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Abstract

The RP is an order preserving Scalable Distributed Data Structure
(SDDS) ables to manage exact searches and insertions with a cost of O(log ¢ /2| n)
messages in the worst case, where n is the final number of servers and f is a
large value. Unfortunately, the RPg presents the same logarithmic costs for
both the operations in the amortized case.

On the contrary, in the DRT*, another order preserving SDDS, exact
searches and insertions have linear cost in the worst case, but in the amor-
tized case they have a cost of O(a(m, n)) messages, where mit the number
of intermixed exact-searches and insertions, and a(m,n) is the classic in-
verse of the Ackermann function.

In this paper, we propose an extension of the RP, named RPZ", cou-
pling the B*-tree based technique of the RP% with a variant of the DRT*
correction technique. The result is that an exact-search or insertion in the
RPZ  has a worst-case cost of O(log| /2 n) messages, and an amortized
cost of O(a(m,n)) messages.

1 Introduction

The Scalable Distributed Data Structures (SDDS) paradigm [9] is used to define
access methods specifically designed to satisfy the high performance require-
ments of a Multi-computers environment made up by a large number of comput-
ers connected through a high speed network.

*This work has been partialy supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research, and by the Research Project REAL-WINE, partialy
funded by the Itdian Ministry of Education, University and Research.
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An access method based on the SDDS paradigm has to be dynamic: it has to
expand to new servers, but only when already used servers are efficiently loaded.
Moreover, it has to be scalable: it has to keep the same level of performances
while the number of managed objects increases.

The main measure of performance for a given operation in the SDDS paradigm
is the number of point-to-point messages exchanged by the sites of the network
to perform the operation.

Hashing based SDDSs (e.g., LH* [9]), while allow to achieve worst-case
constant cost for exact searches and insertions, namely 4 messages, they do
not support efficiently operations like range search, nearest neighbor search, the
search of the minimum or the maximum and so on. For such operations they
have a worst case cost of O(n) messages, where n is the number of servers in the
structure.

This motivates the study of order preserving structures [1, 2, 3, 4, 5, 8, 10].
One of the prominent order preserving SDDSs is the Range-Partitioning* (RP3)
[10]. It uses a BT -tree based technique to organize data. More precisely, in the
RP%, there are two kind of servers: (i) the data servers, where data are stored,
corresponding to the leaves of the virtual B -tree created by the RP% technique,
and (ii) the index servers, where routing information are stored, corresponding
to the internal nodes of the virtual B*-tree. An exact search and an insertion in
the RPg has a cost of O(log| 1/, n) messages in the worst case, where n is the
number of data servers and f is the fan-out of the index servers. However, the
drawback of the RP; is its behaviour in the amortized case. Indeed, a sequence
o of m requests of intermixed exact-searches and insertions over a RPj starting

with one empty server and ending with n servers has a cost of O (m . Iongj n)
messages.

On the contrary, in the Distributed Random Tree* (DRT¥*) [5], an efficient
variant of the DRT presented in [8], the cost of g is O(m-a(m,n)) [6], where
a(m,n) is the classic inverse of the Ackermann function, while in the worst case
the cost for exact-searches and insertions is linear. Moreover, another drawback
of such a structure is that it requires heavy lock mechanisms after a split. In fact,
a logarithmic number of servers has to be locked in the worst case.

In this paper we propose an extension of RPZ, named RPZ. The extension is
based on the B -tree based RP technique coupled with a variant of the DRT*
correction technique. Using an RPZ, a sequence of m requests of intermixed
exact-searches and insertions starting with one empty server and ending with n
servers has a cost of C(m,n) = O(m-a(m,n)) messages, and at the same time

any operation has a cost of O (IogLf/ZJ n) messages in the worst case. Due to

the well known slow growth of the function a(m,n), we can assume to have
C(m,n) ~ O(m) in realistic scenarios of SDDS made up by thousands or even
millions of servers. Moreover, the lock mechanisms after a split are basically
the ones defined for the RP%, where, at each moment, always a constant (low)
number of servers has to be locked. Hence, this structure presents a very good
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amortized behaviour and it is well suited for high concurrency systems.

The paper is organized as follows: In Section 2 we review basic concepts of
distributed search trees, in Section 3 we present the technique and the complexity
analysis. Finally, Section 4 concludes the paper.

2 TheCorrection Technique of the DRT*

In this section we review the main concepts relative to distributed search trees
and to the correction technique of local trees of servers used in DRT*.

2.1 Bucket Management

The protocol of a server managing a bucket is common to all the proposals on dis-
tributed search trees. Each server manages a unique bucket of keys. The bucket
has a fixed capacity b. We define a server “to be in overflow” when it manages b
keys and one more key is assigned to it. When a server s is in overflow, it starts
the split operation. It requests the address of a new fresh server spey to a special
site called split coordinator. Whenever s receives the address of Spew, it sends to
Snew half of its keys.

After a split, s manages g keys and Spey mManages g+ 1 keys. It is easy to
prove the following property:

Lemmal Let o be a sequence of m intermixed insertions and exact searches.
Then we can have at most | 27| splits.

2.2 ThelLoca Tree

Clients have a local indexing structure, called local tree. The local tree LT (c) of
a client ¢ is needed to avoid clients to make address errors. Whenever a client
performs a request which results in an address error, (i.e., it sends the request to
a wrong server), it receives, together with the answer, information to correct its
local tree. This prevents a client to commit the same address error twice.

From a logical point of view, the local tree is an incomplete collection of as-
sociations {server, interval of keys) managed internally with any data structure:
list, tree, etc. For example, an association (s, 1(s)) identifies a server s and the
managed interval of keys I(s). The local tree of a client can be wrong, in the
sense that in the reality server s is managing an interval smaller than what the
client currently knows, due to a split performed by s and yet unknown to the
client.

Now, we sketch the DRT* correction technique. A client ¢ that wants to per-
form a request chooses in its local tree the server s that should manage the request
and sends it a request message. If s is pertinent for the request, then this is sat-
isfied. If s is not pertinent, we have an address error. In this case s looks for the
pertinent server s’ in its local tree and forwards to it the request.
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Since s’ can be not pertinent as well, it might forward the request to still
another server. In general, we can have a series of address errors that causes a
chain of messages between the servers s1,52,..,5¢. Finally, server sy is pertinent
and can satisfy the request. Moreover, sy receives the local trees of the servers
$1,52,.-,.5k—1 Which have been traversed by the request. It first builds up a correc-
tion tree C aggregating the local trees received and its own one, and then sends
an Index Correction Message (ICM) containing C to the client and to all servers
$1,52,..,5k—1, SO to allow them to correct their local trees.

2.3 TheSplit Tree

Here, we sketch the analytical tool used in DRT* to analyze the amortized cost
of exact searches and insertions. A variant of this tool will be used to analyze the
RPZ.

Let T be a DRT*. From the above description of the local trees and how they
change due to the distribution of information about the overall structure through
ICM messages, it is clear that the number of messages needed to answer a request
changes with the increase of the number of requests. To analyze how changes in
the content and structure of local trees affect the cost of answering to requests,
we associate with each server s of T a rooted tree ST (s), called the split tree of s
(Figure 1.a shows a split tree). The nodes of ST (s) are the servers pertinent for a
request arriving to s. The tree has an arbitrary structure except that the root is s.
An arc (s1,52) in ST (s) means that s is in the local tree of s;. Whenasplitin T
occurs, the structure of split trees changes (for example, in Figure 1.b, the split
of server e adds the node s’ and the arc (e,s’) in ST (s)).

In the same way, if we consider the correction of local trees, the structure
of the split tree of s changes. In fact, due to the correction, after a request to
a server d, s adds all the servers in the path between s and d in its local tree.
The consequence is that now s can address directly these servers in the future.
In order to describe this new situation in the split tree of s, we delete the arcs of
the traversed path and add to s the arcs between s and the traversed servers. The
result is a compression of the path between s and d (see Figure 1.c).

We use the split trees to take into account in the amortized analysis the use
of ICM messages to reduce the cost of satisfying the request.

3 TheRP¢{ Technique
3.1 TheData Structure

Let T be an RP§ made up by n data servers. Let Z be the set of index servers with
data servers as children (see Figure 2.a), and let n’ = |Z|. Clearly, n > | f /2] -n’,
where f is the fan-out of index servers.

Following the RP technique, each data server d stores a pointer to its parent
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Figure 1: The split tree ST (s) (). Server e splits, with s’ as new server (b). The
effect of a compression after a request pertinent for d and arrived to s (c).

index server, say pp = pp(d). Each index server s stores a pointer to its parent
index server, say pp = pp(s), and | f/2| < ng < f child pointers cpy,...,CPn,
(cpi =cpi(s), foreach 1 <i < ng). The set of child pointers of s is indicated with
CP(s). If s € Z then cpj is a data server for each 1 < i < ng, otherwise it is an
index server. With each child pointer cp;, the associated Interval of data domain
I(cpi) isalso stored. If s is the root index server, then pp(s) is a null pointer. With
each data server d, the interval I(d) of the managed data domain is associated.
For each index server s, the interval I(s) is defined as the union of the intervals
I(sp),Vcp € CP(s).

The RPZ needs the following further structures. Each index server s stores a
local tree LT (s) as described in section 2.2.

3.2 Evolution of theFile

The evolution of the file through splits of buckets follows the basic RP tech-
nique. As in the RPg, we do not consider deletions. We recall that the technique
creates a virtual BT -tree, where data servers are the leaves and index servers are
internal nodes (for further details, see [10]). In particular, index servers in X are
internal nodes directly connected to the leaves (see Figure 2.a).

When a data (index) server s splits, a new data (index) server t is created.
With respect to the virtual B*-tree, t is a sibling of s. This split will be notified
to pp(s). The latter adds t to CP(pp(s)). Possibly, pp(s) may also split.

If s was a data server, the new data server t receives half of the keys stored
at s, while if s was an index server, the new index server t receives half of the
pointers in CP(s), and sets LT (s) equal to the set of child pointers and associated
intervals, i.e. {cp,I(cp)) € LT (t),Vcp € CP(t).

When t adds a new child pointer to CP(t), due to a split in the system, the
related information is added to LT (t). After that, if the set of child pointers has
to be split with another index server, LT (t) remains unchanged.

Notice that, due to the split of index servers technique, the following lemma
holds:
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Figure 2: The virtual B*-tree built up by the RP% technique (a). An initial con-
figuration of split tree ST(s) (b). In the example of figure, the fan-out of index
serversis f =4.

Lemma 2 Let s be an index server and s € Z. After a split of s, it will still be
SEZ

The initial configuration of the RPZ is made up by an index server r and a
data server do. Clearly, r = pp(dop), do = cp1(r) and LT (r) = {(do,[—00,]) }

Each client c manages a local tree LT (c) in the standard fashion. A new client
csets LT (c) = {(do,[—,])}.

3.3 The Search Process

A client ¢ issues a request for a key k sending a request R-message m;. As usual,
the request may arrive to a wrong data server d. The server d simply forwards
the request to s = pp(d), sending a copy of m,.

When a server s € X receives a forward from a client, it has to reach the
correct server s’ € 2, which has the pertinent server d for the request as a child
pointer. If s = s/, s’ simply send the request to d. Suppose s # s'. The idea is to
apply a correction technique similar to the one of DRT* to the tree made up by
internal nodes of virtual B*-tree. Hence, what s tries to do is to use LT (s) to find
s’. Server s sends a local tree LT -message to the index server s” corresponding
to the correct server from the LT (s) point of view. If s” = ¢', then s” sends the
request to d.

But, as usual, LT (s) can be not up-to-date. Therefore, if s” # ¢, then s”, dif-
ferently from s, does not use LT (s”) to find the correct server. Instead, it decides
to follow the structure of the virtual B -tree to find s’. Hence, it sends a forward
F-message either to the parent index server or to a child index server, according
to the intervals of data domain of pp(s’) and to the servers in CP(s’). Eventually,
after a chain of F-messages, s’ is reached and the request is sent to d. After that,
s’ sends a correction ICM-message to all index servers involved in the search
process and to the client. Each ICM-messages contains a collection of servers
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involved in the search process and the corresponding set of child pointers. Each
index server receiving a ICM-message, aggregates the contained information in
its local tree in a DRT™* fashion.

Here, we provide a formal description of all possible cases of the search
process. The search process always starts with a m; R-message from a client c.
The message m; contains a key k to be searched or to be inserted.

Let us consider the search process cases from a data server s point of view. A
data server s can only receive a request m,. If it is pertinent for the request (i.e.,
the key k of m, is such that k € I(s)), s executes the request and answer to the
client c. Otherwise, it sends a copy of m, to the index server s’ = pp(s). Notice
thats' € X.

Let us consider the search process cases from a client point of view.

1. A client c may decide to perform an exact search or an insert for a key k.
The client looks for the pertinent server in LT (c). Let s be the resulting
index or data server, i.e., in {(s,1(s)) € LT(c) and k € I(s). The client s
creates a R-message m; including k in it. Finally, c sends m, to s.

2. Aclient c can receive a ICM-message mc as an answer to a m; previously
sent by c itself. The message m¢ contains the aggregated tree T, made up
by a set of CP(s), where s is an index server involved in the search process.
The client ¢ extracts T, from mc and uses it to update LT (c).

Let us now consider the search process cases from a server point of view.

1. The server s € X receives a R-message m,. The sender can be either a
client or a data server. If m; is pertinent for a d € CP(s), s sends the m, to
d; otherwise, s looks for the correct server in LT (s). Let s’ be the resulting
index server. The server s creates a LT-message with m; included and
sendsittos'.

2. The server s ¢ X receives a R-message m,. The sender has to be a client.
The server s looks for the correct server in LT (s) and sends a LT -message
as in the previous case.

3. The server s € 2 receives a LT-message m;. If m; contained in m; is per-
tinent for a d € CP(s), s sends m, to d; otherwise s creates a F-message
m¢ and includes m; (hence, m, is also included) and CP(s) in ms. Finally,
s sends ms to pp(s).

4. The server s ¢ X receives a LT-message m;. The server s creates a F-
message m; and includes m; (hence, m; is also included) and CP(s) in ms.
After that, s evaluates the key k contained in m,. If k € I(cp) for a given
cp € CP(s), then it sends m+ to sp, otherwise it sends ms to pp(s).
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5. The server s ¢ X receives a F-message m¢. The server s creates a new F-
message m’ and includes m¢ (hence, my is also included) and CP(s) in m’.
After that, s evaluates the key k contained in m,. If k € I(cp) for a given
cp € CP(s), then it sends m’ to sp, otherwise it sends m’ to pp(s).

6. The server s € X receives a F-message m;. Due to the correctness of the
RPZ search process, s has to be the correct servers. Hence, s evaluates
the key k contained in m;, finding an cp € CP(s) such that k € I(cp).
Then s sends m; to sp. After that, it extract the addresses of all the servers
s1,...,5r involved in the search process from ms. Notice that they are all
senders of F-messages mq,...,m;_1 and of LT-message included in ms.
Moreover it extract all the corresponding CP(s1), ...,CP(s;). It creates an
aggregated tree T, with CP(s1),...,CP(s;) and CP(s). Finally, s creates a
ICM-message mc. In this message it includes T, and sends it to s1,...,S;
and to the client c.

7. The index server s receives an ICM-message me. It extract T, from m¢ and
uses it to update LT (s).

3.4 TheVariant of Split Tree Model

Our goal is to calculate the cost of a sequence o of m requests made up by in-
termixed inserts and exact searches over the RP starting with one empty server
and ending with n data servers and n’ = |Z|. Due to the fact that n and n’ are
related, we first concentrate on the virtual B*-tree structure made up by index
Servers.

As in the DRT*, we use split trees (see section 2.3) to take into account the
cost of 0. However, in this case we have to consider a variant of split trees model.
We associate a split tree ST (s) with each index server s. Each node of a split tree
is an index server. Data servers are not considered in the analysis. The root of
ST (s) is the server s. Moreover:

e asimple pp—arc (s',s") in ST(s) means that s” = pp(s');

e asimple LT —arc (s',s”) in ST (s) means thats” € LT (s');

e asimple CP—arc (s',s") in ST (s) means that s” € CP(s');

e acompound arc (s',s”) in ST (s) connects a server s’ € LT (s) and a server
s” unknowntos (i.e.,s” ¢ LT (s), s” ¢ CP(s) and s” # pp(s)). This means
that s’ can reach s” following a path of virtual B*-tree (s’ = so,S41,...,5p =
s”), where, at least, s; = pp(s’) and each server s’ in the path but s” is
already known by s (i.e., s € LT(s) or s’ € CP(s) or s’ = pp(s)).

A compound arc (s',s"”) is in ST(s) because previously s has reached s'.
The path (s" = so,51,...,5p = ") is the one the search process has to visit in
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the virtual B -tree, through F-messages as described in the case 5 and 6 of the
search process.

Any simple arc has cost 1. The cost of the compound arc is defined as the
length p of the path.

Here below, given a configuration of the RPZ, we show how the correspond-
ing split trees can be built.

Let us consider an index server s. We want to build up ST (s). The node s is
the root of ST (s). Moreover:

1. a pp—arc (s,sp) is in ST(s), where sy = pp(s);
2. aLT-arc (s,5) isin ST(s), for each s; € LT(s);
3. aCP—arc (s,Ss) is in ST(s), for each ss € CP(s);

4. a compound arc (S;,Sx) is in ST(s), for each s; € LT (s), sx ¢ LT (s), fol-
lowing the definition of compound arcs;

5. let Sy be the set of nodes sy; from now on we continue to build ST (s) using
the algorithm below:

While Sy is not empty, repeat the following steps.

e Extract a node sy € Sx. Remove sy from Sy.
e If sy is not the root of the RPZ and pp(sx) is not already in ST (s), add the
pp—arc (Sx, pp(sx)) to ST (s). Insert pp(sx) to Sx.

o If sy ¢ 2, add the CP—arc (sx,Ss) to ST(s), for each ss € CP(sx). Insert sg
into Sy.

Let (s',s) be a LT —arc and (s',t) be a compound arc of cost C. Let s’ =
S0,52, ---,5c =t be the path associated with (s',t). We define T¢(t) the subtree of
ST(s) rooted at t.

An initial split tree ST(s), where s has never sent a LT-message is shown
in Figure 2.b. An evolution of ST(s) from this initial configuration is shown
in Figure 3. Here, the configurations of the RPZ is shown on the first row, the
configurations of ST(s) is shown on the second row and the path associated to
the compound arc of ST (s) is shown on the last row.

The evolution of ST(s) we now describe starts from the configuration of
ST (s) shown in Figure 2.b. Figure 3.a shows ST (s) after a request pertinent for
s’ and arrived to s. The server s’ splits and t is the new index server. A compound
arc (s',t) is added to ST(s), the related path of such an arc is (s',3,t), and T¢(t)
is made up by just the node t, i.e., the height is h = 0 (Figure 3.b).

The server t splits two times. Servers 7 and 8 are the new index servers. After
the last split of t, pp(t) = 3 has to split. Server t’ is the new index server. The
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(a) (b) (c) (d)

Compound
Arcs

—— CT-arc or pp-arc
——==» LT-arc
=—p compound arc

Figure 3: An evolution of ST (s). After a request pertinent for s’ and arrived to
s (a). The server s’ splits and t is the new server (b). The split of t (c). A split
causes the creation of a new root (d).

compound arc (s',t) and T¢(t) are removed from ST (s). A compound arc (s,t')
is added to ST (s), the related path of such an arc is (s',3,2,t'), and T¢(t') is made
up by nodes {t’,t,7,8}, hence the height is h = 1. (Figure 3.c).

Other splits causes the split of t’ and the root of the RPZ. Consequently, the
server t” = pp(t’) and a new root t"”” = pp(t”) are created. The compound arc
(s',t" and T¢(t') are removed from ST (s). A compound arc (s’,t”') is added to
ST (s), the related path of such an arc is (5, 3,2,t"), and T¢(t"”) has height h = 3.
(Figure 3.d).

3.5 Amortized Analysis

We first calculate the cost C(m,n’) of a sequence o of m requests made up by
intermixed inserts and exact searches over an RP{™ starting with one empty server
and ending with n’ index servers in Z, considering the virtual B*-tree made up
by index servers. Some preliminary definitions and results are needed.

Let us consider a split tree ST (s). Consider a path p connecting s to a node
s’ € ST(s). We define the length of p as the sum of the costs of each arc in p. We
define the height H of ST (s) as the length of the longest path from s to a node
s’ € ST(s).
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Lemma 3 Let ST(s) be the split tree of an index server s and let s’ be a server
in ST (s). In the path connecting s to s’ there is at most one compound arc.

Proof. The result follows directly from the definition of ST (s). O

Lemma4 Let ST (s) be the split tree of an index server s. Consider a request
arriving to s and pertinent to a server . The servers visited in the search process
of such a request are the servers in the path between s and s’ in ST (5).

Proof. The result follows directly by definition of the search process, simple
arcs and compound arc and from Lemma 3. O

Lemma5 Let ST(s) be the split tree of an index server s, (s',t) be a compound
arc of cost C and h be the height of T¢(t). ItisC <h+2.

Proof. Suppose T¢(t) is made up by just t (see Figure 3.b). This means that,
in the past and completely unknown to s, s’ has split, a new server t has been
created in the structure, t has been added to CP(pp(s')) and pp(s’) has not split.
Moreover, pp(s') is known by s by definition of compound arc and Tc(t).

In this case the path associated with (s',t) is (s, pp(s’),t), hence, C =2 =
0+2=h+2.

Suppose by induction the lemma is true for other n > 1 splits in T¢(t) and a
new split occurs in Te(t). If pp(s’) does not split, the lemma holds.

Suppose pp(s’) splits. A new server t’, sibling of pp(s'), is introduced in
the structure. First of all, suppose pp(t’) does not split. Two cases are possible:
pp(t’) = pp(pp(s’)) is either (i) known or (ii) not known by s.

Case (i). Due to definitions, the compound arc (s',t") and Tc(t') are added
to ST (s). Please note, that T¢(t') is made up by servers t’ as root and servers in
CP(t'). If the split is such that t € CP(t'), the arc (s',t) and T¢(t) are removed
from ST (s). The path related to (s',t') is (s', pp(s), --., pp(t’) =), that is, h+ 3,
but now, the height of T¢(t") is h+ 1. Hence, in this case the lemma holds (see
Figure 3.c).

Case (ii). Consider the path s’ = sg,...,5y =t" and let 0 < i < r be the first
index such that s;_1 is known by s and s; is not known by s. Due to definitions,
the compound arc (s',s;) and T¢(si) are added to ST (s). If the split is such that
t € CP(t'), the arc (s',t) and T¢(t) are removed from ST (s). Notice that (s',s;)
has a cost less than (s',t), while the height of Tc(s;) is greater than the height of
Te(t). Hence, in this case the lemma holds.

In case pp(t') splits, case (i) and (ii) applies to pp(pp(t’)).

The same arguments can be easily applied to other possible splits from
pp(pp(t")) to the root of virtual B*-tree (for instance, Figure 3.d shows a case
(ii) when pp(t’) splits). O
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Lemma 6 Let ST (s) be the split tree of an index server s. If the correction tech-
nique compresses x servers to s, then the requests costs O(x).

Proof. The result follows from Lemma 5 and from lemma 4.

In particular, considering the search process, in the worst case the cost of the
request is 2 messages from a data server where the request is arrived and to the
pertinent data server. Moreover, there can be one LT-message, 2x F-messages
and 2x ICM-messages. Hence the cost is 4(x 4+ 1) messages. m|

Lemma 7 Let h be the height of virtual B*-tree made up by index servers and
let H be the height of ST (s) of an index server s. It is H = 2h + 1 in the worst
case.

Proof. In the worst case, a request can cause a LT -message, and an upwards
chain of at most h F-messages followed by a downwards chain of at most h
F-messages. From Lemma 4, the result holds. |

From previous lemma, we have directly:

Lemma8 LetH be the height of ST (s) of an index server s. Itis H = 2log ; ,, (") +
1 in the worst case, where f is the fan-out of index servers and n’ = |Z|.

Lemma9 Let T be an RP{ starting with one empty server and ending with n’
index servers in Z. The number of messages of a sequence ¢ of m requests made
up by intermixed inserts and exact searches over T is C(m,n’) = O(m-a(m,n’)).

Proof. From Lemma 4 and lemma 6, we can apply the technique presented
in [5]. In this technique, it is shown that a request arrived to s and pertinent to s’
can be seen as the server search of s’ following the path from s to s’ in ST (s),
hence the sequence o can be seen as a sequence of o’ of server searches and
splits in the split trees related to server of SDDS. The other important result is
that, given o, it is possible to build a sequence p of finds, make-sets and unions
for the set union problem, such that the cost of ¢’, and hence of g, in terms of
number of messages is bounded by the cost of p in terms of number of steps of
an algorithm for the set union problem. Moreover, from Lemma 8 and from the
result in [13] the result holds. O

We are now ready to prove the main results of the paper.
Theorem 1 An exact search or an insertions in an RPZ costs O(log| ;5 n) in

the worst case, where f is the fan-out of index servers and n is the number of
data servers.

Proof. Directly from Lemma 8 and considering thatn > | f /2| -n’, where n’ =
|Z]. O
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Theorem 2 Let T be an RP{ starting with one empty server and ending with
n servers. The number of messages of a sequence o of m requests made up by
intermixed inserts and exact searches over T is

C(m,n) =O(m-a(m,n)).

Proof. From Lemma 9 and considering that n > | f/2] -n’ the result holds,
where f is the fan-out of index servers and n’ = |Z| and therefore, a(m,n’) <
a(m,n). O

3.6 Final Comparisonsand Extensions

From a practical point of view, an implementation of RP§ with index servers
having a large fan-out may have a behaviour not worse than the one of RPZ. But
the real advantages of our proposal lie in two aspects:

1. our structure has a theoretical upper bound for its behaviour in the amor-
tized case which is better than RPZ one;

2. foragood practical behaviour of RP{ a large fan-out of index servers is re-
quired, while for our structure the good behaviour in practice is guaranteed
by the theoretical almost constant amortized upper bound.

The technique can be easily extended to consider the correction technique
applied to the whole virtual B*-tree and not only to the tree made up by inter-
nal nodes. The only requirement is that data server has to store a local tree. In
this case the fixed messages from a data server to the index and vice-versa are
avoided.

The technique can be easily applied to any tree structure using a balancing
technique based on split of internal nodes, causing the growth of the tree toward
the root. If the height of the tree is O(logn) in the worst case, then, applying
the correction technique, the same amortized result holds. For example, the tech-
nique can be applied to the trees defined in [7].

Moreover, we can apply the same extension to the k-RP% [11], obtaining a
structure able to manage multi-dimensional data with the same amortized results.

4 Conclusions

In this paper, we extended the RP} technique, defining the RPZ. The basic RP
has an amortized logarithmic cost for exact-searches and insertions. With our
extension, a sequence of m requests of intermixed exact-searches and insertions
over a RPZ starting with one empty server and ending with n servers has a cost
of O(m-a(m,n)) messages, where a(m,n) is the classic inverse of the Acker-
mann function. Due to the well known slow growth of the function a(m,n), we
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can assume to have amortized constant costs for inserts and exact searches in re-
alistic scenarios of SDDS made up by thousands or even millions of servers. The
same approach can be used to extend k-RP%, obtaining a structure able to man-
age multi-dimensional data and with good performance for multi-keys requests,
typical of order preserving SDDS. Moreover, the lock mechanisms after a split
are basically the ones defined for RPg. Hence, this structure is also well suited
for high concurrency systems.
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