
ADDENDUM TO SECTIONS 15.15 AND 15.16.

1. Properties of the orthogonal complement

Let S be a subset (finite or infinite) of a euclidean linear space V . Accord-
ing to the book, we can define S⊥ as the set of elements in V perpendicular
to each element of S. In symbols S⊥ = {x ∈ V | < s, x >= 0 ∀s ∈ S}.
Then:

Proposition 1.1. S⊥ = L(S)⊥

Proof. Since S ⊆ L(S), clearly L(S)⊥ ⊆ S⊥. To prove the other inclu-
sion, we have to prove that if x ∈ S⊥ then x ∈ L(S)⊥, that is that
<

∑
cisi, x >= 0 for all finite linear combinations

∑
cisi of elements of

S. But <
∑

cisi, x >=
∑

ci < si, x >= 0 �

Example 1.2. In V = Vn with the dot product, let S = {w1, . . . , wk} ⊂ Vn.
The previous proposition says that

L(w1, . . . , wk) = {X ∈ Vn |


w1 ·X = 0
...

wr ·X = 0
}

Note that the above is a (homogeneous) system of linear equations since
if wi = (ai1, . . . , ain) then wi ·X = ai1x1 + · · ·+ ainxn.
For example, L((1, 2, 1,−1), (3, 1, 5,−1))⊥ is the subspace of V4 formed by
the solutions of the system{

x1 + 2x2 + x3 − x4 = 0
3x1 + x2 + 5x3 − x4 = 0

The next proposition tells us that, in the finite-dimensional case, the
dimension of the orthogonal complement is what it should be (for example,
we already now that the orthogobal complement of a line in V2 is a line and
that the orthogonal compement of a plane in V3 is a line).

Proposition 1.3. Let V be a finite-dimensional euclidean space, and let W
be a linear suspace of V . Then:
(a) dim W⊥ = dim V − dim W
(b) (W⊥)⊥ = W .

Proof. (a) Let us denote k and h the dimensions of W and W⊥ respectively.
Let E = {e1, . . . , ek} and F = {f1, . . . , fh} be orthogonal bases of W and
W⊥ respectively (they exist by virtue of Theorem 15.14 of the book). Then
E ∪ F is an orthogonal set of k + h non-zero vectors, and therefore it is
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an independent set (Theorem 15.10). By the Orthogonal Decomposition
Theorem (Theorem 15.15) E ∪ F spans V : indeed Th. 15.15 tells us that
every element of V is the sum of an element of W (a linear combination of
the elements of E) and of an element of W⊥ (a linear combination of the
elements of F ). Hence E ∪ F is a basis of V . Therefore k + h = dim V .
(b) Clearly

(1) W ⊆ (W⊥)⊥

But, by (a),

dim(W⊥)⊥ = dim V − dim W⊥ = dim V − (dim V − dim W ) = dim W.

Therefore the inclusion in (1) is an equality. �

Remark 1.4. Note that part (b) tells us something we already knew in
particular cases: in V2 a vector orthogonal to a vector which is perpendic-
ular to a vector v is a vector parallel to v. In V 3 we know that, given two
(non-parallel) vectors v and w, L(v, w) = (v × w)⊥ (Theorem 13.15 with
P = O). Since
L(v×w) = L(v, w)⊥ (Theorem 13.13(b)), this means precisely that (L(v.w)⊥)⊥ =
L(v, w).

Example 1.5. Continuing with Example 1.2, part (a) of the above propo-
sition tells us the following: let us consider a linear system

(2)


w1 ·X = 0
...

wk ·X = 0
⇔


a11x1 + · · · a1nxn = 0
...

ak1x1 + · · ·+ aknxn = 0

Then the dimension of the space of the solutions, that is W⊥, equals n −
dim W , where, as we know from Theorem 15.7(b), dim W is the maximal
number of independent vectors among {w1, . . . , wk}. In other words, the
dimension of the space of solutions is the number of unknowns minus the
number of independent equations.

Example 1.6. In the setting of Examples 1.2 and 1.5, (b) of the previous
proposition tells the following: let W = L(w1, . . . wh) be a subspace of Vn.
Solving the system (2) one finds the space of solutions W⊥ = L(u1, . . . , uh)
(where h = n− dim W ). Then W is the set of solutions of the system

u1 ·X = 0
...

uh ·X = 0

In other words given a basis or, more generally, a spanning set {w1, . . . , wk}
of W , that is a parametric equation of W , we have found a linear system
whose space of solutions is W (a system of ”cartesian equations” for W ).
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For example, let W = L((1, 2, 1,−1), (3, 1, 5,−1)). Then W⊥ is the subspace
of V4 formed by the solutions of the system{

x1 + 2x2 + x3 − x4 = 0
3x1 + x2 + 5x3 − x4 = 0

We solve the system by multiplying the first equation by 3 and subtracting it
from the second one. We arrive to the equivalent system{

x1 + 2x2 + x3 − x4 = 0
−5x2 + 3x3 + x4 = 0

Then x4 = 5x2 − 3x3 and x1 = −2x2 − x3 + x4 = 3x2 − 4x3. Therefore the
space of solutions W⊥ is formed by the 4-tuples

(3x2 − 4x3, x2, x3, 5x2 − 3x3) = x2(3, 1, 0, 5) + x3(−4, 0, 1,−3).

Therefore W⊥ = L((3, 1, 0, 5), (−4, 0, 1,−3)). By the above W is the space
of solutions of the system{

3x1 + x2 + 5x4 = 0
−4x1 + x3 − 3x4 = 0

(check!).

Finally, note that all this works also in the complex case, as well.

2. Exercises

Ex. 2.1. In V4(R), let W = L((1, 2, 1,−1), (1, 1,−1,−1), (−1, 1, 5, 1). Find
dimension and a basis of W . Find dimension and a basis of W⊥.

Ex. 2.2. Find a basis of V4(R) containing the vectors (1, 1,−1, 1) and
(1, 2, 0, 1).

Ex. 2.3. In V4(R), with usual dot product. (a) Find a orthonormal basis
{e1, e2, e3, e4} of V4(R) such that e1 is parallel to (0, 3, 4, 0). (b) Compute
the distance between (1, 0, 0, 0) and L((0, 3, 4, 0))⊥.

Ex. 2.4. In V4(R), with the usual dot product. Let u1 = (1, 2,−2, 3) and
u2 = (2, 3,−1,−1). (a) Find a orthogonal basis {v1, v2, v3, v4) of V4(R)
such that L(v1, v2) = L(u1, u2). (b) Find an element u ∈ L(u1, u2) and
an element w ∈ L(u1, u2)⊥ such that (1, 0, 0, 0) = u + w. (c) Compute
d((1, 0, 0, 0), L(u1, u2)) and the point of L(u1, u2) nearest to (1, 0, 0, 0).

Ex. 2.5. In Vn(R), with the usual dot product. (a) In V3, find a system of
cartesian equations for the line L((1, 2,−1)) = {t(1, 2,−1) | t ∈ R}. (b) In
V4(R) find a system of cartesian equations for the two-dimensional subspace
W = L((1, 1,−1, 0), (1, 2, 1, 1)) = {t(1, 1,−1, 0) + s(1, 2, 1, 1) | t, s ∈ R}.
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Ex. 2.6. In V2(R) define an inner product by

< (x1, x2), (y1, y2) >= 3x1y1 − 2x1y2 − 2x2y1 + 3x2y2.

(a) Verifiy that this is in fact an inner product. (b) Find the orthogonal
complement of L((1, 1)) with respect to this inner product. (c) Find the
distance between (1, 0) and L((1, 1)) with respect to this inner product. (d)
Find an orthonormal basis of V2(R) with respect to this inner product.

Ex. 2.7. Are the vectors of V2(C) (i + 1, 3− 2i) and (5, 5− 5i) parallel?

Ex. 2.8. Are the vectors of V3(C) A = (1 + i, 2, 2 − 3i), B = (2 − i, 1 −
i,−1− i) and C = (1, 1 + i, 3) dependent or independent?

Ex. 2.9. In Vn(C), with the usual dot product (x1, . . . , xn) · (y1, . . . , yn) =∑n
i=1 xiȳi.

(a) In V2(C), find L((i + 1, 2− 5i))⊥.
In V3(C) find L((1 + i, i, 1 + 2i), (2 + i, 2, 2− i))⊥.


