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Abstract

This paper reviews literature on scalable data structures for searching
in a distributed computing environment. Starting with a system where one
server manages a file of a given size that is accessed by a specific number
of clients at a specific rate, a scalable distributed data structures (SDDS)
can efficiently manage a file that is n times bigger and accessed by n times
more clients at the same per-client rate, by adding servers and distributing
the file across these servers. We analyze and compare SDDS proposals based
on hashing techniques and order preserving techniques. Work regarding the
management of multi-dimensional data is also reported. Moreover, issues
such as high availability and load control are considered.
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1 Introduction

A network of computers is an attractive environment for many applications, and in
particular for the ones with high performance requirements. Among the motiva-
tions usually cited for the use of a distributed system there are: ease of expansion,
increased reliability, the ability to incorporate heterogeneous resources, and re-
source sharing among autonomous sites.

When a data structure is managed by more than one of the processors on a
network one usually speaks of “distributed data structure”. In this area a large
number of solutions have been proposed. A main partition among the proposals
can be defined on the basis of whether the number of processors managing the
data structure is fixed or not. For a fixed number of processors, the proposed data
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structures have a focus not only on efficient data access, but on a combination with
other relevant issues such as, e.g., load balancing and concurrency control. In this
paper we focus instead on the case of a variable number of processors, since this is
an essential ingredient to obtain a scalable distributed data structure (SDDS). The
main objective of an SDDS is in fact to accommodate dynamic file growth with
scalable performance, where the key to scalability is the dynamic distribution of
a file across multiple servers of a distributed system. Furthermore, an SDDS has a
focused view on efficiency considerations, disregarding other aspects completely.

Consider a file that contains a set of records and is managed by a single server
at a single node of a computer network, accessed by a number of clients at fixed
per-client rate. Ideally, when the file grows by a factor of n and the number of
clients also increases by the same factor, we should be able to scale up the system
throughput (i.e. to serve n times more clients), without any noticeable degradation
of the system performance, by redistributing the file across k servers. This redis-
tribution of data should take place continuously as the file is growing. Servers are
created dynamically on demand and fragments of the file are redistributed among
them. The widely used technique is to split a server’s data into two halves and
migrating one half onto a new server. We assume it is always possible to find a
new fresh server to involve in the management of the data structure whenever it is
necessary.

As perfect scalability (for non-trivial workloads) is achievable only theoret-
ically, we usually speak of a scalable approach already if response time of the
system is nearly a constant for reasonably large values of n and increases only
very slowly for very large values of n.

Let us formalize the basic environment we are considering. The distributed
system is composed by a collection of processing sites, interconnected by a com-
munication network. The data is taken from a domain D. Each data item d � D
consists of two main fields, d � �Keyd �Recordd�, where Keyd is a key taken from a
mono-dimensional or a multi-dimensional domain, and Record d is a record field
containing the relevant data. A distributed data structure is composed of a data or-
ganization scheme, specifying a collection of local data structures storing copies
of data items at various sites in the system, coupled with a set of distributed ac-
cess protocols that enable processors to issue modification and query instructions
to the system and get appropriate responses. Data are organized in buckets. We
assume that each site manages exactly one bucket.

Communication among sites happens by sending and receiving messages. A
message can be of the following types:

� point-to-point message. Such messages have one sender site and a unique
receiver site.

� multicast message. Such messages have one sender site and many receiver
sites. In general, the set of receiver sites of a multicast message corresponds
to a subset of all the sites of the structure. In our case, the set of receiver
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sites of a multicast message corresponds to the set of server sites of the
structure.

We concentrate mainly on dictionary structures, which support exact searches, in-
serts and deletes, and typical extensions supporting range queries, partial queries,
nearest neighbor queries and so on.

In particular, many of the proposed SDDSs only consider insertions and search
operations. Papers explicitly discussing and analyzing deletions are [6, 20, 1]. In
the rest of the paper whenever we consider a request for a single key, we mean an
insert or an exact search.

1.1 Performance measures

The main measure of performance for an operation is its communication complex-
ity. In the context of SDDS this is defined as the number of messages exchanged
between clients and servers to perform a given operation. For this complexity
measure, the following assumptions hold:

� The real network topology is not relevant. The graph associated with the
communication network is a complete graph. This allows to measure the
communication complexity in terms of the number of exchanged messages.

� Each message costs one unit and the size of a message is not relevant.

� The network is free of errors. Both nodes and links never crash. This hy-
pothesis is relaxed in the high availability schemes.

Another relevant complexity measure is the global load factor, formally defined
as α � x

bn , where x is the number of data items stored in the overall structure, b is
the capacity of a bucket (equal for all the buckets) and n is the number of servers
(we recall that each server manages exactly one bucket).

In addition, the global and local overhead (introduced in [30]) give a mea-
sure on how large is the waste of computational resources deriving from the fact
that servers are distributed over a communication network. They are defined as
follows:

� local overhead (local ovh) measuring the average fraction of useless mes-
sages that each server has to process; this is expressed by the average, over
all servers, of the ratio between the number of useless messages and the
number of messages received by a server. A message is useless for a server
if it is received by it but it is not pertinent to it.

� global overhead (global ovh) measuring the average fraction of overhead
messages traveling over the network; this is expressed by the ratio between
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the overall number of overhead messages and the overall number of re-
quests. A message is considered to be overhead if it is not a query message
issued by a client.

The mathematical definition of these two parameters is now provided. Let us de-
note with n the overall number of servers, and with rec msg�i� and pert msg�i�,
the number of messages received by server i and the number of pertinent messages
received by server i, respectively. Then, we have:

local ovh �
∑n

i�1
rec msg�i��pert msg�i�

rec msg�i�

n

global ovh �
∑n

i�1 rec msg�i�
∑n
i�1 pert msg�i�

∑n
i�1 rec msg�i�

The paper is organized as it follows: section 2 discuss SDDS proposal based
on hashing, while in section 3 those based on order preserving data organiza-
tion technique, are presented. In section 4 multi-dimensional data management in
SDDS framework is analyzed. Section 5 shows how to take into account in SDDS
of high availability requirements. Finally, last section contains a partial survey of
non scalable distributed data structures.

2 Hash based schemes

2.1 LH*

LH* [17, 20] introduced the concept of a Scalable Distributed Data Structure
(SDDS). LH* is a generalization of Linear Hashing to distributed sites. A file F is
stored on server sites and it is accessed by client sites. Each server site manages
one bucket, which stores some of the file records. Each client site has its own view
of the overall file, which may be out-of-date. Client’s view is updated through re-
quests, which may require at most two additional messages. The status of overall
file is described by two parameters, namely the hashing level �i� and the split
pointer �n�. The hashing level defines the couple of hashing functions to be used
to assign keys to buckets and the split pointer identifies the next bucket to be split
whenever a collision (that is an insertion in a full bucket) happens. Each server
knows the hashing level only of the bucket it manages. Each client uses its own
view of the overall file status (hashing level and split pointer) to send request mes-
sages to servers. If addressing is wrong the receiving server is able to forward key
to another server, which either is the correct one or is able to identify the correct
one. Moreover, the receiving server communicates back to the client its hashing
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level, so that client may bring its own view closer to the file overall status. A des-
ignated site act as split coordinator, which forces the server site designated by the
split pointer to split its bucket and serializes all the splits. The communication net-
work is assumed without delay (if there is a delay then an arbitrarily fast sequence
of insertions may cause an arbitrarily long sequence of forwarding messages).

In LH* the splitting policy obeys to a global rule: whenever a split occurs in
the structure, the splitting server is always the n-th one. After that n is increased
by one. A server is split even if it is not the overflowing server. This may lead in
some cases to a poor global and local load factor. In fact a server could have to
manage a great number of keys, waiting to be the n-th server, and in the meantime,
servers with few keys are split.

Moreover a server does not know when it has to split. It has to be notified.
In [17] a special split coordinator, participating in the bucket split operations,
is proposed. Such a coordinator knows the exact configuration of the structure
(i.e. the current parameters n and i). It notifies the n-th server to split, and then
updates the configuration. The definition of such a special entity is not completely
compliant with scalability goals, because it can likely become a bottleneck.

However, in [20] some variants of the base technique is proposed, in particular
a version of LH* without split coordinator. The technique is based on a token,
which is stored by the next server that has to split (i.e., the n-th server). After
the split, the token is sent to the next server (it is assumed that a server always
knows the address of the next server). Other variants discussed in [20] regard the
control of the load factor, that basically consists in allowing the split of the server
n only whenever an estimation of the global load factor reaches a given threshold.
The latter technique gives good results if it is possible to assume that the used
hash functions actually hash uniformly. In LH*, where the hashing functions are
defined as hi�c� � c mod 2i, for each i, this means that the probability of hashing
a key to a given address is 1�2i.

2.2 DDH

Distributed Dynamic Hashing (DDH) is introduced in [5]. It is a distributed ver-
sion of Dynamic Hashing technique. A trie based on the rightmost i digits of the
key is used as hash function at level i. Clients have local images of the overall log-
ical trie. In general, a logarithmic number (trie-height) of forwarding messages is
required for a new client to identify the correct server. Each bucket splits as soon
as it overflows. Each client needs to store a trie.

In DDH each server manages many small buckets. In this way the cost of a
split is reduced, and a fine-grained load sharing across servers is achieved. De-
termining if its own bucket has to be split is an autonomous decision that can be
made by the affected server. Moreover the splitting server is also the overflowing
server, and then there is a more accurate distribution of keys among the servers.

The resulting load factor is better than LH*’s one. Moreover, a special split
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coordinator is not needed. Like other SDDS proposal, in DDH a site (that it is
ambiguously called split coordinator too) knowing the available servers in the
network, is necessary, but it has not to manage special decisions or to correct
global informations about the structure.

The basic drawback of DDH in respect to LH* is the communication complex-
ity, i.e. the number of messages needed to satisfy a client request. LH*’s commu-
nication protocol ensures a constant number of address errors, in the worst-case,
namely 2, hence a worst-case of 4 messages for any request. The number of ad-
dress errors in DDH can be the height of the virtual trie. If the trie is unbalanced
we can have a linear number of address errors for a request, and the same holds
for the communication complexity.

In [5] some experiments are reported, but they do not give a complete idea of
performances of DDH. Moreover, they regard only a constant number of servers,
while the basic property of an SDDS is to always have the possibility to get a new
server to scale-up performances.

2.3 Load balancing

Distributed linear hashing with explicit control of cost to performance ratio is
presented in [35]. Multiple buckets may be assigned to each server and an address
table maps logical buckets to server number. Buckets can be redistributed through
splitting or migration to keep the overall load at an acceptable level. Each server
has a feasible capacity (expressed in number of keys), above which it becomes
overloaded, and a panic capacity, above which it cannot accept any more keys.
Servers and clients act like in the LH* schema. Each of them has its own view of
the hashing level of the overall file and its own copy of the address table. A client
uses its own hashing level to access its own address table and to find the server
where to send the key. This server may be the wrong one, and in this case it uses
its own address table to forward the message to another server, which either is the
right one or is able to forward the key to the right one. Moreover, the first server
communicates back to the client its own address table and hashing level, so that
the client may come closer to the current view of the file.

While the overall load is below a specified threshold and no server has reached
its panic capacity, overloading is managed, if possible, through migration of buck-
ets from more loaded servers to less loaded ones. If no such a migration is possible
than a new server is acquired, but only when the overall load threshold (defined
according to an heuristic estimates) is reached. Whenever a server reaches its
panic capacity, the possibility of alleviate its load through migration of buckets
to less loaded servers is evaluated. If it is not possible, a new server is acquired.
A designated site, named file advisor, is in charge of managing and coordinating
migrations and splittings. The file advisor uses a probabilistic function to estimate
each server load (since each server reports to file advisor only every k insertions
in an overloaded status) and the overall load.
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3 Order preserving SDDS

3.1 DRT

DRT (Distributed Random Tree) [15] proposes a distributed search tree for search-
ing both single items and ranges of values in a totally ordered set of keys (allowing
insertion of keys). It is basically a search structure, based on key comparisons,
managed as a generic tree. The overall tree is distributed among the different
server sites. Each leaf node is allocated to a different server, together with a par-
tial copy of the overall search structure (called local tree). When a leaf node over-
flows, its bucket is split in two and a new server is brought in. The overflown leaf
node is transformed in an internal node with two sons (leaf nodes). One son con-
tains keys remaining with the current node, and the new server takes care of the
remaining keys. The leaf node corresponding to new server becomes the root of
a new local tree (which is the part of the overall tree allocated to the new server).
This node therefore appears twice in the overall tree (once as a leaf in the old,
overflown, node and once as a root in a local tree). Internal nodes are therefore
distributed to the different servers according to the way the tree has grown. Client
sites query the structure, each using its own view of the overall structure.

A client view is a portion of the overall tree, and may be out-of-date since a
leaf node may has subsequently been split due to an overflow. A client uses its
view to identify to which server the search request has to be sent. If this server
evolved and has no more the key, then it forwards the request to the server it
identifies using its local trees. This forwarding chain ends at the server having the
key.

This last server sends a backward chain of ICMs (Index Correction Messages),
containing the information about local trees of servers traversed during the for-
warding phase, follows the same path followed by the forwarding chain. Informa-
tion about local trees in an ICM are used by each server receiving it to update its
local tree and to build up, in combination with the search path for the requested
key in its local tree, the view adjustment to send back, figure 1-a (from [15]). The
client finally receives, together with the message related to the key, the overall
view adjustment, see figure 1-b.

Since there is no explicit mechanism to keep the overall tree balanced, in the
worst-case the height of the overall tree is linear in the number of servers. How-
ever, for random insertions from a domain with uniform distribution, the average
height of the overall tree is logarithmic. This is not surprising since for a uni-
form distribution the expected height of a search tree under random insertions is
logarithmic in the number of insertions [14].

The total number of messages in the worst-case is O�n�, where n is the number
of servers.
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Figure 1: A forwarding chain and ICM messages (a). Update of a local tree T �c�
of a client c with a correction tree T ��s� (b).

3.2 RP*

A family of distributed data structures (Range Partitioning - RP*) supporting
range queries on totally ordered keys is introduced in [18]. The basic structure
of the family, RP�

n, is basically a B�-tree distributed among servers and without
any index. Each bucket is allocated to a different server and search is done through
multicasting. Each bucket covers a contiguous portion of the whole key range dis-
joint from portions covered by other buckets. Each server processes the query and
the one (or the ones for a range search query) whose range contains key’s value
answers with a point-to-point message. Insertions are managed similarly. When a
bucket overflows its server brings in a new one and assigns half of its keys to it.

To reduce communication network load each client may maintain a local in-
dex (this structure is called RP�

c) which is updated in consequence of searches.
The local index is a collection of couples �bucket range� bucket address�. A client
sends a point-to-point request to the server identified as the potential owner of the
key in its local index. If the client has no information about the server owning a
certain range it issues a multicast request. If the receiving server is not the correct
one, it issues a multicast request, including the range of keys it manages. Client
then uses answers from point-to-point and multicast requests, which may include
one or two couples �bucket range� bucket address�, to update its local index.

A third variant, called RP�
s , is a structure which maintains indexes also at

server sites and completely avoids the need of multicasting. In this case we have a
full-blown B�-tree distributed among server sites, one node for each server. Leaf
nodes are servers managing buckets. Internal nodes are managed by dedicated
servers and have a structure and a behavior similar to that of an internal B�-
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Figure 2: An RP�
s sample file with a kernel with two level (up) and tree level

(down).

tree node, with separating keys and pointers to lower nodes, plus a pointer to the
parent node. The set of dedicated servers is called kernel. If the receiving server
is not the correct one, this may only happen because the client has an out-of-date
local index where the server is managing a range of keys larger than what the
server is really managing. Therefore the request can either be forwarded up in the
overall B�-tree, so that an ancestor of the receiving server can identify the correct
server to manage it, or be forwarded down to the server which is really taking care
of the key range containing the requested key (internal nodes in the B�-tree do
not directly manage keys). In both cases the server finally answering the request
signals back to client the up-to-date view of the search structure, by sending back
the path visited in the tree during the search for the correct serving bucket. A node
which splits leaves parent pointers of its sons out-of-date. They are adjusted only
in two cases: either when the sons themselves split and need to communicate this
fact to their true parent, or when the sons receive a request from their true parent.

In figure 2 (taken from [18]) an example of a RP �
s file is shown.

3.3 The straight guiding property

With the aim to investigate intrinsic efficiency of SDDSs, Krll and Widmayer an-
alyzed from a theoretical point of view performance bounds of distributed search
trees. [16]. The main result is the impossibility to extend to the distributed case
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both of two important properties used in managing data structures in the single-
processor case:

1. The search process is monotone.

2. Rotations are used to keep the tree balanced .

In the single processor case a search tree is a binary tree such that every node
represents an interval of the data domain. The overall data organization satisfies
the invariant that the search process visits a child node only if it lies inside the
father node’s interval. Krll and Widmayer call this behavior the straight guiding
property.

For satisfying the straight guiding property in the distributed case is needed
to ensure that a key received by a server belongs to the set of keys the server
represents, i.e. to the interval of the node associated to the server. This interval is
given by the union of intervals associated to descendants of the node. The straight
guiding property ensures that the search process goes always down in the tree and
never goes up. In this case a bound on the height of the tree directly correspond
to a bound on the cost of the search process.

In [16] is proved that if rotations in the distributed tree are used, it is impossi-
ble to keep the straight guiding property.

To understand why consider figure 3. Assume that in the search tree T the
server s1 manages a node v1 and the server s2 �� s1 manages a node v2. Assume
now that a rotation is needed at v1 to rebalance the tree. Tnew is the tree after the
rotation, where we assume the assignment of nodes to servers has not changed.
Note that the set of keys visiting v1 in the search tree T (i.e. before the rotation)
is a superset of the set of keys visiting v1 in the search tree Tnew (i.e. after the
rotation). Thus, after the rotation, server s1 may receive the request for a key
whose search path ends in T0, since v1 is assigned to s1 in T . For example the
request could be issued by a client with an obsolete view, believing that server s 1

still manages an interval containing T0. But, after the rotation, server s1 should
not manage any search path for keys in T0. To reach T0 from s1 we have to go
up in the tree violating the straight guiding property. The same problem exists
if we exchange the assignment of nodes to server between v 1 and v2. In fact in
this case it is the server s2 that may receive the request for a key whose search
path ends in T0. Hence whether we maintain the assignment of servers s1 and s2

to nodes v1 and v2 in Tnew or we exchange such an assignment, we fail in any case
to guarantee the straight guiding property.

Moreover, Krll and Widmayer show that if rotations are not used and the
straight guiding property is maintained, a lower bound of Ω�

�
n� holds for the

height of balanced search trees, hence for the worst-case of searching.
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Figure 3: The rotation does not allow to keep the straight guiding property.

3.4 RBST

A natural approach to overcome the complexity lower bound of Krll and Wid-
mayer is to violate the straight guiding property: this means the search process
can go up and down in the distributed tree. Then a bound on the height of the
tree does not correspond anymore to a bound on the cost of the search process
and it is possible to use rotations to keep the tree balanced. But to obtain a good
complexity it is then necessary to bound the number of times a search operation
can go up and down in the tree.

The first work in this direction is the RBST (Relaxed Balanced Search
Trees) [1]. This is a search tree where nodes have the following structure: each
node but the root has a pointer (father pointer) to its father (internal) node. Each
internal node has a pointer (left pointer) to a node in its left subtree and one (right
pointer) to a node in its right subtree. Note that these pointed nodes may be, in
general, different from the direct sons of the internal node. Insertions and dele-
tions are managed with a technique similar to that used for AVL-trees. In [1] it is
shown in detail how to maintain these invariant properties of pointers coming out
from nodes.

Suppose a request for a key k arrives to a node v (corresponding to a server).
If v is a leaf and k belongs to the interval of keys I�v� associated to v, then the
search terminates. Otherwise if v is an internal node and k � I�v�, then, according
with routing information of v, the left or the right pointer of v is used. Since the
straight guiding property is not satisfied, it is possible that k �� I�v�. In this case
the father pointer is used to forward the request.

The search process is therefore changed, but the number of times a search
operation can go up and down in the tree is bounded by the logarithmic of the
number of servers [1]. The cost for an exact search, an insertion and a deletion is
of O�log2 n� messages in the worst-case.
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3.5 BDST

Another approach to obtain good worst-case performances in SDDS is discussed
in [6], where BDST (Balanced Distributed Search Trees), an SDDS taking an
approach similar to those of RBST, is presented. The straight guiding property
is violated, the tree is kept balanced through rotations and the search process is
modified. However, in the case of BDST, the number of times a search operation
can go up and down in the tree is bounded by 2. Then BDST improves the result
of RBST, giving a cost for an exact search, an insertion and a deletion of Θ�logn�
messages in the worst-case. In the following we discuss in some detail the data
structure.

Let T be a binary search tree with n leaves (and then with n
1 internal nodes).
f1� � � � � fn are the leaves and t1� � � � � tn�1 are the internal nodes. h�T � is the height
of T , that is the number of internal nodes on a longest path from the root to a leaf.
To each leaf a bucket capable of storing b data items is associated. Let s 1� � � � �sn be
the n servers managing the search tree. We define leaf association the pair � f �s�,
meaning that server s manages leaf f and its associated bucket, node association
the pair �t�s�, meaning that server s manages internal node t. In an equivalent way
we define the two functions:

� t�s j� � ti, where �ti�s j� is a node association,

� f �s j� � fi, where � fi�s j� is a leaf association.

To each node x, either leaf or internal one, the interval I�x� of data domain man-
aged by x is associated.

Every server s but one, with leaf node association �t�s� and leaf association
� f �s�, records at least the following information:

� The internal node t � t�s� and the associated interval of key’s domain I�t�,

� The server p�s� managing the parent node pn�t� of t, if t is not the root
node,

� The server l�s� (resp., r�s�) managing the left child ls�t� (resp., right child
rs�t�) of t, and the associated interval Il�t� (resp., Ir�t�),

� The leaf f � f �s� and the associated interval of key’s domain I� f �,

� The server p f �s� managing the father node pn� f � of f , if f is not the unique
node of global tree (initial situation).

This information constitutes the local tree lt�s� of server s (see figure 4).
Since in a global tree of n nodes there are n
 1 internal nodes, there is one

server s� managing only a leaf association, hence lt�s �� is made up by only the two
last pieces of information in the above list.
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t=t(s)
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pn(f)=t(pf(s))

f=f(s)

Figure 4: Local tree of the server s.
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Figure 5: The BDST search process for a request from a new client (left),
from a client with addressing error sending its request to: a logically pertinent
server (center) and a non logically pertinent server (right).

We say a server s is pertinent for a key k, if s manages the bucket to which
k belongs. In our case if k � I� f �s��. Moreover we say a server s is logically
pertinent for a key k, if k is in the key interval of the internal node associated to s,
that is if k � I�t�s��. Note that the server managing the root is logically pertinent
for each key. Note also that, due to the effect of rotations, it is not necessarily
I� f �s�� � I�t�s��.

Suppose that a request for a key k arrives to a server s. If s is the pertinent
server for k then s directly manages the request. If it is logically pertinent, then s
forwards the request downwards in the tree, using l�s� or r�s�. If s is not logically
pertinent, then it forwards the request upwards in the tree, using p�s�. In gen-
eral, a request of a client travels the global tree structure until arrives to the leaf
corresponding to the pertinent server. In figure 5, the various cases of the search
process are described.

It is clear that the number of messages for a request, accounting for the request
and the answer messages, is 2h�T ��2 in the worst-case. Rotations do not influ-
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ence the search process. In this case any balancing strategy based on rotations can
be used, and the worst-case cost for exact search, insertion or deletion is shown
to be Θ�logn� messages.

3.6 DRT*

The main drawback of BDST is represented by the fact that the use of rotations
requires locking servers involved in the rotation process. In fact locks reduce the
concurrency in the system.

On the contrary DRT, i.e. the implementation of a distributed tree without us-
ing balancing strategies, suffers of the well known worst-case cost of O�n� mes-
sages for a request. Although the worst-case result is very bad, the amortized
analysis shows a very nice behavior. DRT* [8, 9], extends the DRT technique by
means of a different use of correction technique based on ICMs.

These modifications improve the response time of a request with respect to
DRT, but do not influence the amortized communication cost, in the sense that the
communication complexity results of DRT* hold also for the DRT. More details
on DRT* can be found in another paper [8] of these proceedings.

3.7 Distributed B�-tree

In DRT and DRT* the goal of reducing communication complexity is reached by
means of a “continuous” improvement of the system knowledge of local trees of
servers. This is obtained in a lazy manner, in the sense that the local tree of a
server s is corrected only whenever s makes an address error. It is clear that the
best possible situation is the one where each local tree is always correct.

An alternative strategy is to try to ensure servers have correct local trees by
sending corrections exactly when local trees become obsolete, that is whenever a
split occurs in the structure. A structure designed to this aim is Distributed B�-
tree [4]. For the sake of simplicity we describe Distributed B�-tree in a slightly
different way with respect to the original paper.

If server s was created through the split of server s � then server s stores a
pointer to the server s�. With respect to the node v associated to s, the pointer to s �

is a pointer to the father node v � of v.
Whenever a split occurs, the splitting server s sends a correction message

containing the information about the split to s �. s� corrects its local tree and sends
the message upwards in the tree so to arrive to the root. This technique ensures that
a server s associated to a node v has a completely up-to-date view of the subtree
rooted at v. This means that it knows the exact partition of the interval I�v� of v
and the exact associations between elements of the partitions and servers. This
allows s to forward a request for a key belonging to I�v� directly to the right
server, without sending a chain of messages along the tree. This distributed tree
does not use rotations, hence each request arriving to s belongs to I�v� because of
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the straight guiding property.
The main result is a worst-case constant number of messages for a request,

which is a very good result for an order preserving data structure. The drawback
is the cost of a split. In fact, like in DRT, if keys are not uniformly distributed over
the data domain, the height of the distributed tree may be linear, and then the cost
of correcting local trees after a split can be linear as well. In [7] a comparison
between Distributed B�-tree and BDST is performed, showing that BDST be-
haves better in the amortized case, for the case of a sequence of intermixed exact
searches and inserts. In fact Distributed B�-tree has a linear amortized cost, while
for BDST we clearly have a logarithmic cost. The amortized cost of a sequence
of intermixed exact searches and inserts of DRT* is better than the BDST one,
hence it is better than the Distributed B�-tree one as well.

3.8 DSL

Another SDDS dealing with order preserving data management is DSL (Dis-
tributed Skip Lists). It is fundamentally based on the extension of the skip list
technique to the distributed environment. The main results, based on a probabilis-
tic analysis - which is the standard approach to measure skip list performances,
are an access cost of O�logn� messages and an O�1� number of reconstruction
operations after merges or splits of nodes with high probability. A complete pre-
sentation of DSL can be found in paper [3] of these proceedings.

4 Multidimensional search structures

Many of the newest application areas, like CAD, GIS, Multimedia and others, deal
with very large amounts of complex (i.e. multi-attribute) data and require high
performance. A distributed environment offers a good answer to these require-
ments. Some SDDSs present efficient solutions for searching multi-dimensional
data.

The main proposals for multi-dimensional SDDSs are based on the extension
to the distributed context of the k-d tree [2].

4.1 Distributed k-d tree

In [28, 29, 30] an SDDS version of the k-d tree [2] is proposed. Different variants
are discussed, and their use depends on the availability of the multicast protocol
in the communication network.

The base technique used to design a distributed k-d tree is like the one used
to derive DRT from standard binary trees. Each server manages a different leaf of
the tree, and each leaf corresponds to a bucket of data.

A k-d tree is a binary tree where each internal node v is associated to a
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(bounded or not) k-d interval (or k-range) I�v�, a dimension index D�v� and a
value V �v�. The interval associated to the left (resp. right) son of v is made up
by every point in I�v� whose coordinate in dimension D�v� has a value less than
(resp. not less than)V �v�. D�v� is called the split dimension for node v. V �v� is the
split point for node v. Leaves of the k-d tree are associated only to a k-d interval.

To each leaf w of a k-d tree one bucket exactly corresponds, denoted with the
same name. Bucket w contains all points within I�w�. The k-d interval I�v� of an
internal node v is the initial k-range of the bucket which was associated to node v
when v was inserted as a leaf into the k-d tree. When bucket v is split two leaves,
say v� and y, are created and inserted in the k-d tree as sons of node v. Bucket v,
with a new, reduced, k-range is associated to leaf v �, and leaf y takes care of the
new bucket y, so that I�v� � I�v��

�
I�y� and I�v��

�
I�y� � /0. Therefore, for each

leaf w but one it exists a unique internal node z whose bucket’s splitting created
the k-range of bucket associated to w. Such a node z is called the source node of
leaf w (and of bucket w) and is denoted as α�w�. The leaf without source node,
for which we let for completeness α��� � /0 is the leaf managing the initial bucket
of the k-d tree.

Clients may add k-d points, which go in the pertinent bucket. In this case a
bucket b (and in the same way a server b) is pertinent with respect to point p if b
is associated to the leaf node managing the portion of the k-d space containing p.
Whenever a split is needed, it is done with a (k-1)-dimensional plane and various
strategies can be used to select which dimension is chosen. A largely used strategy
is the round-robin one, where at each level a different dimension is selected and
after k levels the same sequence is used again and again.

Moreover clients can issue exact match, partial and range queries. An exact
match query looks for a point whose k coordinates are specified. A partial match
query looks for a (set of) point(s) for whom only h � k coordinates are specified.
A range query looks for all points such that their k coordinates are all internal to
the (usually closed) k-dimensional interval specified by the query.

Search algorithm for exact, partial and range search is optimal. Optimality is
in the sense that (1) only servers that could have k-dimensional points related to
a query reply to it and that (2) the client issuing the query can deterministically
know when the search is complete.

The latter property is very important for the multi-dimensional case. In fact
while for a simple exact match query a client knows that the query is terminated
whenever it receives an answer by the single pertinent server, in a partial match
or a range query it is not true, in general, that there is exactly one pertinent server.
Hence the client has the problem of checking that all pertinent servers have an-
swered.

One way to perform the termination test is to calculate the volume V of the
k-range of the query, then to calculate the volumes of the received k-d intervals
and to consider the corresponding sum S. Whenever V � S the termination test
returns true. This approach is not good from a practical point of view, because
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infinite precision multiplication is needed for the approach to be correct. In fact,
if buckets covering very large and very small ranges exist at the same time in the
data structure then, due to possible roundings, the termination test may fail.

An improved deterministic termination test, named “logical volumes” test,
which does not suffer from this problem is presented in [30].

If multicast is available in the network, the protocol for search process is very
simple and it is similar to the one of RP�

n. A client issues a query by simple
multicasting it in the network, and waiting for the answers of servers. If the use of
multicast has to be reduced, like in RP�

c , a client can use a local index to address
only servers pertinent for its requests. In this case requests are sent using the
point-to-point protocol. In case of address error, the server receiving the request
multicasts it in the network.

A client may receive ICM messages both from server s (managing a k-d inter-
val I) it sent the request to, and from the real pertinent server s � (managing a k-d
interval I �). In the overall index, I � may be associated to a node which is various
levels down with respect to the current height in the client’s local index of node
associated to interval I. Interval I � certainly derives from splits of interval I (man-
aged by s). But since servers do not maintain the story of splits, then the client
receives intervals in ICMs without the related sequence of splits producing them.

While in RP�
c a simple binary tree is used to manage such unrelated intervals

in the local index of a client, in the multi-dimensional case the use of a standard
k-d tree for the local index of a client may produce incorrect results.

Therefore in [28] a new structure, named lazy k-d tree, is used to manage the
local index of clients. A lazy k-d tree is a k-d tree where:

� there are two types of nodes: simple nodes and compound nodes;

� a simple node may be a leaf or an internal node and it corresponds to a node
of a k-d tree.

� a compound node u has no sons and no piece of information related to the
global index is directly associated with it. u is a set C�u� of lazy k-d trees,
whose roots are simple nodes, such that for each couple of distinct roots v
and w in C�u� it is I�v�

�
I�w� � /0. Complete details of the structure can be

found in [30];

Each client index starts with a simple leaf node. The index is then built incremen-
tally using answers arriving from servers.

A version of the structure with local index at client and server sites is defined
in case only the point-to-point protocol is used to exchange messages. In this case
the local indexes are local trees like in the DRT. The difference with respect to
DRT is that now a local tree is a standard k-d tree and not a binary tree, but the
behavior is the same. In fact now servers manage an index. The index of a server s
contains at least the portion of the global tree built by the split of s. Moreover s can
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send messages only to a server belonging to its index. The ICM arriving to a client
as answer to a request contains the set of local indexes of the involved servers. The
aggregation of these indexes corresponds at least to a contiguous portion of the
global k-d tree connecting the node associated with the server addressed from the
client to the node associated with the pertinent server.

The most important thing is that the correction technique used for the DRT*
can be used also for this version of the distributed k-d tree. In [9] it is shown that
the same analysis conducted for the mono-dimensional DRT* is valid also for
this version of the distributed k-d tree and then the same results hold. In particular
a request may require a linear number of messages in the worst-case and if we
perform a sequence of m requests (that can be exact search and insertions) pro-
ducing an n-servers distributed k-d tree, starting with one empty server, we have

an amortized communication cost of O
�
m log�1�m�n� n

�
messages.

4.2 k-RP�s
Another SDDS version of a k-d tree is k-RP�

s [19]. The paper presents the version
used in case of point-to-point protocol. k-RP�

s is a k-dimensional version of the
approach used to design family RP*. There are servers involved in the manage-
ment of data (servers bucket), and servers involved in the management of address
errors (servers index).

A server index maintains an internal index like in RP�
s . The difference relies

just in the fact that while in RP�
s a standard binary tree is used for the internal

index, a k-d tree is used in k-RP�
s . Techniques like “logical volumes” are used

for the termination test after a range search, and in general the management of
requests is very similar to the distributed k-d tree one.

Results for RP�
s holds for k-RP�

s as well. In particular, the worst-case logarith-
mic bound for the communication cost for an exact search and for an insertion.
The main drawback is the use of additional servers to manage address errors,
considering that a server is an expensive resource.

With respect to access performance, the comparison between distributed k-d
tree and k-RP�

s is similar to the one between DRT* and RP�
s .

k-RP�
s and RP�

s are better in the worst-case, where they guarantee an access
cost logarithmic in the number of servers, while DRT* and the distributed k-d
trees, under particular data distributions of the data domain, may have a cost linear
in the number of servers.

We obtain the contrary in the amortized case. In fact, it is easy to prove that for
both k-RP�

s and RP�
s the cost remain logarithmic also in the amortized case. More

precisely, we have that for m intermixed exact searches and inserts, the amortized
cost is O�m logF n� messages, where n is the number of servers and F is related
with the fanout of the servers in the kernel.

For DRT* and the distributed k-d trees in [8, 9] it is proved that a se-
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quence of m intermixed exact searches and inserts, gives an amortized cost of

O
�
m log�1�m�n�n

�
messages, which is generally better than k-RP�

s and RP�
s one.

Note that while this amortized cost decreases with m, this does not hold for the
amortized cost of k-RP�

s and RP�
s .

5 High availability

In this section we discuss some aspects regarding fault tolerance for SDDSs. The
main consideration is that availability of a distributed file deteriorates with the
number N of sites, and rather strongly in practice. Assume, in fact, that the proba-
bility pd that a bucket is up is a constant, and rather high in practice, for example
99%. The probability pc that key c is available is pc � pd . The probability pF

that the whole file F is available is pF � �pd�
N , under the usual assumption that

bucket failures are mutually independent. If F scales moderately, to let us say 100
buckets, it leads to pF � 37%, i.e., most of the time F is not entirely available. For
N � 1000, one gets pF � 0�00004, i.e., zero in practice. For many applications,
this may not be a problem. For other applications however, especially those need-
ing a reliable very large database, these numbers may mean that an SDDS scheme
simply does not scale-up to files large enough for their needs. A k-availability
scheme preserves the availability of all records despite up to k bucket failures.

The first attempts in enhance file availability are based on the popular
mirroring technique. In [21] a variant of LH* called LH* M is presented. This
scheme mirrors every bucket and thus preserve full accessibility despite. The
scalable and distributed generalizations of B�-trees introduced in [4, 36] also use
the replication. In both cases, the cost is the doubling of the storage requirements.
This may be prohibitive for large files. High availability variants of LH* with
smaller storage overhead have therefore been developed. The 1-availability
scheme LH*S stripes every data record into m stripes, then places each stripe into
a different bucket and stores the bitwise parity of the stripes in parity records
in additional parity buckets [23]. The storage overhead for the high-availability
is only about 1�m for m stripes per record. If a bucket is unavailable because
of a missing stripe then, like in the RAID schemes, LH*S recovers the missing
stripe from all the other stripes of the bucket, including the parity stripe. Striping
typically produces meaningless record fragments. This prohibits or at best
heavily impairs the parallel scans, especially with the function shipping. Those
typically require entire records at each site. Efficient scans are decisive for
many applications, especially web servers and parallel databases. In another
1-availability variant of LH* termed LH*g [22] the application record, called
data record, remains entire in LH*g. To obtain high availability, records are
considered as forming m-member record groups each provided with the bitwise
parity record. The resulting storage overhead is about 1�m, as for the striping.
The speed of searches is that of generic (0-available) LH*. It is unaffected by the
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additional structure for the high-availability.
As the file grows, 1-availability or even k-availability for any static k is how-

ever not sufficient to prevent a decrease in reliability. To this aim one needs to dy-
namically increase k. The result is scalable availability schemes. The first scalable
availability scheme was LH*SA[25]. LH*SA retains the concept of record group-
ing, making the technique more elaborated. Each data record c is a member of k or
k�1 1-available groups that only intersect in c and are each 1-available. The value
of k progressively increases with the file. For any k, LH*SA file is k-available. The
storage overhead may vary substantially depending on the file size. It can be close
to the minimal possible for k-availability which is known to be k�m. But it can
also become over 50%.

In [24, 26] an alternative scalable availability scheme termed LH* RS is pre-
sented. Through record grouping, it retains the LH* generic efficiency of searches.
Each record belongs to one group only, but with k or k� 1 parity records. This
provide the (scalable) k-availability of the file. The parity calculus uses the Reed
Solomon Codes (RS-codes). This mathematically complex tool proves simple and
efficient in practice. Current advantages of LH*RS are storage overhead always
close to the minimal possible, and a more efficient recovery algorithm, accessing
buckets only within one group. Moreover, the basic ideas in LH* RS may be also
ported to other SDDS schemes, including the order preserving ones.

6 Related work

Many papers related to SDDS analyzed, as discussed in the introduction, dis-
tributed data structures under the assumption that the number of processors
(nodes, sites) is fixed. Typically, the main problem addressed here is how to place
data among the fixed number of sites in order to balance the workload. We discuss
some of the papers belonging to this area, without the goal of being exhaustive.
Consider also that some of the structures presented in this section could be trans-
formed into scalable ones.

One important aspect under which structures here discussed and SDDSs differ
is the management of load balancing, that is one of the main goal for both of the
categories. In order to achieve load balancing a non scalable structure distributes
data among all the server from the beginning, while a scalable structure starts
with a minimum number of servers (typically one) and balances the load among
them to provide adequate performances. When this is no more possible using the
existing servers, new servers are called in the structure and now the load balancing
technique considers also the new servers.

In [10] a (non scalable) distributed version of extendible hashing is presented.
The directories of the table are replicated among several sites (the directory man-
agers). Data buckets are distributed among sites (the bucket managers). Every
update to the directories must be distributed to every copy. Other issues discussed
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in the paper regard changes in the structure to allow replications, used to increase
availability of the data structure in presence of failure or to improve performance
by allowing more concurrency.

In [27], the problem of implementing Bounded Disordered files in multipro-
cessors multi-disk environments consisting of a fixed number of processor-disk
pairs is considered. The used schema is valid both for tightly coupled (shared
memory) and loosely coupled (local network) processors. The use of Bounded
Disordered files is motivated by the fact that it achieves good performance for
single-key operations (almost as good as that of hash based methods), and unlike
hashing schemes, range searches are performed with a low cost.

The straightforward solution is to equally partition the file records among pro-
cessors, each of which maintains its part of “local” Bounded Disorder file (stored
in the processor’s main memory and disk). This method is highly parallel and
achieves good performance due to the use of Bounded Disorder files.

An alternative method, called Conceptual Bounded Disorder file, is presented,
which obtains performance similar to the above straightforward solution, and in
addition, obtains a significant cut down in main memory space consumption.

In [31] and [11] complexity issues related with the distribution of a dictionary
over a fixed number of processors on a network are considered. Communication
cost takes into account the topology of the network, in the sense that a message
has a cost given by the number of links traversed from the source to destination.
In this case one basic lower bound for the communication cost of an operation
in the worst-case is Ω�D� traversed links, where D is the diameter of the graph
associated to the network. Let m be the number of information items stored in a
structure at a given point in time, and n be the fixed number of sites. The main
objective in [31] and [11] is to have memory-balanced structures, that is structures
where the amount of storage required at the various sites in the system is roughly
the same, more precisely it has to be O�Load�, where Load �

�
m
n

�
.

Special attention is devoted to networks having a tree topology. In order to
apply results for this kind of networks to networks with a generic topology, the
problem of embedding a virtual network with a tree topology in a given generic
network is studied.

Various structures are proposed and analyzed in detail with respect to topolo-
gies of the network and some conditions on m. Some structures present communi-
cation complexity close to optimality (i.e. O�D�) either in the worst-case or in the
amortized case. In some of these cases to obtain this communication cost results
either a central directory manager or directory structure replicated on each site
is assumed. Both these approaches do not allow extensions of the structures to a
scalable environment.

Paper [12] introduces dB-tree, a distributed memory version of the B-link tree.
A B-link tree is a B�-tree where every node has a pointer to its right sibling. When
a node overflows due to an insertion, a half-split operation is performed. First the
node creates its sibling and pass it half of its keys, and second it inserts in its
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parent a pointer to the sibling. Between first and second step keys moved to the
sibling may still be reached through the link between siblings and due to the fact
that each node stores the highest value reachable in the subtree rooted at the node.
The dB-tree distributes nodes of a B-link tree among a fixed number of processors
according to the following strategy: each leaf node is owned by exactly one pro-
cessor, the root node is owned by all processors, each processor owns all internal
nodes linking the root node to its leaf node. Each processor has a local copy of all
nodes it owns. Each node is linked to both its siblings. Each node has a queue of
pending operations to be performed on its copies of nodes. These operations may
be requested either locally or by other processors to make all the copies of the
same node consistent. Search may start at any processor by descending the tree.
When access is needed to a node the processor does not have a copy of, the request
is forwarded and it eventually reaches the processor holding the unique copy of
the leaf node possibly containing the key. Key insertions and deletions that do not
require restructuring (i.e. node split or node merge) are similarly managed.

A split is carried out in three steps: first, a new node is created and half of
the keys are transferred to it (half-split); second, a link-change suboperation is
performed on the sibling to make it point to the new node; third an insert of a
pointer to the new node is performed on the parent. A merge operation is carried
out in four steps: first, keys are moved to the siblings; second, a link-change sub-
operation is performed on both siblings to make them to point each other; third,
a delete is performed on the parent to cancel the pointer to the node; fourth, after
all pointers to the node have been properly changed the node is deleted. Split and
merge operations may trigger similar operation on parent nodes.

Correct serialization of restructuring operations on neighboring nodes is im-
plemented by requiring that a processor wishing to restructure a node first obtain
acknowledgment to a restructure-lock request from all processors holding a copy
of the neighboring nodes, then carries out the required modifications, and finally
releases the restructure lock. This will allow the locked neighbors to proceed, if
needed, with their restructuring operations. This discussion assumed an operation
is performed atomically on all copies of the same node. But only restructuring
operations (i.e. a split or a merge) require synchronizing between all processors
having a copy of the node. Other operations are either lazy, that is they can be
carried out independently by each processor, or lazy/synchronizing, that is they
simply require the processor which triggered them is advised when they have
been completed.

This line of research is further extended in [13], where a lazy update approach
is proposed to lower the cost of updating the replicated nodes in a dB-tree.
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