
0 1

)
, (iv) A =

(
1 0
2 1

)
.

Ex. 5.15. Find three vectors v1, v2, v3 ∈ V3 such that


v2 + v3 = (1, 0, 0)
v1 + 2v3 = (0, 1, 0)
v1 + 2v2 = (0, 0, 1)

Is the solution unique?

Ex. 5.16. Let A =

0 −1 2
1 0 1
1 0 3

. (a) Compute A−1.

(b) Let C =

2 2 0
1 1 1
0 0 −2

. Find all matrices B such that AB = C.

Ex. 5.17. Let C =


0 1 1 0
3 1 0 −3
2 0 0 0
0 1 0 0

 .

(a) Compute C−1.
(b) Compute (C2)−1 (without computing C2).

Ex. 5.18. Let A =

0 2 1
1 2 0
2 2 2

.

(a) Compute the inverse of A.
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(b) For t ∈ R, let Bt =

1 1 0
2 1 −1
2 t 0

. Find the values of t such hat there is

a matrix X ∈M3.3 such that BtX = A.

Ex. 5.19. Let A =

 0 1 1
−1 2 0
1 0 0

 and B =

1 −4 −4
0 3 0
0 0 1

.

(a) Compute the inverses of A and B.
(b) Without computing AB and BA, compute the inverses of AB and BA.

Ex. 5.20. Let us consider the vectors A1 = (0, 0, 1, 1), A2 = (1,−2, 0, 1),
A3 = (0, 1, 2, 1), A4 = (0, 0, 1, 0).
(a) Prove that B = {A1, A2, A3, A4} is a basis of V4.
(b) For all (x, y, z, t) ∈ V4 find (in function of x, y, z, t) the components of
(x, y, z, t) with respect to the basis B.

Ex. 5.21. For t ∈ R, let At =


t 1 0 0
1 1 0 0
2 0 2 + t 0
t 1 0 t+ 3

.

(a) Find for which t the matrix At is invertible.
(b) Find for which t the system of linear equations of 4 equations in 3
unknowns having At as augmented matrix has solutions. For such t’s, find
explicitly the solutions.

Ex. 5.22. For the matrix At of the previous exercise find the values of t
such that there exists a vector Bt ∈ V4 such that the system AtX = Bt has
no solutions.

Ex. 5.23. LetA =


1 0 0 2
1 0 0 0
1 −2 0 0
1 0 1 0

, B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, C =
(

1 2 −1 3
1 2 −1 3

)
.

(a) Find a matrix D such that AD = B.
(b) Find a matrix E such that EA = B and a matrix F such that FA = C.

Ex. 5.24. Let A =

0 2 −1
1 0 1
1 −1 0

, B =

1 1 0
1 2 1
0 1 1

, C =

1 2 0
1 0 1
0 −2 1

.

(a) Find A−1. (b) Is there a matrix X such that AX = B? Is it unique?
(c) Is there a matrix Y such that Y A−1 = B? Is it unique? (d) Is there a
matrix Z such that BZ = A? Is it unique? (e) Is there a matrix T such
that BT = C? Is it unique?


