
An Amortized Lower Bound for Distributed Sear
hingof k -dimensional Data �Adriano Di Pasquale1 Enri
o Nardelli1;21. Dipartimento di Matemati
a Pura ed Appli
ata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010L'Aquila, Italia. E-mail: nardelli�univaq.it2. Istituto di Analisi dei Sistemi ed Informati
a, Consiglio Nazionale delle Ri
er
he, Viale Manzoni30, I-00185 Roma, Italia. � CONTACT AUTHORPrinted on:June 21, 2000Abstra
tIn this paper we
onsider the s
alable distributed data stru
ture paradigm introdu
ed by Litwin,Neimat and S
hneider and analyze
osts for insert, exa
t and range sear
hes in an amortized frame-work. We show that both for the 1-dimensional and the k -dimensional
ase insert and exa
t sear
heshave an amortized almost
onstant
osts, namely O �log(1+A) n�, where n is the total number ofservers of the stru
ture, b is the
apa
ity of ea
h server, and A = b2 . Considering that A is a largevalue, in the order of thousands, we
an assume to have a
onstant
ost in the real distributedstru
tures.Only worst
ase analysis has been previously
onsidered and the almost
onstant
ost for theamortized analysis of the general k -dimensional
ase appears to be very promising in the light ofthe well known di�
ulties in proving optimal worst
ase bounds for k -dimensions.Keywords: distributed data stru
ture, order preserving, message passing environment, multi-dimensional environment, range queries.1 Introdu
tionThe
onstant in
rease of PCs and workstations
onne
ted by a network and the need to manage greaterand greater amount of data motivates the resear
h fo
using on the design and analysis of distributeddatabases. The te
hnologi
al framework we make referen
e to is the so
alled network
omputing : fast
ommuni
ation networks and many powerful and
heap workstations. There are several aspe
ts makingthis environment attra
tive. The most important one is that a set of sites has more power and resour
eswith respe
t to a single site, independently from the equipment of a site. Moreover the network o�ers atransfer speed that is not
omparable with the magneti
 or opti
al disks one. Therefore this frameworkis a suitable environment for the newer appli
ations with high performan
e requirements, like, forexample, spatio-temporal databases [15, 3℄.In this work we
onsider the di
tionary problem in a message passing distributed environment andwe follow the paradigm of the SDDS (S
alable Distributed Data Stru
ture) de�ned by Litwin, Neimat eS
hneider [9℄. The main properties of SDDS paradigm are:1. Keep a good performan
e level while the number of managed obje
ts
hanges.�Resear
h partially supported by the Italian MURST 40% proje
t �Algoritmi, Modelli di Cal
olo e Strutture Informa-tive� and by the the European Union TMR proje
t �Choro
hronos�.1

Version 1.5.0 � Last Revision: May 10, 2000 22. Perform operations lo
ally.We assume that data are distributed among a variable number of servers and a

essed by a set of
lients. Both servers and
lients are distributed among the nodes of the network. Clients and servers
ommuni
ate by sending and re
eiving point-to-point messages. We assume network
ommuni
ationis free of errors. Servers store obje
ts uniquely identi�ed by a key. Every server stores a single blo
k(
alled bu
ket) of at most b data items, for a �xed number b. New servers are brought in as the volumeof data in
reases to maintain the performan
e level.The fundamental measure of the e�
ien
y of an operation in this distributed
ontext is the numberof messages ex
hanged between the sites of the network. The internal work of a site is negle
ted.In order to minimize the number of messages, in a sear
h operation it is possible to use some indexlo
ally to a site to better address the sear
h towards another site. The sear
h pro
ess in the lo
al indexperformed by a site is not a

ounted in the
omplexity analysis.The
lients are not, in general, up-to-date with the evolution of the stru
ture, in the sense they havesome lo
al indexing stru
ture, but do not know, in general, the overall status of the data stru
ture.Di�erent
lients may therefore have di�erent and in
omplete views of the data stru
ture.In an extreme
ase we
an design the following distributed stru
ture: there is a server root knowingall the other servers. When a split o

urs, the new server whi
h is brought in sends a messages to rootto
ommuni
ate its presen
e. When a server is not pertinent for a request, it sends the request to root,that looks for the
orre
t server in its lo
al index and sends it the request. Ea
h a

ess has thus a
ost of at most 2 messages. But with this solution root is a bottlene
k, be
ause it has to manage ea
haddress error, and this violates the basi
 s
alability requirement of the SDDS paradigm.However, the above example shows that we
an have, within this distributed
omputing framework,a worst
ase
onstant
ost for the sear
h pro
ess, while in the
entralized
ase the lower bound is wellknown to be logarithmi
.There are various proposal in the literature addressing the di
tionary problem within the paradigmof the SDDS: LH� [9℄, RP� [10℄, DRT [8℄, lazy k-d-tree [11℄, RBST [1℄, BDST [4℄ distributed B+-trees [2℄.In this work we propose a variant of the management te
hnique for distributed data used in theDRT [8℄. We
ondu
t an amortized analysis of the proposed strategy showing it has an almost
onstant
ost for insert and sear
h and we show how to adapt the strategy to the multi-dimensional
ase.2 Des
ription of the stru
ture2.1 Split managementServers manage their bu
ket in the usual way. We say a server goes in over�ow when it is managingb keys and a new one is sent to it, where b is the
apa
ity of a server. For the sake of simpli
ity, weassume b is even. When a server goes in over�ow it has to split: it �nds a new server to bring in (forexample asking to a spe
ial site,
alled Split Coordinator), and sends it half of its keys.The interval of the keys managed by s is divided by the split in two sub-intervals. From now on,the server s manages one of this sub-intervals (the one that
ontains the keys remaining in s), while s0manages the other one. We assume that after a split the splitting server s always manages the lowerhalf of the two intervals resulting from the split and the new server s0 manages the upper half. Also,after this split, s knows that s0 is the server brought in by itself.After a split, one of the two resulting servers manages b2 keys and the other one b2 + 1 keys. LetA = b2 . Whit m requests, it follows dire
tly that we
an have at most �mA � splits.2.2 Lo
al treeThe
lients and the servers have a lo
al indexing stru
ture,
alled lo
al tree. From a logi
al point of viewthis is a tree
omposed by an in
omplete
olle
tion of servers. For ea
h server s the managed intervalof keys I(s) is also stored. The lo
al tree of a
lient
an be wrong, in the sense that in the reality a

Version 1.5.0 � Last Revision: May 10, 2000 3
Client s

a)

Client sks2s1

b)
request

forwards

LTCs
answer+LTC

request

answer

Figure 1: Possible
ases of the sear
h pro
ess.server s is managing an interval smaller than what the
lient
urrently knows, due to a split performedby s and unknown to the
lient. In parti
ular, given the split management poli
y above des
ribed, ifIr = [a; b) is the real interval of s, and Ilt = [
; d) is the interval of s in some lo
al tree, then a =
 andb � d. For example in reality Ir(s) = [100; 200), while in a lo
al tree we
ould have Ilt(s) = [100; 250).The lo
al tree
an be managed internally with any data stru
ture: list, tree,et
.Note that for ea
h request of a key k re
eived by a server s, k is within the interval I that s managedbefore its �rst division. This is due to the fa
t that if a
lient has information on s, then
ertainly smanages an interval I 0 � I , due to the way over�ow is managed through splits. Therefore if s is
hosenas server to whi
h to send the request of a key k, it means that k 2 I 0) k 2 I .The lo
al tree of a
lient
 is set up and updated using the answers of servers to request of
. Thelo
al tree of a server s is
omposed at least by the servers generated by s through a split. In parti
ular,sin
e a server always knows the next ones brought in by itself through its splits, this always guaranteesthe existen
e of a path between the initial server and any other server. A server always adds its lo
altree in every message to update
lients with information about its view of the overall stru
ture.2.3 Requests managementA
lient
 that wants to perform a request
hooses in its lo
al tree the server s that should manage therequest and sends it a request message.If s is pertinent for the request then performs it (see �gure 1-a). In general, if the request is a sear
hoperation then an answer is always sent ba
k to the
lient; if it is an insert no answer is sent.If s is not pertinent we have an address error. In this
ase s looks for the pertinent server s0 in itslo
al tree and forwards it the request.Sin
e also s0
an be not pertinent, thus forwarding the request to still another server, in general we
an have a series of address error that
auses a
hain of messages between the servers s1,s2,..,sk. Finally,server sk is pertinent and
an satisfy the request. Moreover, sk re
eives the lo
al trees of the servers1,s2,..,sk�1 whi
h have been traversed by the request. It �rst builds a
orre
tion tree C aggregatingthe lo
al trees re
eived and its own one, and then sends Lo
al Tree Corre
tion (LTC) messages withC to the
lient (even if it was an insert operation) and to all servers s1,s2,..,sk�1, so to allow them to
orre
t their lo
al trees (see �gure 1-b).In �gure 1 the possible
ases of sear
h pro
ess are shown. We have that ea
h request has a
ost,without
ounting the initial request and the �nal answer messages, either 0 (
ase a) or 2(k� 1)(
ase b).This strategy to manage the distributed stru
ture, is very similar to the one de�ned by Kröll andWidmayer for DRT [8℄ and therefore we
all it DRT*.2.4 Split treeFrom the des
ription above of the lo
al trees and how they
hange due to the distribution of informationabout the overall stru
ture through LTC messages, it is
lear that the number of messages needed toanswer a request
hanges with the in
rease of the number of requests. To analyze how
hanges in the
ontent and stru
ture of lo
al trees a�e
t the
ost of answering to requests we asso
iate to ea
h server

Version 1.5.0 � Last Revision: May 10, 2000 4
a

b

c

d

e

a

bcd e
s’

a

b

c

d

e
s’

Figure 2: The splits build up ST0(a) (e splits, with s0 as new server)(left and
enter). The e�e
t of a
ompression after a request pertinent for d and arrived to a (right). ST (
) does not
orrespond anymoreto the sub-tree Ta(
) of ST (a). The same for b.s of DRT* a distin
t rooted tree ST (s),
alled the split tree of s. The nodes of ST (s) are the serverspertinent for a request arriving to s. The tree has an arbitrary stru
ture ex
ept that (i) the root is sand (ii) an ar
 (s1; s2) in ST (s) means that s1 is in the lo
al tree of s2. When a server updates its lo
altree using LTC messages the stru
ture of ST (s)
hanges.We
all ST0(s) the split tree of server s obtained from a sequen
e of requests over a DRT* withoutapplying the
orre
tion of the lo
al trees of the servers using LTC messages, i.e. ST0(s) is shaped onlyby splits of the servers. Initially ST0(s) is made up only by s. Whenever s splits, with s0 as new server,the node s0 and a new ar
 (s0; s) are added to ST0(s). The same holds for the splits of servers whi
hare nodes in ST0(s) (for example, in �gure 2-
enter, the split of server e adds the node s0 and the ar
(s0; e) in ST0(a)).Sin
e ea
h server s0 in ST0(s) was
reated by a
hain of splits emanating from s, then s0 manages asub-interval of the initial interval managed by s.If we
onsider the
orre
tion of lo
al trees, the stru
ture of the split tree of s
hanges. In fa
t, dueto the
orre
tion, after a request to a server d, s adds all the servers in the path between s and d in itslo
al tree. The
onsequen
e is that now s
an address dire
tly these servers in the future. In order todes
ribe this new situation in the split tree of s, we delete the ar
s of the traversed path and add to sthe ar
s between s and the traversed servers. The result is a
ompression of the path between s and d(see �gure 2-right).We denote with ST (s) the split tree of s whose stru
ture has been determined by the use of LTCmessages. We denote with Ts(s0) the sub-tree of ST (s) rooted at server s0. We give some immediateproperties of split trees:Lemma 2.1 Ea
h request arriving to s is pertinent for a server in ST (s).Lemma 2.2 Let s0 be a server in ST (s). Let Qs(s0) be the set of servers in the sub-tree of ST0(s)rooted at s0, but for s0 itself. Let p(s0; s) be the set of servers belonging to the path in ST0(s) from s0(ex
luded) to s (in
luded).As long as no request pertinent for a server x 2 Qs(s0) arrives to a server y 2 p(s0; s), it isST (s0) = Ts(s0).For example, by
omparing �gure 2-left and �gure 2-right, you
an
he
k that ST (
) does not
orrespond anymore with the sub-tree Ta(
) of ST (a) after the request pertinent for d arrives to a andis forwarded to d.We use the split trees to takes into a

ount in the amortized analysis how the use of LTC messagesredu
es the
ost of satisfying the request.

Version 1.5.0 � Last Revision: May 10, 2000 5
a

b

c

d

e

f f

a b c d e

a

c

e

b

d

a b

c d

e

ffi ii iii

Figure 3: The
ompression (i), the splitting (ii), and the halving (iii) of a path a,b,
,d,e,f .3 Amortized analysisSin
e the way lo
al trees
hange during the evolution of the overall stru
ture is similar to the stru
tural
hanges happening in the set union problem we now �rst brie�y re
all it and then analyze amortized
omplexity of operations in DRT*.3.1 The set union problemThe set union is a
lassi
al problem that has been deeply analyzed [14, 16℄. It is the problem ofmaintaining a
olle
tion of disjoint sets of elements under the operation of union. All algorithms for theset union problem appearing in the literature use an approa
h based on the
anoni
al element. Withinea
h set, we distinguish an arbitrary but unique element
alled the
anoni
al element, used to representthe set. Operations de�ned in the set union problem are:� make-set(e):
reate a new set
ontaining the single element e, whi
h at the time of the operationdoes not belong to any set. The
anoni
al element of the new set is e.� �nd(e): return the
anoni
al element of the set
ontaining element e.� union(e; f):
ombine the sets whose
anoni
al elements are e and f into a single set, and makeeither e or f the
anoni
al element of the new set. This operation requires that e 6= f .We represent ea
h set by a rooted tree whose nodes are the elements of the set and the root is the
anoni
al element. Ea
h node x
ontains a pointer p(x) to its parent in the tree; the root points toitself. This is a
ompressed tree representation [7℄.To
arry out �nd(e), we follow parent pointers from e until the root, whi
h is then returned. Whiletraversing parent pointer, one
an apply some te
hniques for
ompressing the path from the elementsto the root:
ompression, splitting, and halving (see �gure 3).To
arry out union various te
hniques
an be applied: naive linking, linking by rank and linking bysize. In the rest of the paper we assume that in union(e; f) with the naive linking te
hnique we alwaysmake e point to f .In [16℄, Tarjan and Van Leeuwen have
ondu
ted a worst-
ase analysis on the set union problem.In parti
ular, they have shown that naive linking
oupled with any of the three above des
ribed path
ompression te
hniques gives a worst-
ase running time of the set union problem of ��m log(1+m=n) n�,where m is the number of �nds and n is the number of elements, and it is assumed that m � n.3.2 Upper boundLet us
onsider a request arrived at server s and pertinent for s0. This
an be a sear
h or an insert of akey in a server s0. We
an view this request as the sear
h of the server s0 in ST (s) and we
all this view

Version 1.5.0 � Last Revision: May 10, 2000 6server-sear
h(s0; s). Please note that a request and its view as a server-sear
h in the split tree havethe same
ost. Therefore, in order to
al
ulate the
ost of a sequen
e of requests in a DRT* we
an
onsider a
orresponding sequen
e of operations in split trees, made up by server-sear
hes and splits,and
al
ulate the
ost of this sequen
e. The
ost of a sequen
e of operations is the sum of the
ost ofea
h operation.Let us assume to operate in an environment where the
lients work slowly. More pre
isely, we supposethat between two requests the involved servers have the time to
omplete all updates of their lo
al tree.This restri
tion
an be easily over
ome through the introdu
tion of a suitable lo
k me
hanism [5℄providing similar
omplexity result.Under the previous assumption, in [6℄ we give an upper bound on the
omplexity of queries on DRT*,showing an equivalen
e between split trees and the
ompressed trees used for the set union problemsolved by means of naive linking
oupled with the
ompression te
hnique. In the following we re
allthe main results of this analysis.Theorem 3.1 Let C(m;n) be the
ost in terms of number of messages of a sequen
e of m requestsover a DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+m=n) n� :Sin
e in DRT* there is a relation between m and n (see se
tion 2.1), namely n � mA , then we have:Corollary 3.2 Let C(m;n) the
ost in terms of number of messages of a sequen
e of m requests overa DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+A) n� :Please note that for A = 103 we have log(1+A) n � 4 for n � 1012servers. We therefore
an assumeto have an amortized
onstant
ost in real SDDSs.3.3 Lower boundWe now want to show a
orresponden
e between sequen
es of �nds, make-sets and unions in set unionproblem, and sequen
es of requests in a DRT*, in order to give a lower bound for the
omplexity ofoperations on DRT*.Let � be a sequen
e of ms �nds, n make-sets and l unions, with l < n. For the sake of simpli
itywe assume � terminates with a single
ompressed tree CT (bs).The
orresponding sequen
e � of DRT* operations is made up by two sub-sequen
es �1 and �2 as itfollows. We assume the DRT* starts with one server asso
iated to make-set(bs). �1 is then a sequen
ebuilding an n-server DRT* by means of a series of inserts produ
ing n�1 splits and whi
h do not
auseany address error. In this way for ea
h element of the set union problem we have a server in DRT*. Forea
h make-set(s0), inserts in �1 are used to
reate a server s0 in DRT*. Now two
ases are possible: (i)union(s0; s) exists after make-set(s0), (ii) union(s0; s) does not exist in �. In the former
ase we performthe minimum number of inserts over s required to obtain the server s0 as a new server from the split ofs (see �gure 4). In the latter
ase there is no spe
i�
 server on whi
h we have to
arry out insertions inorder to obtain s0 from its split: then we
an freely
hoose any of the existing server.After having built �1, we have �translated� all make-sets and unions of � in terms of inserts andsplits. To build �2 we now have to asso
iate to ea
h �nd(s0) in set union problem, where s0 is in CT (s),a sear
h operation in the DRT* pertinent for the server s0 and arriving to the server s. We
an viewthis operation as a server-sear
h(s0; s) over a split tree, without a�e
ting the resulting
omplexity.At the end we obtain a sequen
e �1 with mi inserts without address errors and a sequen
e �2 of msserver-sear
hes.Clearly �1 is a legal sequen
e, from the point of view of building a DRT*, sin
e it is made up byjust inserts without address errors and splits. We now dis
uss the legality of �2.

Version 1.5.0 � Last Revision: May 10, 2000 7
s

s’

seq in SUP seq in DRT*

union(s’,s)

s1) inserts

2) split

s

s s’ s
s’

ST(s)

make-set(s’) s’
...
...

CT(s’) and CT(s)s i

Figure 4: To a make-set(s0) and a following union(s0; s) in set union problem (SUP) we make to
orrespond inserts in DRT* that
ause the split of s, with s0 as new server.Lemma 3.3 Let us
onsider a server-sear
h(s0; s) in �
orresponding to a find(s0) in � performed overCT (s). server-sear
h(s0; s) is legal with respe
t to the DRT* built by �1 in the sense that it is
orre
tthat a request pertinent for server s0 arrives to server s.Proof.Assume s = s0. Then server-sear
h(s0; s) in �
orrespond to a request for s0 without address errors.This is
learly a
orre
t operation.Assume now s 6= s0. server-sear
h(s0; s) has been generated by a �nd(s0) that has followed a pathin CT (s). This means that in � there is union(s0; s1), union(s1; s2), .., union(sk�1; sk), where s0 = s0and sk = s. But ea
h of this unions
orresponds to a split in the DRT* built by �. By
onsidering allthese splits together it is easy to
he
k that s0 manages a sub-interval of the initial interval of s. Thenit is
orre
t that a request for s0 arrives to s.To analyze equivalen
e between server-sear
hes and �nds, we pro
eed in two steps for
larity ofpresentation. First we prove the equivalen
e for the �rst �nd in �. Then we generalize the result to ageneri
 o

urren
e of �nd in �.Let pCT (s0; s) = hs0 = x1; x2; : : : ; xr = si be the path
onne
ting s0 to its an
estor s in CT (s). LetpST (t0; t) = ht0 = y1; y2; : : : ; yr = ti be the path
onne
ting t to its des
endant t0 in ST (s0). We saypCT (s0; s) and pST (t0; t) are isomorphi
 if elements xi
orresponds to server yi for i = 1; 2; :::; r.Lemma 3.4 Let �nd(s0) be the �rst �nd in �. Let pCT (s0; s) be the path followed in CT (s) by �nd(s0)and let pST (s0; s) be the path followed in ST (s) by the
orresponding server-sear
h(s0; s). Then pCT (s0; s)and pST (s0; s) are isomorphi
.Proof.Let k be the position of �nd(s0) in �. Two
ases are possible: (i) only make-sets pre
ede �nd(s0) in�, (ii) make-sets and unions pre
ede �nd(s0) in �.Case (i). Let make-set(t) be the operation in position k � 1 in �. If s0 = t then �nd(s0) is exe
utedin CT (s0) and it follows a path of zero ar
s. Its
orresponding operation in � is server-sear
h(s0; s0),following as well a path of zero ar
s in ST (s0). If s0 6= t we
an negle
t the (k� 1)-th operation sin
e itdoes not a�e
t the path followed by �nd(s0) and we apply again the previous arguments to the (k�2)-thoperation until we arrive to operation make-set(s0), whi
h is at latest the �rst operation in �.Case (ii). The proof is by indu
tion on the number of unions pre
eding �nd(s0) in �. Let us assumeonly one union(t0; t00) exists in � before �nd(s0). If the (k � 1)-th operation is a make-set, using thesame arguments as in
ase (i) we either prove the thesis or apply again the analysis to the (k � 2)-thoperation. In going ba
kwards in � we therefore arrive sooner or later to union(t0; t00). If s0 6= t0 we
an negle
t union(t0; t00) sin
e it does not a�e
t the path followed by �nd(s0) and by apply again thesame arguments as above we prove the thesis. If s0 = t0, then the path pCT (t0; t00) followed by �nd(s0)is made up by one ar
 linking t0 to t00 in CT (t00). This is
learly isomorphi
 to pST (t0; t00) in ST (t00) andthe thesis is proved.

Version 1.5.0 � Last Revision: May 10, 2000 8Let us assume now that n unions pre
ede �nd(s0) in � and that by indu
tion the thesis holds for the�rst n�1 unions pre
eding �nd(s0) in �. Let union(t0; t00) be the n-th union. Moreover let union(t0; t00)be the operation pre
eding �nd(s0) to whi
h we arrive going ba
kwards in � on the basis of the samearguments used above (in the other
ases we have the above results). If t0 is not an an
estor of s0 ands0 6= t0, then union(t0; t00) does not a�e
t the path followed by �nd(s0) and by the indu
tive hypothesisthe thesis is proved. If t0 is not an an
estor of s0 and s0 = t0, then we
an apply the same argumentsused for the base
ase of the indu
tion. If t0 is an an
estor of s0 then pCT (t0; t00) is made up by pCT (s0; t0)and the ar
 linking t0 to t00. By the indu
tive hypothesis we have pCT (t0; t00) is isomorphi
 to pST (t0; t00).Lemma 3.5 Let pCT (s0; s) be the path followed in CT (s) by a �nd(s0) and let pST (s0; s) be the pathfollowed in ST (s) by the
orresponding server-sear
h(s0; s). Then pCT (s0; s) and pST (s0; s) are isomor-phi
.Proof.By lemma 3.4 the thesis is true for the �rst �nd in �.Let us assume by indu
tion the thesis holds for the �rst n �nds in �. Let �nd(s0) be the n + 1-th�nd and let k be its position in �.For the proof we have to
onsider three
ases.(i) The (k � 1)-th operation is a make-set(t0). If s0 = t0 we
an apply the analysis of lemma 3.4. Ifs0 6= t0 we
an negle
t the (k� 1)-th operation and apply again the analysis to the (k� 2)-th operation.(ii) The (k�1)-th operation is a �nd(t0) exe
uted in a CT (t00). If s0 = t0 by the indu
tive hypothesisthe thesis is true. If s0 6= t0 then we have two sub-
ases:(a) s0 =2 CT (t00); then pCT (s0; s) is not
hanged by the exe
ution of �nd(t0) and we
an negle
t the(k � 1)-th operation and apply again the analysis to the (k � 2)-th operation.(b) s0 2 CT (t00); In this
ase it is t00 = s. Let bt be the lowest an
estor of s0 lying on pCT (t0; t00). Byindu
tive hypothesis pCT (t0; t00) is isomorphi
 to pST (t0; t00) and pCT (s0;bt) is isomorphi
 to pST (s0;bt).After the
ompression exe
uted by �nd(t0), bt is a dire
t son of t00 both in CT (t00) and in ST (t00) (see�gure 5). Therefore the path followed by the exe
ution of �nd(t0) both in CT (t00) and in ST (t00) ismade up by one ar
 linking bt to its father t00 plus the path linking s0 to bt. By the indu
tive hypothesiswe therefore have pCT (s0; t00) is isomorphi
 to pST (s0; t00).(iii) The k � 1-st operation is union(t0; t00). If t0 is an an
estor of s0 then pCT (s0; t00) is made up bypCT (s0; t0) and the ar
 linking t0 to t00. By the indu
tive hypothesis we have pCT (s0; t00) is isomorphi
to pST (s0; t00). In the other
ases we
an apply the analysis of lemma 3.4.Let Cs(ms; n) the
ost of sequen
e � of ms �nds and n make-sets in the set union problem. LetCi be the
ost of the initial mi inserts in �1 and C(m;n) be the
ost of sequen
e � of m = ms +mirequests in the DRT*. Then:Lemma 3.6 It is: C(m;n) > Cs(ms; n) + CiProof.By
onstru
tion the
ost of � is made up by the sum of the
ost of �1 and �2. The �rst term is
learly Ci. For the se
ond term note that by the lemma 3.5 ea
h server-sear
h
orresponding to a �ndhas the same
ost of the �nd. In fa
t the
ost for both operations is two times the length of the pathfollowed in the
ompressed tree or in the split tree.Moreover, for ea
h make-set we have a split, and ea
h split has a
ost greater than 2 messages.Therefore the total
ost of splits
over the
ost of all make-sets and unions (with n make-set we haveat most n � 1 unions). Then the
ost of the sequen
e of ms �nds and n make-sets and u unions hasa
ost smaller than the relative
ost of the
orresponding ms server-sear
hes and n � 1 splits in theDRT*.Please note that to obtain n servers starting with one empty server, we have to
arry out a sequen
eof b+ 1 inserts to split the �rst server, and at least other b2 (n� 2) inserts over the servers with b2 + 1

Version 1.5.0 � Last Revision: May 10, 2000 9
find(s’)

s

server-search(s’,s)

s

s’ s’

s

s’

s

s’

before

after

SUP
CT(s)

DRT*
ST(s)

client

Figure 5: A �nd in set union problem(SUP) and a
orresponding server-sear
h in the DRT*.keys or at most other � b2 + 1� (n� 2) inserts over the servers with b2 keys, to obtain the other splits. Intotal b2n+1 � mi � � b2 + 1�n� 1. We perform ea
h insert without address error, and with a
ost of 2messages for ea
h insert, we have Ci = 2mi.Theorem 3.7 If m > 2mi, then: C(m;n) =
�m log(1+m=n) n� :Proof.From [16℄ we have that if it is ms > n, then we have Cs(ms; n) =
�ms log(1+ms=n) n�. From thehypothesis, sin
e m = ms +mi, we have ms > m2 . Given the result in lemma 3.6, we have:C(m;n) > Cs(ms; n) + Ci > Cs(ms; n) =
�ms log(1+ms=n) n� :Note that log(1+ms=n) n > log(1+m=n) n, be
ause ms < m. Then:C(m;n) =
�ms log(1+m=n) n�. Sin
e ms > m2 , we have: C(m;n) =
�m log(1+m=n) n�From theorem 3.1 and theorem 3.7, we dire
tly obtain:Corollary 3.8 If m > 2mi, then: C(m;n) = ��m log(1+m=n) n� :Note that the hypothesis m > 2mi means that ea
h key inserted into the DRT* should be sear
hedon the average at least on
e.

Version 1.5.0 � Last Revision: May 10, 2000 104 Extension to the multi-dimensional
aseIn the multi-dimensional
ase we use as indexing stru
ture a distributed version of k -d tree
alled lazyk-d tree, introdu
ed in [11℄ and extensively analyzed in [12, 13℄, with index on
lients and servers. Thelo
al tree is also a lazy k-d tree.Therefore for the multi-dimensional
ase we modify the sear
h pro
ess of lazy k-d trees as in the
aseof DRT*. More pre
isely, with referen
e to the �gure 1, when a request generates a
hain of addresserror, the pertinent server builds up the
orre
tion tree C and sends it within the LTC messages toea
h server in the
hain. In this
ase C is a
onne
ted portion of the overall k-d tree. It
ontains thewhole path from the node asso
iated to s0 to the one asso
iated to sk. A server simply adjusts its lo
altree adding the unknown portion of the tree. The analysis of previous se
tion exa
tly applies to themulti-dimensional
ase.5 ExtensionsThe set union study suggests other heuristi
s to manage a DRT* other than the Compression
ommonlyused in the DRT and lazy k -d tree. For example the Splitting heuristi
 is easily implementable in thesear
h pro
ess of a DRT*. In the sear
h pro
ess
orresponds to the following proto
ol:Let us assume that a sear
h operation has to follow a path from the servers s1; ::; sk. When a servers2 re
eives a routing message from a server s1, it routes to s3 and sends to s1 the message with its lo
altree. The same is performed by the other servers. No lo
al tree LT is built by the �nal pertinent serversk. The splitting heuristi
 keeps the same
omplexity of the
ompression one in the DRT*, but it ismore indi
ated for example in an high
on
urrent system. In fa
t in this
ase our requirement on thetime between two
onse
utive requests arriving at the same server be
ome TR � 2D, in fa
t, the answerto a server that has routed a request arrives just from the server destination of the routing message.Therefore the lo
k time of a server drasti
ally de
reases.An analogous DRT* extension
ould be performed for the Halving heuristi
.6 Con
lusionsWe have introdu
ed and analyzed a variant,
alled DRT*, of the addressing method for SDDSs used inDRT [8℄. Our variant, DRT*, has a very good behavior in the amortized
ase,
lose to the optimality.The method is also extendible to the multi-dimensional
ase, applying the same variation to thelazy k-d tree [11, 13℄.In parti
ular for a real SDDS (made up by hundreds or thousands of servers) we
an assume to havean almost
onstant amortized
ost for the insert and sear
h operations.To prove the result we used a stru
tural analogy between DRT* and
ompressed trees used in theset union problem [14, 16℄. A deeper analysis of this analogy might suggest other proto
ols, possiblymore e�
ient, for the management of distributed data.In the k-dimensional
ase only worst
ase analysis was previously
onsidered and the almost
onstant
ost for the general k-dimensional
ase appears to be very promising in the light of well known di�
ultiesin proving optimal worst
ase bounds for su
h a
ase.Referen
es[1℄ F. Barillari, E. Nardelli, M. Pepe: Fully Dinami
 Distribuited Sear
h Trees Can Be Balan
ed inO(log2N) Time, Te
hni
al Report 146, Dipartimento di Matemati
a Pura ed Appli
ata, Universita'di L'Aquila, July 1997, submitted for publi
ation.

Version 1.5.0 � Last Revision: May 10, 2000 11[2℄ Y. Breitbart, R. Vingralek: Addressing and Balan
ing Issues in Distributed B+-Trees, 1st Workshopon Distributed Data and Stru
tures (WDAS'98), 1998.[3℄ Choro
hronos: A Resear
h Network for Spatiotemporal Database Systems. SIGMOD Re
ord 28(3):12-21 (1999).[4℄ A.Di Pasquale, E. Nardelli: Balan
ed and Distributed Sear
h Trees, Workshop on Distributed Dataand Stru
tures (WDAS'99), Prin
eton, NJ, May 1999.[5℄ A.Di Pasquale, E. Nardelli: Design and analysis of distributed sear
hing of k-dimensional data withalmost
onstant
osts, Te
h.Rep. 00/12, Dept. of Pure and Applied Mathemati
s, Univ. of L'Aquila,Mar
h 2000.[6℄ A.Di Pasquale, E. Nardelli: Distributed sear
hing of k-dimensional data with almost
onstant
osts,ADBIS-DASFA 2000, Praha, September 2000.[7℄ B.A. Galler, M.J. Fisher, An improved equivalen
e algorithm, Commun. ACM 7, 5(1964), 301-303.[8℄ B. Kröll, P. Widmayer: Distributing a sear
h tree among a growing number of pro
essor, in ACMSIGMOD Int. Conf. on Management of Data, pp 265-276 Minneapolis, MN, 1994.[9℄ W. Litwin, M.A. Neimat, D.A. S
hneider: LH* - Linear hashing for distributed �les, ACM SIGMODInt. Conf. on Management of Data, Washington, D. C., 1993.[10℄ W. Litwin, M.A. Neimat, D.A. S
hneider: RP* - A family of order-preserving s
alable distributeddata stru
ture, in 20th Conf. on Very Large Data Bases, Santiago, Chile, 1994.[11℄ E. Nardelli: Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer S
ien
e So
iety(SCCC'96), Valdivia, Chile, November 1996.[12℄ E.Nardelli, F.Barillari and M.Pepe, Design issues in distributed sear
hing of multi-dimensionaldata, 3rd International Symposium on Programming and Systems (ISPS'97), Algiers, Algeria, April1997.[13℄ E. Nardelli, F.Barillari, M. Pepe: Distributed Sear
hing of Multi-Dimensional Data: a Performan
eEvaluation Study, Journal of Parallel and Distributed Computation, 49, 1998.[14℄ R.E. Tarjan, E�
ien
y of a good but non linear set union algorithm, J. Asso
. Comput. Ma
h.,22(1975), pp. 215-225.[15℄ T.Tzouramanis, M.Vassilakopoulos, Y.Manolopoulos: Pro
essing of Spatio-Temporal Queries inImage Databases. ADBIS 1999, pp.85-97.[16℄ J. Van Leeuwen, R.E. Tarjan, Worst-
ase analysis of set union algorithms, J. Asso
. Comput.Ma
h., 31(1984), pp. 245-281.

