
ADDENDUM CONCERNING LINEAR
TRANSFORMATIONS AND MATRICES

Up to Section 5 you should study the material in the book with no
changes. You should also study Section 9 (Linear transformation with pre-
scribed values) with no changes (but keeping in mind the examples provided
in the lectures).

1. Replacement of sections 6 and 7 : Inverses and one-to-one
transformations

Concerning the topic of sections 6 and 7, we will will content ourselves of
the following simpler version.

We recall the following well known concepts concerning functions.
Let X and Y be two sets and T : X → Y a function. We recall that:

• T is said to be injective (or one-to-one) if the following condition holds:
let x, x′ ∈ X, with x 6= x′. Then T (x) 6= T (x′). In words: T sends distinct
elements of X to distinct elements of Y .
• T is said to be surjective if for each y ∈ Y there is a x ∈ X such that
T (X) = y. In words: every element of Y is the value, via T , of an element
of X.
• T is said to be bijective if it is injective and surjective. This means that
for each y ∈ Y there is a UNIQUE x ∈ X such that T (x) = y. In words:
every element of Y corresponds, via T , to a unique element of X.
• T is said to be invertible if there is a function S : Y → X such that
ST = IX and TS = IY (where IX and IY denote the identity functions of
X and Y ). We have the following proposition:

Proposition 1.1. (a) T is invertible if and only if it is bijective.
(b) In this case S is the unique function with the above properties. It is
denoted T−1, the inverse of T .
(c) Assume that T is bijective. Let S : Y → X such that TS = IY . Then
S = T−1. In particular, ST = IX .
(d) Assume that T is bijective. Let S : Y → X such that ST = IX . Then
S = T−1. In particular TS = IY .

Proof. (a) If T is bijective one defines S as follows: given y ∈ Y , S(y) is be
the unique x ∈ X such that T (x) = y. Conversely, if ST = IX then T is
injective, since if T (x) = T (x′) then S(T (x)) = S(T (x′)). But S(T (x)) = x
and S(T (x′)) = x′. If TS = IY , then T is surjective, since, for each y ∈ Y ,
y = T (S(y)).
(b) This follows from the proof of point (a).
(c) Assume that T is bijective. Since T (S(y)) = y for all y ∈ Y , S(y) must
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be the unique x ∈ X such that T (x) = y.
(d) is similar. �

Note that, without the hypothesis of bijectivity, (c) and (d) of the previous
proposition are false (see for example Exercise 16.8-27 Vol. I, corresponding
to 2.8.27 Vol. II).

In general, injectivity, surjectivity and bijectivity are quite unpredictable
properties of functions. However, for linear transformations, especially in
the finite-dimensional case, everything is much simpler. In the rest of the
section we will exploit this point. We begin with injectivity.

Proposition 1.2. Let V and W be linear spaces and T : V →W be a linear
transformation. Then T is injective if and only if N(T ) = {OV }.

Proof. We know that, since T is linear, T (OV ) = OW . If T is injective,
there is no other v ∈ V such that T (v) = OW . Therefore N(T ) = {OV }.
For the other implication, let us assume that N(T ) = {OV }. Let v, v′ ∈ V
such that T (v) = T (v′). This can be rewritten as T (v) − T (v′) = OW or,
since T is linear, T (v − v′) = OW , that is v − v′ ∈ N(T ). But we assumed
that N(T ) = {OV }. Hence v − v′ = OV , that is v − v′. Therefore T is
injective. �

The next proposition deals with the finite-dimensional case

Proposition 1.3. Let V and W be finite-dimensional linear spaces and
T : V →W be a linear transformation. Then the following are equivalent:
(a) T is injective;
(b) dimT (V ) = dimV ;
(c) If {e1, . . . , en} is a basis of V then {T (e1), . . . , T (en)} is a basis of W .

Proof. (a)⇔(b) follows from Prop. 1.2 and the Nullity + Rank theorem. In
fact, N(T ) = {O} if and only if dimN(T ) = 0. Since, by Nullity + Rank,
dimT (V ) = dimV − dimN(T ), T is injective if and only if dimT (V ) =
dimV .
(b)⇒(c) is as follows. In the first place we note that, since e1, . . . , en span
V , then in any case T (e1), . . . , T (en) span T (V ), because, given v ∈ V , v =∑
ciei. by the linearity if T , T (v) =

∑
T (ciei) =

∑
ciT (ei). If dimT (V ) =

dimV = n then {T (e1), . . . , T (en)} is a basis, since it is a spanning set
formed by n elements. (c)⇒(b) is obvious. �

Concerning bijectivity and invertibility, we start by recording the follow-
ing easy fact, which does not need finite-dimensionality

Proposition 1.4. Let V and W be linear spaces and T : V → W be a
linear transformation. If T is invertible then also T−1 : W → V is a linear
transformation.

Proof. Let w1, w2 ∈W and let v1, v2 be the unique elements of V such that
T (v1) = w1 and T (v2) = w2. hence v1 = T−1(w1) and v2 = T−1(w2). Since
T is linear, T (v1 + v2) = T (v1) + T (v2) = w1 + w2. Therefore

T−1(w1 + w2) = v1 + v2 = T−1(w1) + T−1(w2).
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Moreover, let c ∈ R. We have that T (c v1) = c T (v1) = cw1. Therefore

T−1(cw1) = c v1 = c T−1(w1) �

In the finite-dimensional case, Proposition 1.3 has the following conse-
quences

Corollary 1.5. Let V and W be finite-dimensional linear spaces and T :
V →W be a linear transformation.
(a) If T is bijective (or, equivalently, invertible) then dimV = dimW . (b)
Conversely, assume that dimV = dimW . Then the following are equivalent
(i) T is injective;
(ii) T is surjective,
(iii) T is bijective.

Proof. It is sufficient to prove the equivalence of (i) and (ii). Assume that
T is injective. Then, by Prop. 1.3, dimT (V ) = dimV = dimW . Therefore
T (V ) = W , that is T is surjective.
Assume that T is surjective, that is dimT (V ) = dimW (= dimV ). By
nullity+rank, this implies that dimN(T ) = 0. Thus Prop. 1.3 implies that
T is injective. �

For example, let T : V3 → V3 defined by T ((x, y, z)) = (x − 2y + 3z, x +
y + z, x− y − z). By the previous Corollary and Theorem 1.3 T is bijective
(hence invertible) if and only if N(T ) = {O}. N(T ) is the space of solutions
of the system of linear equations

x− 2y + 3z = 0
x+ y + z = 0
x− y − z = 0

By what we studied in the first semester, hence N(T ) = {O} means that
this system has only the trivial solution (0, 0, 0) (or, equivalently, that the
columns of the system are linearly independent). This can be checked by
computing the determinant

det

1 −2 3
1 1 1
1 −1 −1

 = −13

Since the determinant is non-zero then (go back to the lectures of the first
semester, or to Chapter 15 of Vol. I !) (0, 0, 0) is the only solution. Therefore
T is bijective. Later on we’ll see an efficient way to compute the inverse
transformation T−1.

2. Matrices and linear transformations: supplementary notes

It is conceptuallly easier to study the remaining sections of the chapter on
linear transformation and matrices as follows: read the beginning of Section
10 for generalities about matrices. Then skip, for the moment, the Theorem
and the subsequent examples, and go directly Section 13 (Linear spaces of
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matrices). Then skip, for the moment, Section 14 and go directly to Section
15 (Multiplication of matrices). At this point go back to the Theorem and
Examples of Section 10 and Section 14, which are about the correspondence
between matrices and linear transformations. Here are some supplementary
notes about this material, which hopefully may helpful to understand the
meaning of these results. Note: the contents of Section 11 (Construction of
a matrix representation in diagonal form) should be skipped.

We will use the following notation: Mm,n will denote the set of all m ×
n matrices. Equipped with the operations of matrix addition and scalar
multiplication Mm,n is in fact a linear space (Section 13.)

Definition 2.1 (Standard linear transformation associated to a m× n ma-
trix). Let A ∈ MM,n. The standard linear transformation associated to A
is the linear trasformation

TA : Vn → Vm

defined as follows. We see the elements of Vn and Vm as column vectors

X =


x1

.

.

.
xn

 ∈Mn,1 Y =


y1

.

.
ym

 ∈Mm,1

Then TA is defined as

TA(X) = AX

where AX denoted the multiplication of the m× n matrix A with the n× 1
matrix (= column vector of length n) X. The result is a m × 1 matrix
(=column vector of length m). In coordinates:

TA(X) =


a11 . . . a1n

. . .

. . .

. . .
am1 . . . amn



x1

.

.

.
xn

 =


a11x1 + · · ·+ a1nxn

.

.

.
am1x1 + · · ·+ amnxn


Here are some remarks:

(a) The column vector TA(X) = AX can be written also as

x1


a11

.

.

.
am1

+ · · ·+ xn


a1n

.

.

.
amn

 = x1A
1 + · · ·+ xnA

n.
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(b) A system of linear equations

A1 ·X = b1

. . .

. . .

. . .

Am ·X = bm

can be written in compact form as

AX = B

where B is the (column) vector of constant terms. This has the conceptual
advantage of seeing a system composed by many equations as a single vector
equation, that is an equation whose unknown is a vector. For example,{

2x+ 3y − z = 3
2x+ y + 2z = 4

⇔
(

2 3 −1
2 1 2

)xy
z

 =
(

3
4

)
(c) TA(Vn), the range of TA, is, by definition, the subspace of Vm formed by
the B ∈ Vm such that the system of linear equations AX = B (see the above
remarks) has some solutions. This shows that TA(Vn) = L(A1, . . . , An).
(d) The linear transformation TA is nothing else but the ”linear transforma-
tion defined by linear equations” of Example 4 of Section 1 of the textbook.
As remarked in Example 4 of Section 2 of the book, N(TA), the null-space of
TA, is the subspace of Vn formed by the solutions of the homogenous system
AX = 0.
(e) Denoting

E1 =


1
0
.
.
.
0

 , . . . . . . , En =


0
.
.
.
.
1


the ”coordinate unit vectors” of Vn – that is the vectors of the so-called
”canonical basis” of Vn written as column vectors – then

AEi = Ai

(where Ai are the column vectors of A).

In the next Theorem, we consider the linear space L(Vn, Vm) of all linear
transformations from Vn to Vm (see Section 4, Theorem 16.4 Vol. I, corre-
sponding to Theorem 2.4 Vol. II) and the linear space Mm,n of all m × n
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matrices. We define the following function

T : Mm,n → L(Vn, Vm), A 7→ TA

Theorem 2.2 (Correspondence between matrices and linear transforma-
tions, provisional form). The above function T is a bijective linear transfor-
mation (terminology: a bijective linear transformation is called an isomor-
phism of linear spaces). Hence it is invertible and its inverse is linear.

Proof. It is easy to see that T is a linear transformation (exercise!) and that
it is injective (exercise!). To prove that it is surjective let T ∈ L(Vn, Vm):
we have to prove that there exists a (unique, by the injectivity) A ∈ Mm,n

such that TTA. To see this, we note that given

X =


x1

.

.

.
xn


we have that X = x1E

1 + · · ·xnEn (see Remark (e)). Therefore T (X) =
T (x1E

1 + · · ·xnEn) = x1T (E1)+ · · ·+xnT (En). Let A be the matrix whose
colums are A1 := T (E1), ... ,An := T (En). Then T (X) = x1A

1 + · · · +
xnA

n = AX = TA(X), see Remark (a). Therefore T = TA = T (A). Hence
T is surjective. �

From the previous theorem it follows

Corollary 2.3 (Matrix representation with respect to canonical bases). Any
linear transformation T : Vn → Vm is of the form TA for a (unique) matrix
A ∈ MM,n. In other words: T (X) = AX for all X ∈ Vn (seen as a column
vector). Following the book, we will denote

A = m(T )

We have the following definition

Definition 2.4. m(T ) is called the matrix representing the linear transfor-
mation T (with respect to the canonical bases of Vn and Vm).

Example 2.5. Let us consider the identity map I : Vn → Vn. We have that
m(I) = In, the identity matrix of order n. This is obvious, since IX = X =
InX. Analogously, let c be a scalar and Tc : Vn → Vn the ”multiplication by
c” (or ”omothety”) linear trasformation defined as Tc(X) = cX. Then

m(Tc) = cIn =


c 0 . . . 0
. . .
. . .
0 . . . 0 c


Indeed Tc(X) = cX = (cIn)X
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Example 2.6. Let Rθ : V2 → V2 be the rotation (counterclockwise) of angle
θ of V2. Then

m(Rθ) =
(

cos θ − sin θ
sin θ cos θ

)
.

(Exercise)

A very important feature of the correspondence between linear transfor-
mations and matrices is that matrix multiplication corresponds to composi-
tion of functions

Theorem 2.7. Let T : Vn → Vm and S : Vk → Vm be linear transformations.
Let us consider the composition TS : Vk → Vm. Then

m(TS) = m(T )m(S)

Proof. This follows immediately from the associativity of matrix multipli-
cation (see Section 15 in the book). Indeed, let A = m(T ) and B = m(S).
From Theorem 2.2, the assertion of the present Theorem is equivalent to the
assertion

TAB = TATB

that is
(AB)X = A(BX) for any X ∈ Vk

which is a particular case of the associativity property of matrix multiplica-
tion. �

2.1. Correspondence between matrices and linear transformations:
general version. It turns out that Theorem 2.2 , Corollary 2.3 and Theo-
rem 2.7 are particular cases of much more general statements. The point is
that, rather than using the usual coordinates (that is the components with
respect to the canonical basis, formed by the usual unit coordinate vectors)
one can use the coordinates with respect to an arbitrary basis. The general
formulation of Corollary 2.3 is Theorem 16.13 of Vol. I (2.13 of Vol. II)
plus Theorem 16.16 of Vol. I (Theorem 2.16 of Vol. II). Before stating these
results we introduce the following setup:

(1) Let V and W be finite-dimensional linear spaces, of dimension re-
spectively n and m.

(2) Let B = {e1, . . . , en} and C = {f1, . . . , fn} be bases of V and W
respectively.

(3) Let A ∈Mm,n be a m× n matrix.
(4) Given a vector v ∈ V , let

XB,v =


x1

.

.

.
xn


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be the column vector of components of v with respect to the basis
B. In other words, x1, . . . , xn are the unique scalars such that v =
x1e1 + · · ·+ xnen.

(5) Given a vector w ∈W , let

YC,w =


y1

.

.

.
ym


be the column vector of components of w with respect to the basis
C. In other words, y1, . . . , ym are the unique scalars such that w =
y1f1 + · · ·+ ynfm.

Definition 2.8. (1) In the previous setting, we define a linear transforma-
tion

T : V →W

as follows. Let v ∈ V then

YC,T (v) = AXB,v

In words: we define T by defining, for all v ∈ V , the (column) vector of
components of T (v) with respect to the basis C. This is, by definition, the
product of the matrix A times the (column) vector of components of v with
respect to the basis B.

(Note that, by construction, the (column) vectors

YC,T (e1), · · · , YC,T (en)

are the columns
A1, . . . , An

of the matrix A.)

(2) The linear transformation T is called the linear transformation rep-
resented by the matrix A with respect to the bases B and C and we denote

A = mBC (T ).

The analogue of Corollary 2.3 in this more general setting is the following

Theorem 2.9 (Matrix representation, general form). Let

T : V →W

be a linear trasformation. let B be a bses of V and let C be a basis of W .
Then there is a unique matrix A ∈Mm,n such that

A = mBC (T ).

The matrix A is the one whose colums are the (column) vector of components
of T (e1), . . . , T (en) with respect to the basis C.
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Theorem 2.10. Keeping the notation of the previous Theorem, let U be
another finite-dimensional linear space, of dimension k, and let D be a basis
of U . Furthermore let S : U → V be a linear transformation. Then

mDC (TS) = mBC (T )mDB (S)

The proofs are similar to those of Theorem 2.2, Corollary 2.3 and Theorem
2.7, and they are omitted. As a useful exercise, you should try at least to
outline them.

Example 2.11. Let V be a n-dimensional linear space and let B be any
basis of V . Let, as above, I : V → V the identity transformation and, for a
given scalar c, Tc : V → V the linear transformation v 7→ cv. Then

(1) mBB(I) = In and mBB(Tc) = cIn

This is because, if X are is the vector of components of a given vector v ∈ V
with respect to the basis B, then cX is the vector of components of the vector
cv with respect to the same basis B. Note that the basis of the source and
the target space has to be the same, otherwise (1) is false.

Example 2.12. Let T = PrL((1,2)) : V2 → V2 be the projection along L(1, 2).
Let S = RefL((1,2)) be the reflection with respect to L((1, 2)). Let B =
{(1, 2), (2,−1)}. Then:

mBB(T ) =
(

1 0
0 0

)
and mBB(S) =

(
1 0
0 −1

)
.

Exercise!

3. The rank of a matrix

Let us start with the following

Definition 3.1. Let A ∈MM,n be a matrix. The rank of A, denoted rk(A),
is defined as the rank of the linear transformation TA : Vn → Vm, X 7→ AX
(compare Def. 2.1).

By Remark (c) after Definition 2.1 we know that rk(A) = dimL(A1, . . . , An),
where A1, . . . , An are the columns of A. In other words, rk(A) is the max-
imal number of independent columns of A (see Thms 15.5 and 15.7 of Vol.
I, corresponding to Thms 1.5 and 1.7 of Vol. II). We have the remarkable

Proposition 3.2. rk(A) = dimL(A1, . . . , Am), where A1, . . . , Am are the
rows of A. In other words, the maximal number of independent columns of
A equals the maximal number of independent rows of A.

Proof. By the nullity + rank Theorem, rk(TA) = n − dimN(TA). On the
other hand, by definition,

N(TA) = L(A1, . . . , Am)⊥.
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This is because N(TA) is the set of solution of the homogeneous system
A1 ·X = 0
. . .

. . .

Am ·X = 0

Therefore dimN(TA) = dimL(A1, . . . , Am)⊥ = n − dimL(A1, . . . , Am), see
the addendum on orthogonal complements (note that the rows A1, . . . , Am
have n(= number of columns od A) components, hence they are vectors
of Vn). Putting evething together Rk(A) = rk(TA) = n − dimN(TA) =
n− (n− dimL(A1, . . . , Am)) = dimL(A1, . . . Am). �

Example 3.3. Let A1 = (1, 2, 3), A2 = (3, 4, 5) and let A3 := A1 + A2 =
(4, 6, 8). Let us consider the matrix

A =

A1

A2

A3

 =

1 2 3
3 4 5
4 6 8


Since the maximal number of independent rows is 2 then the maximal num-
ber of independent columns is 2. In particular, the columns are dependent.
Exercise: check this!

4. Computation of the rank of a matrix, with application to
systems of linear equations

We have the following easy result, summarizing the qualitive behaviour of
systems of linear equations. We will need the followimg terminology: given
a linear system AX = B, with A ∈ Mm,n and B ∈ Mm,1 (see Remark
(b) after Definition 2.1), we denote A|B the m× (n+ 1)-matrix whose first
n columns are the columns of A and the last one is B. This is called the
augmented or complete matrix of the linear sistem.

Theorem 4.1 (Rouché-Capelli). Let AX = B be a linear system. Then
(a) A has some solutions if and only if rk(A) = rk(A|B) (if this happens
the system is sometimes called compatible),
(b) In this case, the set of all solutions of the system is of the form v+W =
{v + w | w ∈ W}, where v ∈ Vn is a solution of the system and W is the
linear subspace of Vn formed by all solutions of the homogeneous system
AX = O. In particular, there is a unique solution if and only if (a) holds
and dimW = 0.
(c) dimW = n− rk(A).

Proof. (a) The system has some solutions if and only if the column vector
B is a linear combinations of the columns A1, . . . , An. This means exactly
that the rank(= number of independent columns) of A|B is the same as the
rank of A.
(b) Let v1 and v two solutions of the system, that is Av1 = B and Av = B.
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Then A(v1 − v2) = 0. therefore v1 − v is a solution of the homogeneous
system AX = O, that is v1 − v ∈W . Therefore v1 = v + w for a w ∈W .
(c) This is just a restatement of the nullity + rank Theorem. �

In order to solve a linear system by computing the rank of the matrices
A and A|B one can use the row-elimination method of Gauss-Jordan. Here
are some examples (see also the examples given in the lectures and those in
the book at Section 18).

Example 4.2.


x+ 2y + z + t = 1
x+ 3y + z − t = 2
x+ 4y + z − 3t = 3
2x+ y + z = 2

.

We will make use of the following modifications of the equations of the sys-
tem:
(a) exchanging to equations;
(b) multiplying an equation by a non-zero scalar,
(c) adding to an equation a scalar multiple of another equation.
Clearly such modifications produce equivalent(= having the same solutions)
systems. Since the equations correspond to the rows of the associated aug-
mented matrix A|B, the above modifications correspond to modifications
of the rows of A|B. Note that, even if after operating one such modifica-
tions the rows of the modified matrix do change, the linear span of the rows
remains the same. Therefore such modifications leave unchanged the rank.

A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −3 3
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −4 2
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 0 0
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 0 0


Now we arrived to a matrix in row-echelon form, corresponding to the equiv-
alent system 

x + 2y + z + t = 1
y − 2t = 1
− z − 7t = 3

Let us denote A′X = B′ this new system. We have that rk(A|B) =
rk(A′|B′) = 3, since the non-zero rows of a row-ladder matrix are clearly in-
dependent (exercise!). For the same reason, rk(A) = rk(A′) = 3. Therefore
the system has solutions (note that, in general, there are solutions if and
only if, in the final ladder matrix there is no row of the form

(
0 . . . 0 a

)
with a 6= 0). Even before computing the explicit solutions, we know that
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the set of solutions will have the form

v +W, with dimW = 1

since n− rk(A|B) = 4− 3 = 1. We compute the solutions starting from the
last equation: z = −3− 7t, y = 1 + 2t, x = 1− 2y− z− t = 1− 2(1 + 2t)−
(−3− 7t)− t = 2 + 2t. Therefore the solutions are the 4-tuples of the form

2 + 2t
1 + 2t
−3− 7t

t

 =


2
1
−3
0

+ t


2
2
−7
1

 = v + w, where w ∈W = L(


2
2
−7
1



Example 4.3.


x+ 2y + z + t = 1
x+ 3y + z − t = 2
x+ 4y + z − 3t = 2
2x+ y + z = 2

.

A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −3 2
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −4 1
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 0 −1
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 0 −1


The system has no solution because the last equation is 0 = −1. This
corresponds to the fact that rk(A) = 3 while rk(A|B) = 4. In general, the
rank of a matrix in row-echelon form is the number of non-zero rows).

Example 4.4.


x+ 2y + z + t = 1
x+ 3y + z − t = 2
x+ 4y + z − 2t = 3
2x+ y + z = 2

.

A|B =


1 2 1 1 1
1 1 1 −1 2
1 4 1 −2 3
2 1 0 1 2

→


1 2 1 1 1
0 1 0 −2 1
0 2 0 −3 2
0 −3 −2 −1 0

→

→


1 2 1 1 1
0 1 0 −2 1
0 0 0 1 0
0 0 −2 −7 3

→


1 2 1 1 1
0 1 0 −2 1
0 0 −2 −7 3
0 0 0 1 0


In this case rk(A) = rk(A|B) = 4. Therefore there is a unique solution,
since dimW = 4− 4 = 0 (this simply means that the four columns of A are
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independent). Note that, since rk(A) = 4 for all possible vectors of constant
terms B′ ∈ V4 the system AX = B′ has a unique solution!) Exercise: find
the solution.

5. Invertible matrices and their inverses

We have see that the identity matrices In are neutral elements with respect
to matrix multiplication. It is therefore natural to ask which matrices have
an inverse element with respect to multiplication.

Definition 5.1. Let A ∈Mn,n be a square matrix. A is said to be invertible
if there is another matrix B ∈Mn,n such that AB = BA = In.

Remark 5.2. If A is invertible the matrix B is unique. Indeed, if B′ is
another such matrix, then B′ = B′In = B′(AB) = (B′A)B = InB = B.

Definition 5.3. If A is invertible then the matrix B is called the inverse of
A, and denoted A−1.

It is not hard to imagine that invertible matrices correspond to invertible
linear transformations:

Proposition 5.4. Let A ∈Mn,n. The following are equivalent:
(a) A is invertible,
(b) the linear transformation TA : Vn → Vn is invertible, and (TA)−1 = TA−1;
(c) rk(A) = n.

Proof. (a) ⇔ (b) Assume that A is invertible. Then, by Theorem 2.7 and
Example 2.5,

I = TIn = TAA−1 = TATA−1 .

Analogously,
I = TA−1TA.

Therefore TA is invertible.
Conversely, assume that TA is invertible. Then we know that (TA)−1 is
a linear transformation too (Prop. 1.4). Hence, by Theorem 2.2 there is
matrix B such that (TA)−1 = TB. By Theorem 2.7 we have that AB =
m(TATB) = m(I) = In and BA = m(TBTA) = m(I) = In. Therefore A is
invertible and B = A−1.
(b) ⇔ (c) The linear transformation TA is invertible if and only if it is
bijective. by Corollary 1.5 his happens if and only if it is surjective, that is
rk(TA) = n. But, by definition, rk(A) = rk(TA). �

The following proposition ensures that, in order to check invertibility and
find the inverse of a matrix, it is sufficient to check only one of the conditions
AB = In and BA = In.

Proposition 5.5. (a) Let A ∈ Mn,n. If there is a matrix B ∈ Mn,n such
that AB = In then A is invertible and B = A−1.
(b) Let A ∈ Mn,n. If there is a matrix B ∈ Mn,n such that BA = In then
A is invertible and B = A−a.
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Proof. (a) If AB = In then TATB = TAB = TIn = I (Theorem 2.7 and
Example 2.5. This implies that TA is surjective since, for all X ∈ Vn,
X = (TATB)(X) = TA(TB(X), hence there is a Y such that X = TA(Y ).
By Cor 1.5 TA is bijective, hence invertible. Therefore, by Prop. 5.4 A is
invertible.

(b) If BA = In then TBTA = TBA = TIn = I. This implies that TA is in-
jective since, for all X,X ′ ∈ Vn, if TA(X) = TA(X ′) then X = TB(TA(X)) =
TB(TA(X ′)) = X ′. Then by Corollary 1.5 TA is bijective, hence invetrible.
Therefore, by Prop. 5.4 A is invertible.

Remark 5.6 (Inverse matrix and linear systems). Let us consider a square
linear system, that is a system of linear equations such that the number of
equations equals the number of unknowns. In other words, a linear system
AX = B where A ∈ Mn,n is a square matrix. Then we know that for all
B ∈ Vn there is a solution if and only if A has rank n and in this case the
solution is actually unique. Now A has rank n if and only if it is invertible
and in the case the unique solution is

X = A−1B.

This is simply obtained multiplying both members of AX = B by A−1 on
the left. Note the analogy with a linear equation

ax = b

where a, b ∈ R. Under the condition a 6= 0, which means that a is invertible
with respect to the multiplication of real numbers, then there is always a
solution, such solution is unique, and more precisely such solution is

x = a−1b.

5.1. Computation of the inverse matrix. Given an invertible matrix
A ∈ Mn,n, Prop. 5.5 assures that, in order to find its inverse, it is enough
to solve the matricial equation

(2) AX = In

where the unknown X is a n×n matrix. In the next examples we show how
to solve such equation using row elimination.

Example 5.7. Let A =
(

1 2
3 4

)
. Equation (2) can be solved by finding the

two columns of X, denoted, as usual, X1 and X2. Therefore equation (2) is
equivalent to the two systems

AX1 = E1 and AX2 = E2

that is(
1
3

)
x11 +

(
2
4

)
x21 =

(
1
0

)
and

(
1
3

)
x12 +

(
2
4

)
x22 =

(
0
1

)
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This can be summarized in the single equation(
1
3

)
(x11, x12) +

(
2
4

)
(x21, x22) =

(
1 0
0 1

)
This can be seen as a usual system of linear equations(

1
3

)
X1 +

(
2
4

)
X2 =

(
1 0
0 1

)
that is {

X1 + 2X2 = (1, 0)
3X1 + 4X2 = = (0, 1)

where the unknowns X1 and X2 are the rows of the inverse matrix. This
can be solved in the usual way(

1 2 | 1 0
3 4 | 0 1

)
→
(

1 2 | 1 0
0 −2 | −3 1

)
This corresponds to the system{

X1 + 2X2 = (1, 0)
−2X2 = (−3.1)

Solving as usual we get X2 = (3/2,−1/2), and X1 = (1, 0)− 2X2 = (1, 0) +
(−3, 1) = (−2, 1). Therefore the inverse matrix is

A−1 =
(
X1

X2

)
=
(
−2 1
3/2 −1/2

)
Check that it is really the inverse matrix!

Example 5.8. A =

 1 2 1
−2 2 3
1 1 1

 .

Arguing as before, we are lead to solve the system of linear equations
X1 + 2X2 + X3 = (1, 0, 0)
−2X1 + 2X2 + 3X3 = (0, 1, 0)
X1 + X2 + X3 = (0, 0, 1) 1 2 1 | 1 0 0

−2 2 3 | 0 1 0
1 1 1 | 0 0 1

→
1 2 1 | 1 0 0

0 6 5 | 2 1 0
0 −1 0 | −1 0 1


Note that from this calculation if follows that rk(A) = 3 (exercise!), that is
that A is invertible. Solving we have X2 = (1, 0,−1),
X3 = 1/5

(
(2, 1, 0) − 6X2) = 1/5((2, 1, 0) − (6, 0,−6)

)
= 1/5(−4, 1, 6) =

(−4/5, 1/5, 6/5),
X1 = (1, 0, 0) − 2X2 − X3 = (1, 0, 0) − 2(1, 0,−1) − (−4/5, 1/5, 6/5) =
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(−1/5,−1/5, 4/5).
Therefore the inverse matrix is

A−1 =

 −1/5 −1/5 4/5
1 0 −1

−4m/5 1/5 6/5


Check that this is really the inverse matrix!

6. Exercises

Ex. 6.1. Let T : V4 → V4 be the linear transformation T (


x1

x2

x3

x4

) =


x1 + x3

2x1 + x2 + 2x3 + 2x4

x1 + x2 + x3 + 4x4

x1 + x2 + x3 + 2x4


(a) Find a basis of T (V4).
(b) Let v = (−3,−3, 0, 0). Does v belong to T (V4)? Is case of positive
answer, find the components of v with respect to the basis of T (V4) found
in (a).
(c) Find a basis of N(T ).

Ex. 6.2. Let B = {u, v, w} be a basis of V3.
(a) Is there a linear transformation T : V3 → V3 such that T (u) = w,
T (v) = w and T (w) = 3v − 2w? If the anwer is yes:
(b) Find dimensions and bases of N(T ) and T (V3).
(c) Compute mBC (T ).
(d) Is there a linear transformation S : V3 → V3 such that S(u) = v,
S(v) = w, S(3u− 2v) = u? If the answer is yes answer to questions (b) and
(c) as above.

Ex. 6.3. Let u = (1, 1,−1), v = (1, 1, 0), w− (1,−1, 1). For t varying in R,
let St : V3 → V3 be the linear transformation defined by St(u) = (1, 0,−1),
St(v) = (1, t+ 1, 1), St(w) = (1, 4, t+ 2).
(a) Find the value of t such that St is injective.
(b) For t = −5 find a basis of N(St), a basis of St(V3) and a a system of
cartesian equations whose space of solutions is N(St).
(c) Compute mBE (St), where B = {u, v, w} and E is the canonical basis.

Ex. 6.4. Let T : V3 → V2 be the linear transformation such that T ((1, 0,−1) =
(2,−1), T ((0, 1, 1)) = (0, 1) and T ((0, 1, 0)) = (1, 0).
(a) Find N(T ).
(b) Find a line L in V3 passing trough P = (3, 4, 5) such that T (L) is a
point.
(c) Find a plane Π in V3 passing trough P = (3, 4, 5) such that T (Π) is a
line.
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(d) Is there a plane M of V3 such that T (M) is a point?
(e) Let B = {{(1, 0,−1), (0, 1, 1), (0, 1, 0)}. Let C = {(2,−1), (0, 1)}. Let E3
and E2 be the canonical base sof V3 and V2. Compute mBE2(T ) and mBC (T ).

Ex. 6.5. Let us consider the linear transformation

RL((1,2))RL((1,3)) : V2 → V2,

where RU denotes the reflection with respect to the linear subspace U . Com-
pute its null-space and range.

Ex. 6.6. Let us consider the linear transformations

PL((1,2−1),(1,1,1))RL((1,0,−1),(11,3)) : V3 → V3

and
PL((1,2,−1),(1,1,1))PL((1,0,−1),(1,1,3)) : V3 → V3,

where, as above, RU denotes the reflexion with respect to the linear subspace
U , and PV denotes the projection on the linear subspace V . Compute null-
space and range of such transformations.

Ex. 6.7. For t varying in R let ut = (1, t + 1, 1), vt = (1, t + 2, 2) and
wt = (2, 1, t + 1). Let St : V3 → V3 be the linear transformation such that
S(E1) = ut, S(E2) = vt, S(E3) = wt, where {E1, E2, E3} are the unit
coordinate vectors.
(a) Find for which t ∈ R the transformation St is surjective.
(b) For all t ∈ R such that St is not surjective, find a basis of St(V3).
(c) Find, if possible, a vector v ∈ V3 such that S−1(v) = (1, 0, 0).

Ex. 6.8. Let V be a linear space and let {v1, v2} ⊂ V be a linearly indepen-
dent set made of two elements. Let T : V → V be a linear transformation
such that T (v1 + 2v2) = 2v1 − v2, and T (v1 − v2) = v1 + 3v2.
(a) Express T (v2) as linear combination of v1 and v2.
(b) Is there a u ∈ V such that T (u) = v1? If the answer is yes, find it.

Ex. 6.9. True/false? (Then explain all anwers)
(a) For a matrix A ∈ M5,6, T (X) = AX defines a linear transformation
T : V5 → V6.
(b) Every linear transformation T : V6 → V4 is surjective.
(c) Every linear transformation T : V4 → V6 is injective.
(d) Every linear transformation T : V6 → V4 such that dimN(T ) = 2 is
surjective.
(e) Every linear transformation T : V4 → V6 such that dimT (V4) = 4 is
surjective.
(f) If dimV = dimW a linear transformation T :→ W is injective if and
only if it is surjective.

Ex. 6.10. Let V and W be linear spaces and T : V → W a linear
transformation. Let v1, ..., vk ∈ V .
(a) Prove that if T (v1), ..., T (vk) are linearly independent then v1, ..., vk are
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linearly independent.
(b) Prove that if v1, ..., vk are linearly independent and T is injective then
T (v1), ..., T (vk) are linearly independent.

Ex. 6.11. For t varying in R, let us consider the linear system
x1 + x2 − x3 = 1
x1 + 2x2 = 0
x1 + x2 + (t− 1)x3 = 2
x1 + x2 − x3 = t

Find the values of t such that the system has solutions, and those such that
the system has a unique solution. For such values of t, solve the system.

Ex. 6.12. Let us consider the lines of V3 L :

{
x+ y = 0
x+ 2y + z = 0

and

M :

{
x− y = 1
x+ 5y + z = 0

. What is the correct statement among the following:

(a) they meet at a point; (b) they are parallel; (c) they don’t meet but they
are not parallel (in which case they are called skew lines).

Ex. 6.13. Solve the following systems (non necessarily with row elimina-
tion!):

(a)


2x1 − x2 + x3 = 1
3x1 + x2 − x3 = 3
x1 + 2x2 − x3 = −2

(b)


4x+ y + z + 2v + 3w = 0
14x+ 2y + 2z + 7v + 11w = 0
15x+ 3y + 3z + 6v + 10w = 0

(c)


5x+ 4y + 7z = 3
x+ 2y + 3z = 1
x− y − z = 0
3x+ 3y + 5z = 2

(d)


19x− y + 5z + t = 3
18x+ 5z + t = 1
6x+ 9y + t = 1
12x+ 18y + 3t = 3

Ex. 6.14. Let us consider the homogeneous linear system


x1 + x2 + x4 = 0
x1 + 2x3 + x4 = 0
x2 − 2x3 = 0

.

(a) Find the dimension and a basis of the space of solutions;
(b) Find the dimension and a basis of the linear span of the columns of the
linear system.
(c) Find the dimension and a basis of the linear span of the rows of the
linear system.
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Ex. 6.15. For which values of t ∈ R the system
x1 + 2x2 + x3 = 1
x1 + (t+ 4)x2 − 3x3 = 1/2
−2x1 + (t− 2)x2 + (2t− 6)x3 = 5/2

has respectively no solutions, a unique solution, infinitely many solutions?

Ex. 6.16. Find for which values of t, a ∈ R, the system
x1 + x2 + tx3 = 1
2x1 + tx2 + x3 = −1
6x1 + 7x2 + 3x3 = a

has respectively no solution, a unique solution, infinitely many solutions.
For this last case, describe the set of solutions.

Ex. 6.17. Do linear transformations with the below properties exist? If
the answer is yes exhibit an example.
(a) T : V2 → V4 such that T (V2) = L((1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 0));
(b) S : V4 → V3 suriettiva surjective and such that N(S) = L((1, 2,−1, 1)).

Ex. 6.18. Fort varying in R, let At =

 t t+ 1 t+ 3
−1 0 2
2 0 t+ 1

 .

(a) For t varying in R, compute dim(N(TAt)) e dim(TAt(V3)).
(b) Exhibit a basis B of TA−1(V3) and find a basis of V 3 containing B.

Ex. 6.19. (a) Let T : Vn → Vm be a linear transformation. Prove that,
via T , the image of a parallelogram is either a parallelogram, or a segment
or a point. For each case exhibit an example
(b) Describe the image of the unit square of V2 (that is [0, 1]× [0, 1]) via the
linear transformations TA, where:

(i) A =
(

2 0
0 1

)
, (ii) A =

(
1 0
0 2

)
, (iii) A =

(
1 2
0 1

)
, (iv) A =

(
1 0
2 1

)
.

Ex. 6.20. Find three vectors v1, v2, v3 ∈ V3 such that


v2 + v3 = (1, 0, 0)
v1 + 2v3 = (0, 1, 0)
v1 + 2v2 = (0, 0, 1)

Is the solution unique?

Ex. 6.21. Let A =

0 −1 2
1 0 1
1 0 3

. (a) Compute A−1.

(b) Let C =

2 2 0
1 1 1
0 0 −2

. Find all matrices B such that AB = C.
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Ex. 6.22. Let C =


0 1 1 0
3 1 0 −3
2 0 0 0
0 1 0 0

 .

(a) Compute C−1.
(b) Compute (C2)−1 (without computing C2).

Ex. 6.23. Let A =

0 2 1
1 2 0
2 2 2

.

(a) Compute the inverse of A.

(b) For t ∈ R, let Bt =

1 1 0
2 1 −1
2 t 0

. Find the values of t such hat there is

a matrix X ∈M3.3 such that BtX = A.

Ex. 6.24. Let A =

 0 1 1
−1 2 0
1 0 0

 and B =

1 −4 −4
0 3 0
0 0 1

.

(a) Compute the inverses of A and B.
(b) Without computing AB and BA, compute the inverses of AB and BA.

Ex. 6.25. Let us consider the vectors A1 = (0, 0, 1, 1), A2 = (1,−2, 0, 1),
A3 = (0, 1, 2, 1), A4 = (0, 0, 1, 0).
(a) Prove that B = {A1, A2, A3, A4} is a basis of V4.
(b) For all (x, y, z, t) ∈ V4 find (in function of x, y, z, t) the components of
(x, y, z, t) with respect to the basis B.

Ex. 6.26. For t ∈ R, let At =


t 1 0 0
1 1 0 0
2 0 2 + t 0
t 1 0 t+ 3

.

(a) Find for which t the matrix At is invertible.
(b) Find for which t the system of linear equations of 4 equations in 3
unknowns having At as augmented matrix has solutions. For such t’s, find
explicitly the solutions.

Ex. 6.27. For the matrix At of the previous exercise find the values of t
such that there exists a vector Bt ∈ V4 such that the system AtX = Bt has
no solutions.

Ex. 6.28. LetA =


1 0 0 2
1 0 0 0
1 −2 0 0
1 0 1 0

, B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, C =
(

1 2 −1 3
1 2 −1 3

)
.

(a) Find a matrix D such that AD = B.
(b) Find a matrix E such that EA = B and a matrix F such that FA = C.
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Ex. 6.29. Let A =

0 2 −1
1 0 1
1 −1 0

, B =

1 1 0
1 2 1
0 1 1

, C =

1 2 0
1 0 1
0 −2 1

.

(a) Find A−1. (b) Is there a matrix X such that AX = B? Is it unique?
(c) Is there a matrix Y such that Y A−1 = B? Is it unique? (d) Is there a
matrix Z such that BZ = A? Is it unique? (e) Is there a matrix T such
that BT = C? Is it unique?


