Research interest:
Large and moderate deviation principles.
Gaussian measures, conditional Gaussian measures and conditionally Gaussian measures.
Volterra processes.
Gaussian Volterra type stochastic volatility models; fractional and rough models.
Preprints:
- 37. Macci C., Pacchiarotti B. & Torrisi G.L.(2023). Large and moderate deviations for Gaussian neural networks , available at arXiv:2401.01611
- 36. Baldi P. & Pacchiarotti B.(2022). Large Deviations of continuous Gaussian processes:
from small noise to small time, available at arXiv:2207.12037
Publications:
- 35. Macci C. & Pacchiarotti B.(2024). Asymptotic results for compound sums in Banach Spaces, ESAIM: PROBABILITY AND STATISTICS, 28, 329-349
- 34. Giuliano R., Macci C. & Pacchiarotti B.(2024). Asymptotic results for sums and extremes. JOURNAL OF APPLIED PROBABILITY, 61(4), pp. 1153-1171
- 33. Macci C. & Pacchiarotti B.(2024). Large deviations for perturbed Gaussian processes and logarithmic asymptotic estimates for some exit probabilities. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 111 (2024), 21-43
- 32. Giorgio G., Pacchiarotti B. & Pigato P.(2023). Short-time asymptotics for non self-similar stochastic volatility
models. APPLIED MATHEMATICAL FINANCE, 30(3), 123-152.
- 31. Catalini G. & Pacchiarotti B.(2023). Asymptotics for multifactor Volterra type stochastic volatility models. STOCHASTIC ANALYSIS AND APPLICATIONS, 41(6),
1025-1055.
- 30. Macci C. & Pacchiarotti B.(2023). Asymptotic results for certain first-passage times and areas of renewal processes. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 108, 127-148.
- 29. Macci C., Pacchiarotti B. & Villa E. (2022). Asymptotic results for families of power series distributions. MODERN STOCHASTICS: THEORY AND APPLICATIONS, 9(2), 207-228.
- 28. Calì C, Longobardi M., Macci C. & Pacchiarotti B.(2022). Asymptotic results for linear combinations of spacings generated by i.i.d. exponential random variables. METRIKA, 85, 733-752.
- 27. Leonenko N., Macci C. & Pacchiarotti, B. (2021). Large deviations for a class of tempered subordinators and their
inverse processes. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 151(6), 2030-2050.
- 26. Cellupica M. & Pacchiarotti B. (2021). Pathwise asymptotics for Volterra type stochastic volatility models. JOURNAL OF THEORETICAL PROBABILITY, 34(2), 682–727.
- 25. Pacchiarotti B. (2020). Some large deviations principles for time changed Gaussian processes. LITHUANIAN MATHEMATICAL JOURNAL, 60(4), 513-529.
- 24. Pacchiarotti B. (2020). Optimal importance sampling for continuous Gaussian fields. JOURNAL OF APPLIED ANALYSIS, 26(2), 161–171.
- 23. Pacchiarotti B. (2020). Pathwise asymptotics for Volterra processes conditioned to a noisy version of the Brownian motion. MODERN STOCHASTICS: THEORY AND APPLICATIONS, 7(1), 17-41
- 22. Giuliano R., Macci, C. & Pacchiarotti B. (2020). Asymptotic results for weighted means of linear combinations of independent Poisson random variables. STOCHASTICS, 92(4), 497-518.
- 21. Pacchiarotti B. (2019). Large deviations for generalized conditioned Gaussian processes and their bridges. PROBABILITY AND MATHEMATICAL STATISTICS, 39(2),158-181.
- 20. Giuliano R., Macci C. & Pacchiarotti B. (2019). Large deviations for weighted means of random vectors defined in terms of suitable Lévy processes. STATISTICS & PROBABILITY LETTERS, 150, 13-22.
- 19. Pacchiarotti B. & Pigliacelli A. (2018). Large deviations for conditionally Gaussian processes: estimates of level crossing probability. MODERN STOCHASTICS: THEORY AND APPLICATIONS, 5(4), 483-499.
- 18. Macci C. & Pacchiarotti B. (2017). Asymptotic behavior of some hitting probabilities for sums of IID gaussian random sets. COMMUNICATIONS IN STATISTICS. SIMULATION AND COMPUTATION, 46(6), 4318-4332.
- 17. Macci C. & Pacchiarotti B. (2017). Asymptotic results for finite superpositions of Ornstein–Uhlenbeck processes. STOCHASTIC ANALYSIS AND APPLICATIONS, 35(6), 954-979.
- 16. Giorgi F. & Pacchiarotti B. (2017). Large deviations for conditional Volterra processes. STOCHASTIC ANALYSIS AND APPLICATIONS, 35(2), 191-210.
- 15. Macci, C. & Pacchiarotti B. (2017). Exponential tightness for Gaussian processes, with applications to some sequences of weighted means. STOCHASTICS, 89(2), 469-484.
- 14. Macci, C. & Pacchiarotti B. (2017). Large deviations for estimators of the parameters of a neuronal response latency model. STATISTICS & PROBABILITY LETTERS, 126, 65-75.
- 13. Macci C. & Pacchiarotti, B. (2017). Large deviations for i.i.d. replications of the total progeny of a Galton–Watson process. MODERN STOCHASTICS: THEORY AND APPLICATIONS, 4(1), 1-13.
- 12. Macci C. & Pacchiarotti, B. (2015). Asymptotic results for empirical means of independent geometric distributed random variables. STOCHASTICS, 87(2), 308-325.
- 11. Caramellino L., Pacchiarotti B. & Salvadei S. (2015). Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 17(2), 383-401.
- 10. Macci C. & Pacchiarotti B. (2015). Large deviations for a class of counting processes and some statistical applications. STATISTICS & PROBABILITY LETTERS, 104, 36-48.
- 9. Giuliano R., Macci, C. & Pacchiarotti, B. (2015). Asymptotic results for runs and empirical cumulative entropies. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 157-158, 77-89.
- 8. Giuliano R., Macci, C. & Pacchiarotti, B. (2014). On large deviations for some sequences of weighted means of Gaussian processes. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 414(2), 612-631.
- 7. Hashorva E., Macci C. & Pacchiarotti, B. (2013). Large Deviations for Proportions of Observations Which Fall in Random Sets Determined by Order Statistics. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 15(4), 875-896.
- 6. Caramellino L. & Pacchiarotti B. (2008). Large deviation estimates of the crossing probability for pinned Gaussian processes. ADVANCES IN APPLIED PROBABILITY, 40(2), 424-453.
- 5. Baldi P., & Pacchiarotti B. (2006). Explicit computation of second-order moments of importance sampling estimators for fractional Brownian motion. BERNOULLI, 12(4), 663-688.
- 4. Pacchiarotti B., Fanfoni, M. & Tomellini, M. (2005). Roughness in the Kolmogorov-Johnson-Mehl-Avrami framework: extension to (2+1)D of the Trofimov-Park model. PHYSICA. A, 358, 379-392.
- 3. Caramellino L. & Pacchiarotti B. (2002). Sharp estimates for the hitting probability on time-dependent barriers for a Brownian Motion. MONTE CARLO METHODS AND APPLICATIONS, 8(3), 221-236.
- 2. Caramellino L., Climescu-Haulica A. & Pacchiarotti, B. (1999). Diffusion approximations for random walks on nilpotent Lie groups. STATISTICS & PROBABILITY LETTERS, 41(4), 363-367.
- 1. Costantini C., Pacchiarotti B. & Sartoretto, F. (1998). Numerical Approximation for Functionals of Reflecting Diffusion Processes. SIAM JOURNAL ON APPLIED MATHEMATICS, 58(1), 73-102.