Fully Dynamic Balanced and Distributed Search
Trees with Logarithmic Costs *

Adriano Di Pasquale' Enrico Nardelli'?

1. Dipartimento di Matematica Pura ed Applicata, Univ. of I.’Aquila, Via Vetoio, Coppito,
1-67010 1.’ Aquila, Ttalia. F-mail: nardelli@univaq.it

2. Tstituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Viale
Manzoni 30, 1-00185 Roma, Ttalia. CONTACT AUTHOR

Printed on: August 15, 1999

Abstract

In this paper we consider the dictionary problem in a message passing distributed
environment. We introduce a new version of an order-preserving distributed search tree,
called BDST for Balanced and Distributed Search Tree, capable to both grow and shrink
as long as keys are inserted and deleted. This 1s the first distributed data structure to
explicitly support both insertion and deletion with logarithmic costs, 1.e. a key can be
searched, inserted and deleted in O(logn) messages, where n is the number of servers.
Moreover a range query can he performed in O(logn + [%]) messages, where k is the
number of 1tems returned by the search and b 1s the capacity of each server. Since balance
is explicitly maintained, the structure 1s able to adapt itself to any input distribution and
does not depend on any uniformity assumption to obtain logarithmic performances.

Keywords: distributed data structure, fully dynamic, order preserving, message passing
environment, range queries.

1 Introduction

With the striking advance of communication technology it is now easy and cost-effective to set
up distributed applications running on a network of workstations. The technological framework
we make reference to is the so called network computing: fast communication networks, in the
order of 10-100MB/sec, and many powerful and cheap workstation, in the order of 50-100
MIPS. Many organizations have this kind of computing power: large organizations have easily
a cumulative amount of main memory in the order of tenths of GB.

In this work we consider the dictionary problem in a message passing distributed envi-
ronment. Litwin, Neimat e Schneider [3] were the first to present and to discuss for this
environment a data structure paradigm called SDDS (Secalable Distributed Data Structure).
The main properties of SDDS paradigm are:

*Research partially supported by the Furopean Union TMR project “Chorochronos”.



Version 2.6.1 Last Revision: 15 August 1999 2

1. Keep a good performance level while the number of managed objects changes.
2. Perform operations locally.

The distributed environment we make reference to is constituted by a set of sites (processor
or nodes) connected by a network. Every site in the network is either a server, that manages
data, or a client, that requests access to data. Fach server manages data items belonging to
some parts of the data domain. Sites communicate by sending and receiving point-to-point
messages. We assume network communication is free of errors. Every server can store a
single block (called bucket) of at most b data items, for a fixed number b. The overall data
organization scheme we consider is a search tree: servers manage both nodes containing data
items (leaf nodes) and nodes guiding the search process (internal nodes).

The data distribution and management policy determines how data are distributed among
the servers; there are no preconditions as to where the data can be stored. New servers can
be added as the volume of data increases to maintain the performance level. The clients are
not, in general, up-to-date with the evolution of the structure, in the sense they have some
local indexing structure, but do not know, in general, the overall status of the data structure.
Different clients may therefore have different and incomplete views of the data structure.

The fundamental measure of the efficiency of an operation in this distributed context is the
number of messages exchanged between the computers of the network. In the literature various
kinds of SDDSs have been proposed: LH* [3], RP* [4], DRT [5], lazy k-d-tree [7, 9], RBST [&].

All previous proposals but RBST considered explicitly only the semi-dynamic case, that
is the case where keys are only inserted and never deleted. In this work we focus on the
extensions of binary search trees to the distributed case (like DRT and RBST) and consider a
fully dynamic context, i.e. keys can be both inserted and deleted.

The theoretical study of the characteristics of scalable distributed search trees conducted
by Kroll e Widmayer [10] showed that if all the hypothesis used to efficiently manage search
structures in the single processor case are carried over to a distributed environment then a
lower bound of Q(y/n) holds for the height of balanced search trees.

Nardelli et al. devised in [8] an SSSD, called RBST, where some of these hypothesis, related
to the way the search process is executed, are relaxed, yielding a cost of O(log®n) messages
for search and update operations, where n is the number of servers in the structure.

In this paper, we relax some other hypothesis, related to the kind of synchronization be-
tween servers and clients of the structure, and show that a distributed search trees can be
maintained balanced in a distributed environment so that search and update operations can
be executed with O(logn) messages. Hence we present the first balanced distributed search
structure to be fully dynamic and order-preserving. We also show how to efficiently answer
range queries in O(logn+ [%]) messages, where k is the number of items returned by the search
and b is the capacity of each server. Since the structure is explicitly kept balanced, logarithmic
performances are obtained without relying on uniformity assumptions. A preliminary version
of this paper was presented in [1].

The paper is structured as it follows. In Section 2 we describe the context of our work and
the main idea our data structure is based on. Section 3 describes the search process, while
Section 4 discusses how insertion and deletions are managed to keep the structure balanced.
Sections 5 and 6 give details on algorithms for insertion and deletion, respectively. Their
correctness is proved in section 7, while Section 8 discusses issues related to rotations used



Version 2.6.1 Last Revision: 15 August 1999 3

to keep the structure balanced. Section 9 concludes the paper with final remarks and future

work.

2 Context

More formally, let 7' be a binary search tree with n leaves (and then with n— 1 internal nodes).
We call fi,..., f, the leaves and ty,...,t, 4 the internal nodes. To each leaf a bucket capable
of storing b data items is associated. Let sy,...,s, be the n servers managing the search tree.

We define leaf association the pair (f, s), meaning that the server s manages the leaf f and
its associated bucket, node association the pair (t,s), meaning that the server s manages the
internal node £. ITn an equivalent way we define the two functions:

e i(s;) =t;, where (t;,s;) is a node association,
o f(s;)= fi, where (f;,s;) is a leaf association.

To each node x, either leaf or internal one, the interval I(z) of data domain managed by z is
associated.

In the centralized case a search tree is a binary tree such that every node represents an interval
of the data domain. Moreover, the overall data organization satisfies the invariant that the
interval managed by a child node lies inside the father node’s interval. Hence the search process
visit a child node only if the searched key is inside the father node’s interval.

Kroll and Widmayer call this behavior the straight guiding property [10]. They observed
that it is not possible, in the distributed case, to directly make use of rotations for balancing
a distributed search tree while guaranteeing the straight guiding property. They proved that
a lower bound of O(y/n) holds for the height of balanced search trees if the straight guiding
property has to be satisfied.

In [8] Nardelli et al. devised a distributed search tree, called RBST (for Relaxed Balanced
Search Tree) where, by accepting a violation of the straight guiding property, the height of
the tree is kept logarithmic and all update operations have a logarithmic cost, but the upper
bound on the complexity of the search process is O(log2 n) .

In the following we relax the requirement of the straight guiding property, but by assuming a
different synchronization mechanism between clients’ local indexes and servers we show how
to keep a distributed binary search tree balanced while all operations are maintained within a
logarithmic upper bound.

2.1 Basic idea

In all previous works on SDDS, whenever a client index is introduced to improve performances,
it is always built and managed to exactly reflect the global tree structure. This means that
both clients and servers keep track of both node associations and leaf associations. Moreover it
is assumed that the knowledge the client has of the global tree structure is partial and almost
exact, in the sense it may possibly be incomplete and at a coarser level of detail than it is in
the reality. A correction to a client index consists only in adding more detailed information.
If one wants to keep the overall structure balanced then rotations in the overall tree have
to be used. But after a rotation in the overall tree has been performed, client indexes do not



Version 2.6.1 Last Revision: 15 August 1999 4

represent any more, in general, a portion of the global tree in an exact way. The approach of
sending messages from servers to all clients whenever a rotation is performed is clearly not an
efficient solution.

Our basic idea to obtain logarithmic costs is to relax the synchronization between clients and
server indexes. By accepting a structural mismatch between the overall index and the local
indexes we can then use rotations to maintain the overall tree balanced. The straight guiding
property is still violated but we are now able to keep a logarithmic upper bound on both
search and update operations. We recently discovered that a similar approach was followed by
Kroll [11].

To be more precise, we manage in different ways the two associations in the two types of
indexes. Servers store in their index both node and leaf associations, while clients record only
leaf associations. A rotation in the overall tree structure only affects node associations, since
we never rotate leaves.

The global tree is therefore kept balanced and the search process is bounded by logarithmic
costs. On the other side, client indexes will never have to be modified due to rotations, since
they do not keep track of node associations.

2.2 The data structure

The distributed data structure we focus on is a binary search tree, where data are stored in
the leaves and internal nodes contains only routing information. Every node has zero or two
children. For a binary search tree T" we denote with A(T') the height of T, that is the number
of internal nodes on a longest path from the root to a leaf. Every server s but one, with leaf
node association (f,s) and leaf association (f,s), records at least the following information:

e An internal node £ = #(s) and the associated interval of key’s domain I(#),
e The server p(s) managing the parent node pn(t) of ¢, if £ is not the root node,

e The server [(s) (resp., r(s)) managing the left child [s(t) (resp., right child rs(t)) of t,
and the associated interval I;(t) (resp., I,.(t)),

e Aleaf f = f(s) and the associated interval of key’s domain T(f),

e The server pf(s) managing the father node pn(f) of f, if f is not the unique node of
global tree (initial situation).

This information constitutes the local tree [t(s) of server s (see figure 1). Since in a global tree
of n nodes there are n— 1 internal nodes, there is one server s’ managing only a leaf association,
hence It(s") is made up by only the two last pieces of information in the above list.

We say a server s is pertinent for a key k, if s manages the bucket to which & belongs. In
our case if k € I(f(s)). Moreover we say a server s is logically pertinent for a key k, if k is
in the key interval of the internal node associated to s, that is if & € I(#(s)). Note that the
server managing the root is logically pertinent for each key. Note also that, due to the effect
of rotations, it is not necessarily T(f(s)) C I(t(s)).

When a server sends a message, it always adds its local tree to it. This is useful to increase
the knowledge about the global structure in the client receiving the message. As soon as a
client receives an answer from a server, it uses the received local tree to update its local index,



Version 2.6.1 Last Revision: 15 August 1999 b

~ Pn(f)=t(pf(s))

Is(t)=t(I(s)) rs(t)=t(r(s))

Figure 1: The local tree of server s.

where only leaf associations are stored. A client uses its local index to better address its
queries.

2.3 The client index

Every client manages an index to reduce addressing errors. This is a collection, in general
incomplete, of leaf associations. Since our complexity measure is the number of messages on
the network, then it is not important which is the structure used to store the associations. Tt
can be a list or a search tree. If it is a search tree, its structure is, in general, different from
the structure of the global tree.

A client uses its index to find the server s which should answer to a query so to issue a
point-to-point message to s. If this server is not found, then the client must send the query to
the server managing the root of the global tree. This is true, in particular, for a new client,
whose index is empty.

When a client issues a query, it receives in the answer message a certain number of servers’s
local trees (owned by the servers involved in the search process). It uses these local trees to
improve the knowledge about the overall structure recorded in its index. If the client has a
leaf association (f,s) stored in its index, it knows that server s manages interval T(f(s)). In
the reality it may be that either s has been released due to an underflow or s is managing a
sub-interval of T(f(s)). Local trees received as part of the answer to search queries are used
to update this information.

Note that it may happen that a client can send a request to a server that has been released.
In this case the client has to use some timeout mechanism. When the timeout period expires
it sends the request to the server managing the root like if it were a new client.

3 The search process

We now describe how to search in our structure, called BDST for Balanced and Distributed
Search Tree. We examine which events can occur and algorithms to treat them.



Version 2.6.1 Last Revision: 15 August 1999 6

Event 1. A query from a new client. A new client is a client that never issued a query
to the structure and then has no knowledge about it. Such a client, say ¢, always send the
request of a key k to the server r managing the root of global tree. If r is the pertinent server
for k, then r manages the request and answers to ¢, else it chooses between the servers [(r) and
r(r) managing its left and right sons the pertinent or logically pertinent one for k& and sends
it the request. Note that one of the two has to be at least logically pertinent. The process
continues until the request arrives to the pertinent server s’ for k. s’ manages the request and
answers to ¢, see figure 2 (left).

t(r) /

Client

Figure 2: Searching queries from a new client (left), from a client with addressing error sending

Client Client

its request to: a logically pertinent server (center) and a non logically pertinent server (right).

Event 2. A query from a client without addressing error. A client ¢ sends the request
for a key k to a server s which is the pertinent server for k. s manages the request and answers
to c.

Event 3. A query from a client with addressing error. A client ¢ sends the request
for a key k to a server s, but s is not the pertinent server for k.

If s is logically pertinent (see figure 2 center) for k then s chooses between the servers [(s)
and r(s) managing left and right sons the pertinent or logically pertinent one for k and sends
it the request. Note that one of the two has to be at least logically pertinent. The process
continues until the request arrives to the pertinent server s’ for k. s’ manages the request and
answers to c.

If s is not logically pertinent (see figure 2 right) for k then s sends the request to p(s), i.e.
the server managing the father of 7(s). From p(s) the search may proceed further upwards.
There is certainly a node t” in the path between #(s) and the root such that its managing
server 5" is pertinent or logically pertinent for k. If s” is pertinent then it behaves like s'. If
5" is only logically pertinent then it chooses between the servers managing left and right sons
and continues as in previous case, see figure 2 (right).

Theorem 3.1 Let T be a BDST and let h = h(T). Searching for a given key requires in the
worst case O(h) messages.

Proof. If event 1 happens, a chain of messages departs from the root and arrives to a leaf.
In the worst case, the chain is composed by h messages. Counting also request and answer
messages, h + 2 messages are needed.



Version 2.6.1 Last Revision: 15 August 1999 7

If event 2 happens, only O(1) messages are needed (namely, the request and answer mes-
sage).

If event 3 happens, then we distinguish two cases. In the first case, s is logically pertinent,
and h + 2 messages are needed. In the second one, s is not logically pertinent, hence we must
go up in the global tree to found the logically pertinent server. In the worst case we depart
from a leaf at height h and arrive to the root, then we go down again to another leaf of height
h (see figure 3). In total we need 2h + 2 messages. O

Client

Figure 3: The worst case for searching.

Now, if we keep the global tree balanced during updates by using rotations, the height h always
remains bounded by O(logn), hence also the cost of search process is bounded by O(logn).

3.1 Range queries

Now we describe how to perform a range query (see figure 4).

A client searches in its index for a server with a leaf interval internal to the range of the
query and sends it the request. This server sends the request from f upwards until the lowest
node ' that covers the query range is found. Tn the case of a new client (i.e., no information
is stored in the client index) or in the case of an address error (i.e., when the request from the
client is addressed to a server with an interval outside the range of the query), to reach t’ we
operate like in the case of exact search.

Then ' sends the request downward in the tree towards each of the [%] servers within the
range. All these servers answer to the client.

To reach t we follow an upward path from a leaf to #’. The length of this path is O(logn).
Then to reach the leaves from ' we use one message for each edge of the sub-tree with k leaves
rooted at /| therefore a range query has a cost of O(logn + [%]) messages in the worst case.

4 Insertion and deletion

We now describe how to perform insertion and deletion in a BDST. Please note that in a
distributed environment insertion and deletion refers, respectively, to the creation of a new
server that receives part of the keys previously managed by an existing server that is now in
overflow and to the release of an existing server that is now in underflow and sends all its
keys to an existing server. Insertion and deletion of data items that do not cause, respectively,



Version 2.6.1 Last Revision: 15 August 1999 &

O(log n)

Figure 4: The range query.

overflow and underflow, do not require any rebalancing action, and their complexity analysis
is the same of searching data items. When overflows and underflows occur, we must perform
some actions to keep the structure balanced and a binary search tree (i.e. each node has either
zero or two children).

The balance actions must affect only internal nodes and never change the leaves, since
rotating the leaves would force to transfer the whole bucket content to another server and
this is not efficient. This means that during balancing only node associations change while leaf
associations remains the same. Therefore a leaf can change its father, but can never become an
internal node. It is possible to use any balancing technique which satisfies these assumptions
and keeps the costs logarithmic.

In the description of algorithms for insertion and deletion we assume that a server is able to
execute a function, called balance_bdst, which performs the action that may be needed to keep
the BDST balanced after an update. We assume balance_bdst uses at most O(logn) messages,
where n is the number of servers managing the BDST, and that before the execution of the
algorithms described below the BDST is already balanced, i.e. &, the height of BDST, is
bounded by O(logn).

As a preliminary remark please note that an important problem in this distributed, fully
dynamic context is the following hysteresis situation.

One server receives an insert operation, goes in overflow and splits itself in two to return
within the size bound. Just after the split, it receives a delete operation. Now its bucket goes
under % keys and then it has to manage the underflow, and eventually performs a merge. This
sequence of split and merge can be possibly repeated any number of times, with a corresponding
degrade of the structure’s performances.

This is a well known problem in the theory of file structures. One way to tackle it is to
avoid to split an overflowing server or to release an underflowing server by exchanging keys
between adjacent leaves.

Another way is to assign to the underflow a lower threshold than the one for the overflow,
e.g. at % instead that at %

In general, we may to deal with this problem by applying any strategy known from the file

structure theory.

The approach based on checking for a possible transfer of keys is carried out by the function
transfer_keys. This is composed by the following sub-steps (see figure 5):



Version 2.6.1 Last Revision: 15 August 1999 9

{(© Q t(©) Q {(© Q
w . w . w

o 4 o % 0

D(\ f=f(s) D D f=f(s) D D(\ f=f(s) D

f=i(s) f'=f(s') f=f(s )‘/:sz(s') f=i(s) f'=f(s')

Figure 5: Transfer keys among adjacent leaves

1. Looking for the adjacent leaves (figure 5, left). The server s starts a chain of search
messages toward the adjacent leaves f' = f(s') and f” = f(s") of f(s).

2. Decide the policy (figure 5, center). On the basis of information received by s’ and s”,
s decides if it is possible to exchange keys among them without splitting/ releasing the
server s. If it is possible, there will be a transfer of keys between s’ and s and/or between
s and 5. How many keys to transfer and whether to involve in the transfer both s’ and
5" or not are further issues to be considered for performance optimization purposes.

3. Interval change and key transfer (figure 5, right). If keys have been transferred,
then from f’ and f” a chain of change messages starts and follows the same path of
search messages and return to f. Each node reached by these messages, changes its key
interval.

5 Algorithm for insertion

Step 1: Insert — We search for the leaf where the new key has to be inserted and insert it.
We assume that this insert generates an overflow, that is the key to be inserted is the (b+1)-th
key assigned to that bucket.

Step 2: Manage the overflow — leaf f, managed by server s, goes in overflow. In this case
we have to decide whether s has to be split or if it is possible to transfer its keys to adjacent
nodes. Details about this aspect have been discussed in the previous section. Assume then the
decision was to split the node. Then s must perform a function called split. This function is
similar to the synonymous one described in [3, 5]. Teaf f splits in two new leaves f; and fo. A
new internal node 1,11 replaces f in the tree. A new server s, is called to manage the new
internal node and one of the new leaf. Server s releases the old leaf f and manages the other
new leaf.

In conclusion we delete leaf association (f,s) and add two leaf associations (f,s) and
(f2, Snt1) and one node association (f,41, S,41) (see figure 6). The old interval T(f) is divided
in the new intervals I(fi) and I(fy), such that T(fi) U T(f2) = I(f).



Version 2.6.1 Last Revision: 15 August 1999 10

the1=t(Se1)

f1=f(9) f2 =f(Sw1)

Figure 6: Insertion of an element in an overflowing bucket

Step 3: Balance the BDST — Perform the balance_bdst function starting from #,,14.

Theorem 5.1 Insertion in a BDST made up by n servers costs in the worst case O(logn)
Messages.

Proof. From the algorithm above we have in the worst-case the following costs for the
various steps:
Step 1: From theorem 3.1 this costs O(logn) messages.
Step 2: A constant number of messages is needed to perform the split function (see [3, 5]).
Step 3: From the assumptions above we have a cost of O(logn) messages. O

6 Algorithm for deletion

Step 1: Delete — We search for the leaf where the key has to be deleted and delete it. We
assume that this generates an underflow, that is by deleting that key the bucket has less than
b

2 keys.

2 .

Step 2: Manage the underflow — The leaf f, managed by server s, goes in underflow.
In this case we have to decide whether s has to be released or if it is possible to transfer keys
from the adjacent leaves, without releasing s. Details on this aspect have been discussed in
section 4. Assume then the decision was to release s. Then s performs a function called merge.
This is its behaviour:

If f is the root, the BDST is composed by one node and then no action are performed.

If the BDST is composed by the root r and two leaves f and z, there are only two servers
s and . Then s is released and after the communication to s’ and the deletion of r, z become
the root of BDST. All the keys of f are sent to z.

In the general case f is the leaf in figure 7. The case with f as left son is analogous. We
assume b is the server such that #(b) is the father node of f(s) and ¢ is the server such that
t(c) is the father node of £(b). #(a) can be a leaf or an internal node. In this case the function
is constituted by the following sub-steps (see also figure 7):

1. Release server s and delete leaf f = f(s).



Version 2.6.1 Last Revision: 15 August 1999 11

O t© O

t=t(s) t=t(b)
t(b)
t(a)
t(a) f=f(s)
I(t@) 1(f) I(t@) U I(f)

Figure 7: Deletion of an element from an underflowing bucket

2. Since node t(h) has now one son, then delete #(b) and replace it with #(a) as the son of
t(e).

3. If s managed an internal node t = #(s), then from now on ¢ is managed by server b (note
that b has just released its internal node £(b)).

Step 3: Balance the BDST — Perform the balance_bdst function starting from #(¢).

Theorem 6.1 Deletion in a BDST made up by n server costs in the worst case O(logn)
Messages.

Proof. From the algorithm above we have the following worst case costs for the various steps:
Step 1: From theorem 3.1 this costs O(logn) messages.

Step 2: From lemma 7.2 this costs O(logn) messages.

Step 3: From the assumptions above we have a cost of O(logn) messages. O

7 Proofs of correctness

In the next lemma we prove that every message needed to perform the merge and transfer_keys
functions can actually be sent, i.e. every server searching in the local tree eventually finds the

servers destination of messages.

Lemma 7.1 The merge and transfer_keys functions are correct with respect to the local tree
of the servers involved.

Proof. For the merge: In step 2 server s has to notify to b that it has to release its internal
node £(b). This can be done since b is the father of f = f(s) and then is in the local tree of s.
Server b has to notify to servers @ and ¢ the change of, respectively, the father of #(a) and the
son of £(¢). This can be done since we can find a and ¢ in the local tree of b. In step 3, if s
managed an internal node 7, then s has to notify to b the new internal node ¢ to manage (this
can also be performed in previous messages from s to b) and which are the father and the sons



Version 2.6.1 Last Revision: 15 August 1999 12

of t. Then this change has to be notified to the servers managing the father and the sons of .
All the required information is in the local tree of s.

For the transfer_keys: Fach server sends a search message or a change messages to its
parent or to its child, therefore it finds the destination of message in its local tree. The search
messages transport the address of s, therefore s’ and s” can exchange messages with s. O

Lemma 7.2 The merge function costs O(1) messages in the worst case. The transfer_keys
function costs O(logn) messages in the worst case.

Proof. For the merge: From lemma 7.1 we can see that step 2 needs one message from s
to b, one from b to a, and one from b to c.

If s was not managing an internal node ¢ then step 3 needs zero messages, else it needs one
message from s to b, one from s to the server managing the father of ¢ (zero if n is the root),
and two from s to the servers managing the sons of £. This makes a total of 6 messages.

If b coincides with s then only two messages are needed. In the two special cases we have,
respectively, zero and one messages.

For the transfer_keys: We follow at most four times a path in the tree from #(¢) to a leaf.
The length I of this path is O(logn) in the worst case. Counting the remaining messages, we
have 41, + 9 messages. O

The servers involved in the merge function have to be locked, like in the split function case.
In the next lemma we show that on the contrary the transfer_keys does not need to lock the
servers.

Lemma 7.3 The transfer_keys may be correctly executed without locking the involved servers.

Proof. We want to prove that during every steps of the transfer_keys, each request of keys
in I(f) will be satisfied. We give a proof for the case where we transfer the keys from s to ¢.
The proof for the other case is analoguous.

We denote with R the requests of keys belonging to I(f) (see figure 8).

1. As long as f(s') has not received the keys and changed its interval, each request follows
the path to f(s) where the keys reside.

2. After f(s') has received the keys, requests arriving to & for keys in I(f) do not go
upwards like in the previous case, but are directly satisfied by s’. Requests arriving to s
are forwarded to 5.

3. For each internal node sx belonging to the path beetween #(a) and f(s'), after sx has
been reached by the change messages and has changed its interval, the requests arriving
to it for keys in T(f) do not go upwards like before, but are sent downward to f(s').
These requests will be satisfied because s’ now has the keys. The ancestors of s*, that
have not yet been reached by the change messages, send the requests upwards to f(s).
These messages will be satisfied too, because when will arrive to s, s will forward them
to 5.

4. When the change messages arrive to s, eventually s begins the merge function, locking
the involved servers.

a



Version 2.6.1 Last Revision: 15 August 1999 13

k_Q R
Ql:lf’:f(s’)

Figure 8: The chain of change messages

8 Rotations in a distributed environment

Rotations in a distributed environment are performed via message exchanges between servers.
Since we are in a concurrency framework, in the sense that various clients independently
manipulate the structure, each rotation must be preceeded by a lock of the servers involved.
Then some messages are needed to create the lock, others to communicate the modifications
and others to release the lock. Fach rotation has therefore a cost in terms of messages. We
can show that the cost of one rotation is a constant and then if a balancing strategy uses a
logarithmic number of rotations for operation, then the overall cost is kept logarithmic.

We show by means of an example how to execute rotations in a distributed environment.
Without loss of generality, let us consider figure 9 (first), and suppose that node a must rotate
with node b. The flow of events is the following:

1. a sends messages to (client) nodes A, B and to (server) node b, to notify that a lock
must be created. After having received these messages, nodes A, B, and b stop routing
messages towards a and send a lock acknowledgement to a.

2. b sends messages to (client) node (' and to (server) node ¢, to notify that a lock must be
created and that acknowledgement must be sent to a. After this message, nodes €' and
¢ stop routing messages towards b.

3. Every server answers to a, see figure 9 (second), to acknowledge the lock state.

4. a notifies to all servers involved in the rotation which modifications are needed and after
all servers have been confirmed a releases all locks, see figure 9 (third).

5. When locks are released the situation is shown in figure 9 (last) and all servers restart
to route messages.

It is easy to prove that the example is correct with respect to the local tree of a server. We
used 15 messages and 5 servers are involved. We note that in each rotation exists a server
that does not need to be informed of the rotation, and then is not involved in the lock. Tn the
discussed example this server is (. We can therefore improve the procedure and use only 12
messages (with 4 servers involved).



Version 2.6.1 Last Revision: 15 August 1999 14

Figure 9: Locking messages during a rotation

Each lock, in a certain sense, reduces the degree of concurrency and this is a drawback in a
distributed environment. It is then important to keep the number of locks small.

Although any balancing strategy with a logarithmic number of messages is good for the
general objective, we must focus on those minimizing the number of rotations and then the
number of locks. For example the splay tree [12] uses a large number of rotations.

It is more convenient to use a data structure like a red-black-tree [13], which has a constant
number of rotations both for deletion and insertion operations.

Much work has been done about reducing the number of rotations while balancing a concurrent
search tree [2, 6], but this regards the concurrent, shared-memory case.

There is a big difference between this kind of work and the distributed tree studied here.
In [2, 6] every update operation can unbalance the structure, while in our case a great number
of update operations do not cause an unbalance to the structure.

This is due to the fact that data are managed in buckets of size b. If a server s start
with an empty bucket, b insert operations addressed to s do not cause an overflow and do not
change the distributed tree’s structure. More in general if we have k insert operations in a
structure where each server manages % keys (i.e. every server has just performed a split), then
the number of overflows (and then of splits) is bounded by [%] (the bound holds when all
k inserts are in the same server). Then if b is large, we have a low number of overflows. An

analogous situation holds for underflows.

9 Conclusions

We have presented an approach to keep a distributed binary search tree balanced, enabling it to
manage both insertion and deletion of data itemsin a message-passing distributed environment.

Hence we have shown that a fully-dynamic and order preserving distributed search struc-
ture, that is a structure that is able to grow and shrink as long as data items are inserted
and deleted, can be implemented in a message-passing distributed environment as efficiently,
namely with a O(logn) worst case bound, as in the single processor case. We have also shown
how to answer range queries with O(logn + [%]), where k is the number of returned elements
and b is the bucket size.

Our data structure keeps the same good level of performance for every distribution of the
keys in the domain of values. There are other order-preserving distributed structure with good
performances, but often only under the hypothesis of a uniform distribution of the keys. Future



Version 2.6.1 Last Revision: 15 August 1999 15

work will focus on a thorough experimental analysis of our data structure behavior, also in

comparison with its competitors.

References

[1]

[2]
[3]

[4]

[5]

[6]

A .Di Pasquale, E. Nardelli: Balanced and Distributed Search Trees, 1st Southern Sympo-
stum on Computing, Hattiesburg, Ma., December 1998.

J. Eckerle, O. Nurmi: Technical Report Augl7-7, Technical University of Munich, 1994.

W. Litwin, M.A. Neimat, D.A. Schneider: T.H* - Linear hashing for distributed files, ACM
SIGMOD Int. Conf. on Management of Data, Washington, D. C., 1993.

W. Litwin, M.A. Neimat, D.A. Schneider: RP* - A family of order-preserving scalable
distributed data structure, in 20th Conf. on Very Large Data Bases, Santiago, Chile, 1994.

B. Kroll, P. Widmayer: Distributing a search tree among a growing number of processor,
in ACM SIGMOD Int. Conf. on Management of Data, pp 265-276 Minneapolis, MN, 1994.

K. Larsen, E. Soisalon-Soininen, P. Widmayer: Relaxed balance through standard rota-
tions, in Workshop on Algorithms and Data Structures, Halifax, Nova Scotia, Canada,
August 1997.

E. Nardelli: Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer Science
Society (SCCC’96), Valdivia, Chile, November 1996.

F. Barillari, E. Nardelli, M. Pepe: Fully Dinamic Distribuited Search Trees Can Be Bal-
anced in O(log? N) Time, Technical Report 146, Dipartimento di Matematica Pura ed
Applicata, Universita’ di [.”Aquila, July 1997, submitted for publication.

E. Nardelli, F.Barillari, M. Pepe: Distributed Searching of Multi-Dimensional Data: a
Performance Evaluation Study, Journal of Parallel and Distributed Computation, 49,
1998.

B. Kroll, P. Widmayer: Balanced distributed search trees do not exists, in 4th Int.
Workshop on Algorithms and Data Structures (WADS’95), Kingston, Canada, (S. Akl
et al.; Eds.), Lecture Notes in Computer Science, Vol. 955, pp. 50-61, Springer-Verlag,
Berlin/New York, August 1995.

B.Kroll: Dynamisch verteilte Woerterbuecher. PhD) thesis, ETH Ziirich, Institute of The-
oretical Computer Science, February 1997.

D.D. Sleator, R.E. Tarjan: Self-Adjusting Binary Search Trees, Journal of the ACM
32(3):652-686, 1985.

T.H. Cormen, C.E. Leiserson, R.l.. Rivest: "Introduction to Algorithms”, McGraw-Hill,
New York, 1990.



