First Name:

Last Name:

Linear Algebra and Geometry, Midterm exam, 02.16.2011

NOTE: you must give reasons for every solution/assertions. Final solutions, without adequate explanations, will not be evaluated. In practice, for each exercise you must (briefly) explain the steps of the reasoning.

1. Let $\{A, B, C\}$ be an orthogonal basis of \mathcal{V}_3 such that || A || = 2, $|| B || = \sqrt{2}$, $|| C || = \sqrt{3}$. Let V = A + B + C and let respectively θ_A , θ_B , θ_C be the angles between V and A, B, C. (a) Compute $\cos \theta_A$, $\cos \theta_B$ and $\cos \theta_C$. (b) Compute $|| A \times V ||$ and $|| A \times B ||$. (c) Compute $|| V \cdot (A \times B)|$.

Solution. (a) $||V||^2 = V \cdot V$. Using the fact that the basis is ortogonal, $V \cdot V = A \cdot A + B \cdot B + C \cdot C = 4 + 2 + 3 = 9$. In conclusion: ||V|| = 3. Therefore

$$\cos \theta_A = \frac{V \cdot A}{\|V\|\|A\|} = \frac{\|A\|}{\|V\|} = \frac{2}{3}$$

In the same way: $\cos \Theta_B = \sqrt{2}/3$, $\cos \Theta_C = \sqrt{3}/3$.

(b) $|| A \times V ||$ is the area of the parallelogram defined by A and V. This is equal to

 $||A||||V|| \sin \theta_A = 6\sqrt{5/9} = 2\sqrt{5}$. Moreover, since A and B are orthogonal, $||A \times B|| = ||A||||B|| = 2\sqrt{2}$. (c) $|V \cdot (A \times B)|$ is the volume of the parallelepiped defined by V, A and B. This is equal to $||A \times B|| = 2\sqrt{2}$.

2. Let A, B, C be three vectors in \mathcal{V}_3 . Prove or disprove the following assertions:

(a) If A, B and C are linearly independent then the vectors A+2B, A+B-C, A+B are linearly independent. (b) The vectors A + 2B, A + B - C, A + B can be linearly independent even if A, B and C are linearly dependent

(c) The vectors A+2B, A+B-C, -A+2C are always linearly dependent, regardless of the linear dependence or independence of A, B, C.

Solution. (a) is correct. Let $x, y, z \in \mathbf{R}$ such that O = x(A+2B) + y(A+B-C) + z(A+B) = (x+y+z)A + (2x+y+z)B - yC. Since A, B and C are independent, this means that $\begin{cases} x+y+z=0\\ 2x+y+z=0\\ y=0 \end{cases}$

It follows easily that x = y = z = 0.

(b) is false, because the fact that A, B and C are dependent means that they are contained in a plane trough the origin. Hence also all linear combinations of A, B and C are contained in that plane.

(c) is correct. We look for $x, y, z \in \mathbf{R}$ such that O = x(A + 2B) + y(A + B - C) + z(-A + 2C) = (x + y - z)A + (2x + y)B + (-y + z)C. One finds easily x = -z, y = 2z. For example: x = -1, y = 2, z = 1. This means that A + 2B = 2(A + B - C) + (-A + 2C). This equality is always true.

3. In \mathcal{V}_3 , let us consider the plane $M = \{(0,0,1) + t(1,0,1) + s(1,-1,0)\}$, and the line $L = \{t(1,1,1)\}$. (a) Find all points in L such that their distance from M is equal to $\sqrt{3}$. (b) For each such point P find the cartesian equation of the plane parallel to M containing P.

Solution. (a) A normal vector to the plane is $(1,0,1) \times (1,-1,0) = (1,1,-1)$. A point of the line is of the form t(1,1,1) = (t,t,t). Its distance form the plane is

$$\frac{|((t,t,t) - (0,0,1)) \cdot (1,1,-1)|}{\|(1,1,-1)\|} = \frac{|t+1|}{\sqrt{3}}|$$

Hence $|t+1|\sqrt{3} = \sqrt{3}$, that is |t+1| = 3, which has the two solutions t = 2 and t = -4. The requested points are (2, 2, 2) and (-4, -4, -4).

(b) A cartesian equation of a plane parallel to M is of the form x + y - z = d. Replacing (2, 2, 2) we find d = 2 and replacing (-4, -4, -4) we find d = -4.

4. Let C be a parabola with vertical directrix and the focus at the origin. Suppose that the point P of polar coordinates $(\rho, \theta) = (4, \pi/3)$ belongs to C. (a) Find: the directrix, the vertex, the polar equation and

the cartesian equation of C if the directrix lies in the half-plane x > 0. (b) Find: the directrix, the vertex, the cartesian equation of C if the directrix lies in the half-plane x < 0.

Solution. (a) $P = 4(1/2, \sqrt{3}/2) = (2, 2\sqrt{3})$. The distance between P and the directrix has to be equal to 4. Since the directrix is a vertical line in the half-plane x > 0, it must be the line x = 6. Hence the vertex is (3,0). Polar equation: $\rho = 6/(\cos \theta + 1)$. Cartesian equation: $\sqrt{x^2 + y^2} = 6 - x$. Squaring one obtains $y^2 = 12(x-3)$.

(b) $P = 4(1/2, \sqrt{3}/2) = (2, 2\sqrt{3})$. The distance between P and the directrix has to be equal to 4. Since the directrix is a vertical line in the half-plane x < 0, it must be the line x = -2. Hence the vertex is (-1, 0). Cartesian equation: $\sqrt{x^2 + y^2} = 2 + x$. Squaring one obtains $y^2 = 4(x + 1)$.

5. A curve in \mathcal{V}_3 is such that the velocity vector makes a constant angle with a fixed unit vector $\mathbf{c} \in \mathcal{V}_3$. (a) Suppose that the curve lies in a plane containing \mathbf{c} . Describe the curve. (b) Give an example of such a curve which is not contained in a plane.

Solution. (a) In this case the unit tangent vector is constant (it is contained in fixed plane for all t and it makes a constant angle with a fixed vector of that plane). This implies that the curve is (a portion of) a line. Indeed: $T(t) = \mathbf{v}(t)/v(t) = C$, that is $\mathbf{v}(t) = Cv(t)$. Integrating $\mathbf{x}(t) = C(\int v(t)) + B$. (b) The helix $\mathbf{x}(t) = (a \cos t, a \sin t, bt)$. Indeed $\mathbf{v}(t) = (-a \sin t, a \cos t, b)$. We have that v(t) is constant:

 $v(t) = \sqrt{a^2 + b^2}$. Since also $\mathbf{v}(t) \cdot \mathbf{k} = b$ is constant, the angle with $\mathbf{k} = (0, 0, 1)$ is constant.