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tIn this paper we 
onsider the s
alable distributed data stru
ture paradigm introdu
ed by Litwin,Neimat and S
hneider and analyze 
osts for insert, exa
t and range sear
hes in an amortized frame-work. We show that both for the 1-dimensional and the k -dimensional 
ase insert and exa
t sear
heshave an amortized almost 
onstant 
osts, namely O �log(1+A) n�, where n is the total number ofservers of the stru
ture, b is the 
apa
ity of ea
h server, and A = b2 . Considering that A is a largevalue, in the order of thousands, we 
an assume to have a 
onstant 
ost in the real distributedstru
tures.Only worst 
ase analysis has been previously 
onsidered and the almost 
onstant 
ost for theamortized analysis of the general k -dimensional 
ase appears to be very promising in the light ofthe well known di�
ulties in proving optimal worst 
ase bounds for k -dimensions.Keywords: distributed data stru
ture, order preserving, message passing environment, multi-dimensional environment, range queries.1 Introdu
tionThe 
onstant in
rease of PCs and workstations 
onne
ted by a network and the need to manage greaterand greater amount of data motivates the resear
h fo
using on the design and analysis of distributeddatabases. The te
hnologi
al framework we make referen
e to is the so 
alled network 
omputing : fast
ommuni
ation networks and many powerful and 
heap workstations. There are several aspe
ts makingthis environment attra
tive. The most important one is that a set of sites has more power and resour
eswith respe
t to a single site, independently from the equipment of a site. Moreover the network o�ers atransfer speed that is not 
omparable with the magneti
 or opti
al disks one. Therefore this frameworkis a suitable environment for the newer appli
ations with high performan
e requirements, like, forexample, spatio-temporal databases [15, 3℄.In this work we 
onsider the di
tionary problem in a message passing distributed environment andwe follow the paradigm of the SDDS (S
alable Distributed Data Stru
ture) de�ned by Litwin, Neimat eS
hneider [9℄. The main properties of SDDS paradigm are:1. Keep a good performan
e level while the number of managed obje
ts 
hanges.�Resear
h partially supported by the Italian MURST 40% proje
t �Algoritmi, Modelli di Cal
olo e Strutture Informa-tive� and by the the European Union TMR proje
t �Choro
hronos�.1
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ally.We assume that data are distributed among a variable number of servers and a

essed by a set of
lients. Both servers and 
lients are distributed among the nodes of the network. Clients and servers
ommuni
ate by sending and re
eiving point-to-point messages. We assume network 
ommuni
ationis free of errors. Servers store obje
ts uniquely identi�ed by a key. Every server stores a single blo
k(
alled bu
ket) of at most b data items, for a �xed number b. New servers are brought in as the volumeof data in
reases to maintain the performan
e level.The fundamental measure of the e�
ien
y of an operation in this distributed 
ontext is the numberof messages ex
hanged between the sites of the network. The internal work of a site is negle
ted.In order to minimize the number of messages, in a sear
h operation it is possible to use some indexlo
ally to a site to better address the sear
h towards another site. The sear
h pro
ess in the lo
al indexperformed by a site is not a

ounted in the 
omplexity analysis.The 
lients are not, in general, up-to-date with the evolution of the stru
ture, in the sense they havesome lo
al indexing stru
ture, but do not know, in general, the overall status of the data stru
ture.Di�erent 
lients may therefore have di�erent and in
omplete views of the data stru
ture.In an extreme 
ase we 
an design the following distributed stru
ture: there is a server root knowingall the other servers. When a split o

urs, the new server whi
h is brought in sends a messages to rootto 
ommuni
ate its presen
e. When a server is not pertinent for a request, it sends the request to root,that looks for the 
orre
t server in its lo
al index and sends it the request. Ea
h a

ess has thus a
ost of at most 2 messages. But with this solution root is a bottlene
k, be
ause it has to manage ea
haddress error, and this violates the basi
 s
alability requirement of the SDDS paradigm.However, the above example shows that we 
an have, within this distributed 
omputing framework,a worst 
ase 
onstant 
ost for the sear
h pro
ess, while in the 
entralized 
ase the lower bound is wellknown to be logarithmi
.There are various proposal in the literature addressing the di
tionary problem within the paradigmof the SDDS: LH� [9℄, RP� [10℄, DRT [8℄, lazy k-d-tree [11℄, RBST [1℄, BDST [4℄ distributed B+-trees [2℄.In this work we propose a variant of the management te
hnique for distributed data used in theDRT [8℄. We 
ondu
t an amortized analysis of the proposed strategy showing it has an almost 
onstant
ost for insert and sear
h and we show how to adapt the strategy to the multi-dimensional 
ase.2 Des
ription of the stru
ture2.1 Split managementServers manage their bu
ket in the usual way. We say a server goes in over�ow when it is managingb keys and a new one is sent to it, where b is the 
apa
ity of a server. For the sake of simpli
ity, weassume b is even. When a server goes in over�ow it has to split: it �nds a new server to bring in (forexample asking to a spe
ial site, 
alled Split Coordinator), and sends it half of its keys.The interval of the keys managed by s is divided by the split in two sub-intervals. From now on,the server s manages one of this sub-intervals (the one that 
ontains the keys remaining in s), while s0manages the other one. We assume that after a split the splitting server s always manages the lowerhalf of the two intervals resulting from the split and the new server s0 manages the upper half. Also,after this split, s knows that s0 is the server brought in by itself.After a split, one of the two resulting servers manages b2 keys and the other one b2 + 1 keys. LetA = b2 . Whit m requests, it follows dire
tly that we 
an have at most �mA � splits.2.2 Lo
al treeThe 
lients and the servers have a lo
al indexing stru
ture, 
alled lo
al tree. From a logi
al point of viewthis is a tree 
omposed by an in
omplete 
olle
tion of servers. For ea
h server s the managed intervalof keys I(s) is also stored. The lo
al tree of a 
lient 
an be wrong, in the sense that in the reality a
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Figure 1: Possible 
ases of the sear
h pro
ess.server s is managing an interval smaller than what the 
lient 
urrently knows, due to a split performedby s and unknown to the 
lient. In parti
ular, given the split management poli
y above des
ribed, ifIr = [a; b) is the real interval of s, and Ilt = [
; d) is the interval of s in some lo
al tree, then a = 
 andb � d. For example in reality Ir(s) = [100; 200), while in a lo
al tree we 
ould have Ilt(s) = [100; 250).The lo
al tree 
an be managed internally with any data stru
ture: list, tree,et
.Note that for ea
h request of a key k re
eived by a server s, k is within the interval I that s managedbefore its �rst division. This is due to the fa
t that if a 
lient has information on s, then 
ertainly smanages an interval I 0 � I , due to the way over�ow is managed through splits. Therefore if s is 
hosenas server to whi
h to send the request of a key k, it means that k 2 I 0 ) k 2 I .The lo
al tree of a 
lient 
 is set up and updated using the answers of servers to request of 
. Thelo
al tree of a server s is 
omposed at least by the servers generated by s through a split. In parti
ular,sin
e a server always knows the next ones brought in by itself through its splits, this always guaranteesthe existen
e of a path between the initial server and any other server. A server always adds its lo
altree in every message to update 
lients with information about its view of the overall stru
ture.2.3 Requests managementA 
lient 
 that wants to perform a request 
hooses in its lo
al tree the server s that should manage therequest and sends it a request message.If s is pertinent for the request then performs it (see �gure 1-a). In general, if the request is a sear
hoperation then an answer is always sent ba
k to the 
lient; if it is an insert no answer is sent.If s is not pertinent we have an address error. In this 
ase s looks for the pertinent server s0 in itslo
al tree and forwards it the request.Sin
e also s0 
an be not pertinent, thus forwarding the request to still another server, in general we
an have a series of address error that 
auses a 
hain of messages between the servers s1,s2,..,sk. Finally,server sk is pertinent and 
an satisfy the request. Moreover, sk re
eives the lo
al trees of the servers1,s2,..,sk�1 whi
h have been traversed by the request. It �rst builds a 
orre
tion tree C aggregatingthe lo
al trees re
eived and its own one, and then sends Lo
al Tree Corre
tion (LTC) messages withC to the 
lient (even if it was an insert operation) and to all servers s1,s2,..,sk�1, so to allow them to
orre
t their lo
al trees (see �gure 1-b).In �gure 1 the possible 
ases of sear
h pro
ess are shown. We have that ea
h request has a 
ost,without 
ounting the initial request and the �nal answer messages, either 0 (
ase a) or 2(k� 1)(
ase b).This strategy to manage the distributed stru
ture, is very similar to the one de�ned by Kröll andWidmayer for DRT [8℄ and therefore we 
all it DRT*.2.4 Split treeFrom the des
ription above of the lo
al trees and how they 
hange due to the distribution of informationabout the overall stru
ture through LTC messages, it is 
lear that the number of messages needed toanswer a request 
hanges with the in
rease of the number of requests. To analyze how 
hanges in the
ontent and stru
ture of lo
al trees a�e
t the 
ost of answering to requests we asso
iate to ea
h server
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Figure 2: The splits build up ST0(a) (e splits, with s0 as new server)(left and 
enter). The e�e
t of a
ompression after a request pertinent for d and arrived to a (right). ST (
) does not 
orrespond anymoreto the sub-tree Ta(
) of ST (a). The same for b.s of DRT* a distin
t rooted tree ST (s), 
alled the split tree of s. The nodes of ST (s) are the serverspertinent for a request arriving to s. The tree has an arbitrary stru
ture ex
ept that (i) the root is sand (ii) an ar
 (s1; s2) in ST (s) means that s1 is in the lo
al tree of s2. When a server updates its lo
altree using LTC messages the stru
ture of ST (s) 
hanges.We 
all ST0(s) the split tree of server s obtained from a sequen
e of requests over a DRT* withoutapplying the 
orre
tion of the lo
al trees of the servers using LTC messages, i.e. ST0(s) is shaped onlyby splits of the servers. Initially ST0(s) is made up only by s. Whenever s splits, with s0 as new server,the node s0 and a new ar
 (s0; s) are added to ST0(s). The same holds for the splits of servers whi
hare nodes in ST0(s) (for example, in �gure 2-
enter, the split of server e adds the node s0 and the ar
(s0; e) in ST0(a)).Sin
e ea
h server s0 in ST0(s) was 
reated by a 
hain of splits emanating from s, then s0 manages asub-interval of the initial interval managed by s.If we 
onsider the 
orre
tion of lo
al trees, the stru
ture of the split tree of s 
hanges. In fa
t, dueto the 
orre
tion, after a request to a server d, s adds all the servers in the path between s and d in itslo
al tree. The 
onsequen
e is that now s 
an address dire
tly these servers in the future. In order todes
ribe this new situation in the split tree of s, we delete the ar
s of the traversed path and add to sthe ar
s between s and the traversed servers. The result is a 
ompression of the path between s and d(see �gure 2-right).We denote with ST (s) the split tree of s whose stru
ture has been determined by the use of LTCmessages. We denote with Ts(s0) the sub-tree of ST (s) rooted at server s0. We give some immediateproperties of split trees:Lemma 2.1 Ea
h request arriving to s is pertinent for a server in ST (s).Lemma 2.2 Let s0 be a server in ST (s). Let Qs(s0) be the set of servers in the sub-tree of ST0(s)rooted at s0, but for s0 itself. Let p(s0; s) be the set of servers belonging to the path in ST0(s) from s0(ex
luded) to s (in
luded).As long as no request pertinent for a server x 2 Qs(s0) arrives to a server y 2 p(s0; s), it isST (s0) = Ts(s0).For example, by 
omparing �gure 2-left and �gure 2-right, you 
an 
he
k that ST (
) does not
orrespond anymore with the sub-tree Ta(
) of ST (a) after the request pertinent for d arrives to a andis forwarded to d.We use the split trees to takes into a

ount in the amortized analysis how the use of LTC messagesredu
es the 
ost of satisfying the request.
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Figure 3: The 
ompression (i), the splitting (ii), and the halving (iii) of a path a,b,
,d,e,f .3 Amortized analysisSin
e the way lo
al trees 
hange during the evolution of the overall stru
ture is similar to the stru
tural
hanges happening in the set union problem we now �rst brie�y re
all it and then analyze amortized
omplexity of operations in DRT*.3.1 The set union problemThe set union is a 
lassi
al problem that has been deeply analyzed [14, 16℄. It is the problem ofmaintaining a 
olle
tion of disjoint sets of elements under the operation of union. All algorithms for theset union problem appearing in the literature use an approa
h based on the 
anoni
al element. Withinea
h set, we distinguish an arbitrary but unique element 
alled the 
anoni
al element, used to representthe set. Operations de�ned in the set union problem are:� make-set(e): 
reate a new set 
ontaining the single element e, whi
h at the time of the operationdoes not belong to any set. The 
anoni
al element of the new set is e.� �nd(e): return the 
anoni
al element of the set 
ontaining element e.� union(e; f): 
ombine the sets whose 
anoni
al elements are e and f into a single set, and makeeither e or f the 
anoni
al element of the new set. This operation requires that e 6= f .We represent ea
h set by a rooted tree whose nodes are the elements of the set and the root is the
anoni
al element. Ea
h node x 
ontains a pointer p(x) to its parent in the tree; the root points toitself. This is a 
ompressed tree representation [7℄.To 
arry out �nd(e), we follow parent pointers from e until the root, whi
h is then returned. Whiletraversing parent pointer, one 
an apply some te
hniques for 
ompressing the path from the elementsto the root: 
ompression, splitting, and halving (see �gure 3).To 
arry out union various te
hniques 
an be applied: naive linking, linking by rank and linking bysize. In the rest of the paper we assume that in union(e; f) with the naive linking te
hnique we alwaysmake e point to f .In [16℄, Tarjan and Van Leeuwen have 
ondu
ted a worst-
ase analysis on the set union problem.In parti
ular, they have shown that naive linking 
oupled with any of the three above des
ribed path
ompression te
hniques gives a worst-
ase running time of the set union problem of ��m log(1+m=n) n�,where m is the number of �nds and n is the number of elements, and it is assumed that m � n.3.2 Upper boundLet us 
onsider a request arrived at server s and pertinent for s0. This 
an be a sear
h or an insert of akey in a server s0. We 
an view this request as the sear
h of the server s0 in ST (s) and we 
all this view
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h(s0; s). Please note that a request and its view as a server-sear
h in the split tree havethe same 
ost. Therefore, in order to 
al
ulate the 
ost of a sequen
e of requests in a DRT* we 
an
onsider a 
orresponding sequen
e of operations in split trees, made up by server-sear
hes and splits,and 
al
ulate the 
ost of this sequen
e. The 
ost of a sequen
e of operations is the sum of the 
ost ofea
h operation.Let us assume to operate in an environment where the 
lients work slowly. More pre
isely, we supposethat between two requests the involved servers have the time to 
omplete all updates of their lo
al tree.This restri
tion 
an be easily over
ome through the introdu
tion of a suitable lo
k me
hanism [5℄providing similar 
omplexity result.Under the previous assumption, in [6℄ we give an upper bound on the 
omplexity of queries on DRT*,showing an equivalen
e between split trees and the 
ompressed trees used for the set union problemsolved by means of naive linking 
oupled with the 
ompression te
hnique. In the following we re
allthe main results of this analysis.Theorem 3.1 Let C(m;n) be the 
ost in terms of number of messages of a sequen
e of m requestsover a DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+m=n) n� :Sin
e in DRT* there is a relation between m and n (see se
tion 2.1), namely n � mA , then we have:Corollary 3.2 Let C(m;n) the 
ost in terms of number of messages of a sequen
e of m requests overa DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+A) n� :Please note that for A = 103 we have log(1+A) n � 4 for n � 1012servers. We therefore 
an assumeto have an amortized 
onstant 
ost in real SDDSs.3.3 Lower boundWe now want to show a 
orresponden
e between sequen
es of �nds, make-sets and unions in set unionproblem, and sequen
es of requests in a DRT*, in order to give a lower bound for the 
omplexity ofoperations on DRT*.Let � be a sequen
e of ms �nds, n make-sets and l unions, with l < n. For the sake of simpli
itywe assume � terminates with a single 
ompressed tree CT (bs).The 
orresponding sequen
e � of DRT* operations is made up by two sub-sequen
es �1 and �2 as itfollows. We assume the DRT* starts with one server asso
iated to make-set(bs). �1 is then a sequen
ebuilding an n-server DRT* by means of a series of inserts produ
ing n�1 splits and whi
h do not 
auseany address error. In this way for ea
h element of the set union problem we have a server in DRT*. Forea
h make-set(s0), inserts in �1 are used to 
reate a server s0 in DRT*. Now two 
ases are possible: (i)union(s0; s) exists after make-set(s0), (ii) union(s0; s) does not exist in �. In the former 
ase we performthe minimum number of inserts over s required to obtain the server s0 as a new server from the split ofs (see �gure 4). In the latter 
ase there is no spe
i�
 server on whi
h we have to 
arry out insertions inorder to obtain s0 from its split: then we 
an freely 
hoose any of the existing server.After having built �1, we have �translated� all make-sets and unions of � in terms of inserts andsplits. To build �2 we now have to asso
iate to ea
h �nd(s0) in set union problem, where s0 is in CT (s),a sear
h operation in the DRT* pertinent for the server s0 and arriving to the server s. We 
an viewthis operation as a server-sear
h(s0; s) over a split tree, without a�e
ting the resulting 
omplexity.At the end we obtain a sequen
e �1 with mi inserts without address errors and a sequen
e �2 of msserver-sear
hes.Clearly �1 is a legal sequen
e, from the point of view of building a DRT*, sin
e it is made up byjust inserts without address errors and splits. We now dis
uss the legality of �2.
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orrespond inserts in DRT* that 
ause the split of s, with s0 as new server.Lemma 3.3 Let us 
onsider a server-sear
h(s0; s) in � 
orresponding to a find(s0) in � performed overCT (s). server-sear
h(s0; s) is legal with respe
t to the DRT* built by �1 in the sense that it is 
orre
tthat a request pertinent for server s0 arrives to server s.Proof.Assume s = s0. Then server-sear
h(s0; s) in � 
orrespond to a request for s0 without address errors.This is 
learly a 
orre
t operation.Assume now s 6= s0. server-sear
h(s0; s) has been generated by a �nd(s0) that has followed a pathin CT (s). This means that in � there is union(s0; s1), union(s1; s2), .., union(sk�1; sk), where s0 = s0and sk = s. But ea
h of this unions 
orresponds to a split in the DRT* built by �. By 
onsidering allthese splits together it is easy to 
he
k that s0 manages a sub-interval of the initial interval of s. Thenit is 
orre
t that a request for s0 arrives to s.To analyze equivalen
e between server-sear
hes and �nds, we pro
eed in two steps for 
larity ofpresentation. First we prove the equivalen
e for the �rst �nd in �. Then we generalize the result to ageneri
 o

urren
e of �nd in �.Let pCT (s0; s) = hs0 = x1; x2; : : : ; xr = si be the path 
onne
ting s0 to its an
estor s in CT (s). LetpST (t0; t) = ht0 = y1; y2; : : : ; yr = ti be the path 
onne
ting t to its des
endant t0 in ST (s0). We saypCT (s0; s) and pST (t0; t) are isomorphi
 if elements xi 
orresponds to server yi for i = 1; 2; :::; r.Lemma 3.4 Let �nd(s0) be the �rst �nd in �. Let pCT (s0; s) be the path followed in CT (s) by �nd(s0)and let pST (s0; s) be the path followed in ST (s) by the 
orresponding server-sear
h(s0; s). Then pCT (s0; s)and pST (s0; s) are isomorphi
.Proof.Let k be the position of �nd(s0) in �. Two 
ases are possible: (i) only make-sets pre
ede �nd(s0) in�, (ii) make-sets and unions pre
ede �nd(s0) in �.Case (i). Let make-set(t) be the operation in position k � 1 in �. If s0 = t then �nd(s0) is exe
utedin CT (s0) and it follows a path of zero ar
s. Its 
orresponding operation in � is server-sear
h(s0; s0),following as well a path of zero ar
s in ST (s0). If s0 6= t we 
an negle
t the (k� 1)-th operation sin
e itdoes not a�e
t the path followed by �nd(s0) and we apply again the previous arguments to the (k�2)-thoperation until we arrive to operation make-set(s0), whi
h is at latest the �rst operation in �.Case (ii). The proof is by indu
tion on the number of unions pre
eding �nd(s0) in �. Let us assumeonly one union(t0; t00) exists in � before �nd(s0). If the (k � 1)-th operation is a make-set, using thesame arguments as in 
ase (i) we either prove the thesis or apply again the analysis to the (k � 2)-thoperation. In going ba
kwards in � we therefore arrive sooner or later to union(t0; t00). If s0 6= t0 we
an negle
t union(t0; t00) sin
e it does not a�e
t the path followed by �nd(s0) and by apply again thesame arguments as above we prove the thesis. If s0 = t0, then the path pCT (t0; t00) followed by �nd(s0)is made up by one ar
 linking t0 to t00 in CT (t00). This is 
learly isomorphi
 to pST (t0; t00) in ST (t00) andthe thesis is proved.
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ede �nd(s0) in � and that by indu
tion the thesis holds for the�rst n�1 unions pre
eding �nd(s0) in �. Let union(t0; t00) be the n-th union. Moreover let union(t0; t00)be the operation pre
eding �nd(s0) to whi
h we arrive going ba
kwards in � on the basis of the samearguments used above (in the other 
ases we have the above results). If t0 is not an an
estor of s0 ands0 6= t0, then union(t0; t00) does not a�e
t the path followed by �nd(s0) and by the indu
tive hypothesisthe thesis is proved. If t0 is not an an
estor of s0 and s0 = t0, then we 
an apply the same argumentsused for the base 
ase of the indu
tion. If t0 is an an
estor of s0 then pCT (t0; t00) is made up by pCT (s0; t0)and the ar
 linking t0 to t00. By the indu
tive hypothesis we have pCT (t0; t00) is isomorphi
 to pST (t0; t00).Lemma 3.5 Let pCT (s0; s) be the path followed in CT (s) by a �nd(s0) and let pST (s0; s) be the pathfollowed in ST (s) by the 
orresponding server-sear
h(s0; s). Then pCT (s0; s) and pST (s0; s) are isomor-phi
.Proof.By lemma 3.4 the thesis is true for the �rst �nd in �.Let us assume by indu
tion the thesis holds for the �rst n �nds in �. Let �nd(s0) be the n + 1-th�nd and let k be its position in �.For the proof we have to 
onsider three 
ases.(i) The (k � 1)-th operation is a make-set(t0). If s0 = t0 we 
an apply the analysis of lemma 3.4. Ifs0 6= t0 we 
an negle
t the (k� 1)-th operation and apply again the analysis to the (k� 2)-th operation.(ii) The (k�1)-th operation is a �nd(t0) exe
uted in a CT (t00). If s0 = t0 by the indu
tive hypothesisthe thesis is true. If s0 6= t0 then we have two sub-
ases:(a) s0 =2 CT (t00); then pCT (s0; s) is not 
hanged by the exe
ution of �nd(t0) and we 
an negle
t the(k � 1)-th operation and apply again the analysis to the (k � 2)-th operation.(b) s0 2 CT (t00); In this 
ase it is t00 = s. Let bt be the lowest an
estor of s0 lying on pCT (t0; t00). Byindu
tive hypothesis pCT (t0; t00) is isomorphi
 to pST (t0; t00) and pCT (s0;bt) is isomorphi
 to pST (s0;bt).After the 
ompression exe
uted by �nd(t0), bt is a dire
t son of t00 both in CT (t00) and in ST (t00) (see�gure 5). Therefore the path followed by the exe
ution of �nd(t0) both in CT (t00) and in ST (t00) ismade up by one ar
 linking bt to its father t00 plus the path linking s0 to bt. By the indu
tive hypothesiswe therefore have pCT (s0; t00) is isomorphi
 to pST (s0; t00).(iii) The k � 1-st operation is union(t0; t00). If t0 is an an
estor of s0 then pCT (s0; t00) is made up bypCT (s0; t0) and the ar
 linking t0 to t00. By the indu
tive hypothesis we have pCT (s0; t00) is isomorphi
to pST (s0; t00). In the other 
ases we 
an apply the analysis of lemma 3.4.Let Cs(ms; n) the 
ost of sequen
e � of ms �nds and n make-sets in the set union problem. LetCi be the 
ost of the initial mi inserts in �1 and C(m;n) be the 
ost of sequen
e � of m = ms +mirequests in the DRT*. Then:Lemma 3.6 It is: C(m;n) > Cs(ms; n) + CiProof.By 
onstru
tion the 
ost of � is made up by the sum of the 
ost of �1 and �2. The �rst term is
learly Ci. For the se
ond term note that by the lemma 3.5 ea
h server-sear
h 
orresponding to a �ndhas the same 
ost of the �nd. In fa
t the 
ost for both operations is two times the length of the pathfollowed in the 
ompressed tree or in the split tree.Moreover, for ea
h make-set we have a split, and ea
h split has a 
ost greater than 2 messages.Therefore the total 
ost of splits 
over the 
ost of all make-sets and unions (with n make-set we haveat most n � 1 unions). Then the 
ost of the sequen
e of ms �nds and n make-sets and u unions hasa 
ost smaller than the relative 
ost of the 
orresponding ms server-sear
hes and n � 1 splits in theDRT*.Please note that to obtain n servers starting with one empty server, we have to 
arry out a sequen
eof b+ 1 inserts to split the �rst server, and at least other b2 (n� 2) inserts over the servers with b2 + 1
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Figure 5: A �nd in set union problem(SUP) and a 
orresponding server-sear
h in the DRT*.keys or at most other � b2 + 1� (n� 2) inserts over the servers with b2 keys, to obtain the other splits. Intotal b2n+1 � mi � � b2 + 1�n� 1. We perform ea
h insert without address error, and with a 
ost of 2messages for ea
h insert, we have Ci = 2mi.Theorem 3.7 If m > 2mi, then: C(m;n) = 
�m log(1+m=n) n� :Proof.From [16℄ we have that if it is ms > n, then we have Cs(ms; n) = 
�ms log(1+ms=n) n�. From thehypothesis, sin
e m = ms +mi, we have ms > m2 . Given the result in lemma 3.6, we have:C(m;n) > Cs(ms; n) + Ci > Cs(ms; n) = 
�ms log(1+ms=n) n� :Note that log(1+ms=n) n > log(1+m=n) n, be
ause ms < m. Then:C(m;n) = 
�ms log(1+m=n) n�. Sin
e ms > m2 , we have: C(m;n) = 
�m log(1+m=n) n�From theorem 3.1 and theorem 3.7, we dire
tly obtain:Corollary 3.8 If m > 2mi, then: C(m;n) = ��m log(1+m=n) n� :Note that the hypothesis m > 2mi means that ea
h key inserted into the DRT* should be sear
hedon the average at least on
e.
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aseIn the multi-dimensional 
ase we use as indexing stru
ture a distributed version of k -d tree 
alled lazyk-d tree, introdu
ed in [11℄ and extensively analyzed in [12, 13℄, with index on 
lients and servers. Thelo
al tree is also a lazy k-d tree.Therefore for the multi-dimensional 
ase we modify the sear
h pro
ess of lazy k-d trees as in the 
aseof DRT*. More pre
isely, with referen
e to the �gure 1, when a request generates a 
hain of addresserror, the pertinent server builds up the 
orre
tion tree C and sends it within the LTC messages toea
h server in the 
hain. In this 
ase C is a 
onne
ted portion of the overall k-d tree. It 
ontains thewhole path from the node asso
iated to s0 to the one asso
iated to sk. A server simply adjusts its lo
altree adding the unknown portion of the tree. The analysis of previous se
tion exa
tly applies to themulti-dimensional 
ase.5 ExtensionsThe set union study suggests other heuristi
s to manage a DRT* other than the Compression 
ommonlyused in the DRT and lazy k -d tree. For example the Splitting heuristi
 is easily implementable in thesear
h pro
ess of a DRT*. In the sear
h pro
ess 
orresponds to the following proto
ol:Let us assume that a sear
h operation has to follow a path from the servers s1; ::; sk. When a servers2 re
eives a routing message from a server s1, it routes to s3 and sends to s1 the message with its lo
altree. The same is performed by the other servers. No lo
al tree LT is built by the �nal pertinent serversk. The splitting heuristi
 keeps the same 
omplexity of the 
ompression one in the DRT*, but it ismore indi
ated for example in an high 
on
urrent system. In fa
t in this 
ase our requirement on thetime between two 
onse
utive requests arriving at the same server be
ome TR � 2D, in fa
t, the answerto a server that has routed a request arrives just from the server destination of the routing message.Therefore the lo
k time of a server drasti
ally de
reases.An analogous DRT* extension 
ould be performed for the Halving heuristi
.6 Con
lusionsWe have introdu
ed and analyzed a variant, 
alled DRT*, of the addressing method for SDDSs used inDRT [8℄. Our variant, DRT*, has a very good behavior in the amortized 
ase, 
lose to the optimality.The method is also extendible to the multi-dimensional 
ase, applying the same variation to thelazy k-d tree [11, 13℄.In parti
ular for a real SDDS (made up by hundreds or thousands of servers) we 
an assume to havean almost 
onstant amortized 
ost for the insert and sear
h operations.To prove the result we used a stru
tural analogy between DRT* and 
ompressed trees used in theset union problem [14, 16℄. A deeper analysis of this analogy might suggest other proto
ols, possiblymore e�
ient, for the management of distributed data.In the k-dimensional 
ase only worst 
ase analysis was previously 
onsidered and the almost 
onstant
ost for the general k-dimensional 
ase appears to be very promising in the light of well known di�
ultiesin proving optimal worst 
ase bounds for su
h a 
ase.Referen
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