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A b s t r a c t .  In this paper we consider two new cost measures related to 
the communication overhead and the space requirements associated to 
virtual path layouts in ATM networks, that is the edge congestion and 
the node congestion. Informally, the edge congestion of a given edge e 
at an incident node u is defined as the number of VPs terminating or 
starting from e at u, while the node congestion of a node v is defined as 
the number of VPs having v as an endpoint. We investigate the problem 
of constructing virtual path layouts allowing to connect a specified root 
node to all the others in at most h hops and with maximum edge or 
node congestion c, for two given integers h and c. We first give tight 
results concerning the time complexity of the construction of such lay- 
outs for both the two congestion measures, that is we exactly determine 
all the tractable and intractable cases. Then, we provide some combina- 
torial bounds for arbitrary networks, together with optimal layouts for 
specific topologies such as chains, rings, grids and tori. Extensions to 
d-dimensional grids and tori with d :> 2 are also discussed. 

1 I n t r o d u c t i o n  

The Asynchronous Trans#r Mode (ATM for short) is the most popular network- 
ing paradigm for Broadband ISDN [11, 10, 13]. It  transfers data  in the form of 
small fixed-size cells, that  are routed independently according to two routing 
fields at their header: the virtual channel index (VCI) and the virtual path index 
(VPI). At each intermediate switch, these fields serve as indices to two routing 
tables, and the routing is done in accordance to the predetermined information 
in the appropriate entries. 

* Work supported by the EU TMR Research Training Grant N. ERBFMBICT960861, 
by the EU ESPRIT Long Term Research Project ALCOM-IT under contract 
N. 20244 and by the Italian MURST 40% project "Algoritmi, Modelli di Calcolo 
e Strutture Informative". 
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Routing in ATM is hierarchical in the sense that  the VCI of a cell is ignored 
as long as its VPI is not null. Thus, given the graph underlying the network, 
it is possible to distinguish between the virtual paths, VPs for short, that  are 
based on VPIs and are constituted by a sequence of successive edges or physical 
links, and virtual channels or VCs, tha t  correspond to VCIs and are obtained 
by concatenating a given subset of VPs. 

The VP layouts determined by the VPIs and VCIs entries can be evaluated 
with respect to different cost measures. In particular, a fundamental parameter  
is the hop count, which is given by the number of VPs which comprise the 
path of a VC and determines the efficiency of the setup of the VC (see, e.g., 
[2, 14, 15]). Another cost measure widely considered in the literature is the 
load of a physical edge, which is given by the number of virtual paths that  
share the edge. This number determines the size of the VP routing tables (see, 
e.g., [4]). Finally, the stretch factor is the ratio between the length of the path 
that  a VC takes in the physical graph and the shortest possible path between 
its endpoints. This parameter controls the efficiency of the utilization of the 
network. For further details and technical justifications of the model for ATM 
networks see for instance [1, 9]. 

Some empirical results on the ATM layout problem have been given in [1, 12] 
and some more theoretical analysis in [9, 3, 7, S, 5]. 

In particular, in [9] the computational complexity of determining the exis- 
tence of a VP layout for a given network within a given maximum hop count 
and a given maximum load has been investigated and the authors have shown 
that  this problem is NP-complete when there is no limit on the stretch factor. In 
[9] also some polynomial construction algorithms have been given for trees for 
the stretch factor equal to one, i.e. when the physical routed paths are shortest. 
These results have been extended in [5], where an exact characterization of the 
tractable and intractable cases has been given for shortest path layouts. 

Concerning layout constructions for specific topologies, optimal and nearly 
optimal results for chains and trees have been provided in [9, 3, 8], while to the 
best of our knowledge no optimal results are known for other topologies like 
grids and tori. 

In this paper we consider two new cost measures associated to virtual path 
layouts: the edge congestion, which is given by the number of VPs terminating 
or starting from a given edge at a given node, and the node congestion, tha t  is 
the number of VPs having as an endpoint a given node. These cost measures 
take into account in a balanced (in case of edge congestion) or global (for node 
congestion) way the communication overhead at every given node. In fact, they 
are indicative of the number of accesses in the VC tables, as such tables are 
readed at the end of the VPs. Moreover, these parameters influence directly the 
dimension of VC tables, as any VP which increases the congestion of an edge or 
of a node causes a number of entries in the corresponding VC table equal to the 
number of VCs such a VP belongs to. 

As in [9] and [5], we wilt focus on layouts tha t  enable the routing between all 
nodes and a single root node (rather than between any pair of nodes), under the 
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assumption of a stretch factor equal to one, that  is all the physical routed paths 
are the shortest. In fact, this restricted case can be seen as a building block for 
more complex routing problems and nevertheless its simplicity it has not been 
fully understood yet. 

After showing some general combinatorial results holding for any network, we 
give tight results on the time complexity of constructing optimal rooted virtual 
path layouts. In fact, for the edge congestion case, we exactly establish the border 
between tractabil i ty and intractability, by determining the lowest (constant) 
values of h and c tha t  make the problem computationally hard. Moreover, we 
give efficient construction algorithms for all the tractable cases. Analogous results 
are obtained for the node congestion case. We then provide some optimal layouts 
for specific networks, such as chains, rings, grids and tori. Extensions to d- 
dimensional grids and tori with d > 2 are also discussed. 

The paper is organized as follows: In Section 2 we define the preliminary no- 
tat ion and definitions. In Section 3 we give some basic results for the considered 
cost measures. In Section 4 we provide the above-mentioned time complexity 
results. In Section 5 we present the optimal layouts for specific topologies and 
finally, in Section 6, we give some concluding remarks and list some open prob- 
lems. 

2 P r e l i m i n a r i e s  

We model the network as an undirected graph G = (V, E) ,  where nodes in V 
represent switches and edges in E are the point-to-point physical communication 
links. 

Definit ion 1. A rooted virtual path layout (or simply layout) ~ is a collection 
of paths in G, ternmd virtual paths (VPs for short), and a node r E V, termed 
the root of the layout. 

Defini t ion 2. The hop count 7-l(v) of a node v E V in a layout ~ is the minimum 
number of VPs whose concatenation forms a shortest pa th  in G from v to r.  If 
no such VPs exist, define 7/(v) - co. 

Def in i t ion3 .  The maximal hop count of a layout • is ~'~max(k0) ~-~ 

Given v E V, let us denote as I(v) the set of the edges in E incident to v. 

Def in i t ion4 .  Given v E V and e E I(v),  the edge congestion £(e ,v)  of the edge 
e with respect to v in a layout • is the number of VPs ¢ E ~ that  include e and 
have v as an endpoint. 

Def in i t ion5 .  The maximal edge congestion £max(~) of a layout • is 
maxvev, ee,(v) £(e, v). 
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A layout • with 9t-~max(~ ) < h and Emax(k~) _< c is called a {h,c)-edge layout. 
At each node of the network, a more global congestion measure can be con- 

sidered which takes into account the total  cost required at  the node. 

D e f i n i t i o n  6. Given v E V, the node congestion Af(v) of v in a layout P is the 
number of VPs ¢ E • such that  v is an endpoint of ¢ .  

D e f i n i t i o n  T. The maximal node congestion J~fmax(~) of a layout P is 
m a ~ v  ~f(v). 

A layout P with ~'~max(~) __< h and Afmax(P) < c is called a (h, c)-node layout. 
Clearly, the hop count and the edge (or node) congestion are conflicting 

parameters, as in general a low hop count requires an high congestion and a 
low congestion causes a high hop count. Thus, a very natural  problem arises in 
which one parameter  is traded for the other. Moreover, once fixed two bounds 
h and c respectively on the hop count and on the edge (or node) congestion, 
in a parametric family of graphs it makes sense to consider the problem of 
determining the highest order graph that  admits a layout respecting such bounds. 

D e f i n i t i o n  8. Let G be a family of graphs G. For any two positive integers h 
and c, E~(h, c) (resp. NG(h , c)) is defined as the maximum integer N such there 
exist an N-node graph in G with a (h, c)-edge layout (resp. a (h~ c)-node layout). 

For the sake of brevity, when clear from the context,  we will denote Eq(h, c) 
and ?v~(h, c) respectively as E(h, c) and N(h, c). 

Notice that  all the definitions above assume a stretch factor equal to one, i.e. 
all the physical routed paths are the shortest. 

3 B a s i c  r e s u l t s  

In this section we give some basic results related to the new cost measures 
considered in the paper. 

First of all, let us establish upper bounds on the number of nodes in graphs 
admitting (h, c)-edge layouts or (h, c)-node layouts. 

Given a graph G with a specified root  node r,  we say tha t  a non root node u 
has parameter  d if it has exactly d edges {u, v l } , . . . ,  {u, Vd} such that  for each i, 
1 < i < d, u is on a shortest path from r to vi. Informally, in the edge congestion 
case, the parameter  of a node expresses its ability to reach other nodes, as it 
is equal to the number of edges that  can be used to construct new VPs in any 
shortest path layout. Let the parameter of a family of graphs G be the maximum 
parameter of a non root node of a graph in G. 

L e m m a g .  Let G a family of the graphs with parameter d and such that every 
. (cd)h--1 

root r has degree at most dr. Then E(h, c) <_ 1 + car cd-t " 
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Proof. The lemma can be proved by observing that  from the root node r in one 
hop it is possible to reach at most c .  dr nodes; each node with hop count 1 can 
then reach in another hop at most cd other nodes (for a total of cdr(cd) nodes), 
and this holds for every node with hop count at least 1, since the physical routed 
paths have to be the shortest and thus each node can use at most d outgoing 
edges to reach other nodes. Hence, 

E(h,c)  < 1 + cdr + cdr (cd) + cdr(cd) 2 -t- . . .  -t- edr(cd) h-1 -~ 

h-1 (cd) h - 1 

c d - 1  
i=0 

[] 

L e m m a  10. For any family of graphs ~, N(h ,  c) < c (c -1)h-2  
- c - 2  • 

Proof. Starting from the root node r,  in one hop it is possible to reach at most c 
nodes; each node with hop count 1 can then reach in another hop at most c -  1 
other nodes, and this holds for every node with hop count at least 1, since the 
VP through which a node is reached contributes 1 to its node congestion. Thus, 

N(h,  c) < 1 + c + e(c - 1) + c(c - 1) 2 + . . .  + c(c - 1) h-1 = 

h--1 
I + c Z ( c - 1 )  i = l + c  ( c -  1 ) h - 1  _ c ( c - 1 )  h - 2  

c - 2  c - 2  
i=0 

We finally point out tha t  in this context it does not make sense to consider 
layouts with unbounded physical routed lengths. In fact, optimal layout con- 
structions for the node congestion case can be determined as follows. Consider 
any ordering of the nodes, except the root. Then,  the root reaches through a VP 
in one hop the first c nodes, and iteratively in the order each reached node is 
assigned a VP to all the next (c - 1) unreached nodes, thus attaining the upper 
bound of Lemma 10, which holds also under the assumption of an unbounded 
stretch factor. In the edge congestion case the construction is slightly more com- 
plicated, since nodes have to be ordered non increasingly with respect to their 
degrees. Notice that ,  since to the purpose of minimizing the edge congestion 
VPs have not necessarily to correspond to simple physical paths, at every node 
the incident VPs can be equally distributed among its incident edges. Thus an 
optimal layout can be easily determined. 

Optimal layouts can be easily found even in the gossip case in which, by 
respecting the bounds on the edge or node congestion, each node wants to reach 
every other node in at most a given number of hops. Here the construction be- 
comes a pure combinatorial graph design problem. In fact, if the node congestion 
is bounded by c, there is a layout for a graph G within a given hop count h if 
and only if there exists a c-bounded degree graph with diameter h and at least 
the same number of nodes of G. Any embedding of such a graph on G gives the 
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desired layout. A similar argument holds for the edge congestion, but  here there 
is a layout respecting h and c if there exists a graph with the same number of 
nodes, diameter h and such that ,  if we denote as di the degree of node i in the 
initial graph G, the i-th node of the graph has degree at most c .  di. 

4 Time complexity results 

In this section we prove tight time complexity results for the problem of the 
construction of optimal layouts, by giving an exact characterization of all the 
tractable and intractable case. Some of the proofs are omitted in this extended 
abstract  and will appear in the full version of the paper. 

According to the previous sections, the following decision problem naturally 
arises. 

Definition 11. (h, c ) -edge  layout Problem: 

I N S T A N C E :  A network G = (V, E) and a given root r E V. 
Q U E S T I O N :  Is there a (h, c}-edge layout for G with root r? 

By using proof techniques like those in [5], surprisingly a very similar result 
holds for the edge congestion case. 

T h e o r e m  12. The (h, c)-edge layout problem is NP-comple te  ]or any h and c, 
except for  the cases h = 1, any c and h = 2, c = 1. 

Suitable flow constructions prove the following theorem. 

T h e o r e m  13. The (h,c)-edge layout problem is polynomially solvable i] h = 1 
(any c) or h = 2, c = l .  

Different results instead hold for the node congestion case. In fact, once fixed 
h and c, the problem of determining the existence of an (h, c)-node layout for 
any graph G has a polynomial-time complexity, since from Lemma 10 we know 

that  the number of nodes in G is N ( h ,  c) < c(c-1)~-2 i.e. it is always bounded 
- -  c - 2  ' 

by a constant. Hence, it makes sense to consider different decision problems in 
which h or c are not constant, that  is are part  of the input of the instance. 

Definition 14. (h, D) -node  l a y o u t  P r o b l e m :  

I N S T A N C E :  A network G = (V,E),  a given root r E V and a positive 
integer c. 

Q U E S T I O N :  Is there a (h, c)-node layout for G with root r? 
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Def in i t i on  15. (O, c) -node layout Problem: 

I N S T A N C E :  A network G = (V,E) ,  a given root r E V and a positive 
integer h. 

Q U E S T I O N :  Is there a (h, c)-node layout for G with root r? 

The following results can then be proved. 

Theorem 16. For h > 2 the (h, D)-node layout problem is NP-complete. 

Proof. We first show that  the (2, D)-node layout problem is NP-complete by 
providing a polynomial time transformation from the Dominating Set problem 
(DS) (known to be NP-complete; see [6]). In order to complete the proof, we 
then prove that  if the (h, O)-node layout problem is NP-complete, then also the 
(h + 1, D)-node layout problem is NP-complete. 

In the DS problem we have a universe set U = {Ul , . . .  ,urn} of m elements, 
a family {A1, . . . ,  Af} of f subsets of U and an integer k _< f ;  we want to decide 

k if there exist k subsets Aj~ , . . . ,  Ajk which cover U, i.e. such that  [.Ji=l Aj~ = U. 
Starting from an instance IDS of DS, we construct a graph G that  admits a 

(2, c)-node layout with c = m if and only IDS admits a cover. 
Let G = (V ,E) ,  where V = {r}UV1UV2UV3UV4 and E = E1UE2UE3UE4,  

with: 

y l  = { v o  I a = 1 , . . . ,  m - k } ,  
V2 = {qb I b =  1 , . . . , m -  ( f  - k) - 1}, 
v3 = t c = 1 , . . . , f } ,  
V4 = {Zd I d = 1 , . . . , m ) ,  

and 
E1 = ( (r ,  va) l a = 1 , . . . , m -  k) ,  
E2 = {{vl,qb} I b = 1 , . . .  ,m  - ( f  - k) - 1), 
Ea = {{v l ,wc)  l c = 1 , . . . , f ) ,  
E4 = {{Wc, Zd) l Ud e Ac}. 

Informally, in the reduction graph each subset Ac corresponds to the sub- 
graph induced by node wc and all nodes Zd such that  Ud E Ac, which are all 
connected to We. The idea underlying our construction is that  since at most k 
of the nodes we can be reached from r in one hop, if there are k dominating sets 
in IDs, then all nodes of G can be reached from r in at most 2 hops. 

Assume there are k dominating sets Aj~ , . . . ,  Aj~. We show that  there exists a 
(2, c)-node layout for G. The VPs of ~ are constituted by all edges in E1 UE2 UE3, 
the edges (Vl,Wc} E E3 such that  Ac is not one of the dominating sets, i.e. 
c ~ ji ,  i = 1 , . . . , k ,  and finally the VPs (r, Vl,Wj,) for i = 1 , . . . , k  (which 
correspond to the k dominating sets). By construction, Af(v) < m = c for each 
node v E E. In order to check that  7"/ma~(O) _< 2, it suffices to observe that  
all nodes va E V1 are reached in one hop, nodes qb E V2 are reached in two 
hops, nodes wc E V3 not corresponding to dominating sets are reached in two 
hops, nodes wj~ E V2 corresponding to dominating sets are reached in one hop 
(through the VP (r, vl,wj~)),  and as nodes Wj l , . . . ,wjk  correspond to the k 



59 

dominating sets, all nodes z d E V4 a r e  reached in two hops, since every one of 
them is connected to at least one wj~. 

It remains to show that  if there are no k dominating sets, then no {2, c)-node 
layout k~ for G exists. Consider any layout • for G. Notice first that  each of 
the edges {r, va} must belong to ~, otherwise 7/(va) = ~ .  Similarly, since each 
node qb must be reached through a shortest path, either the edge {vl, qb} or the 
path {r, vt, qb) must be a VP of ~. Without  loss of generality we can assume 
tha t  the first case holds, as otherwise inserting {vl, qb} in the set of the VPs of 
k~ and replacing another VP starting from vl with a longer one directly from r, 
7-1(qb) = 2 and the hop count and node congestion of all the other  nodes can 
only be decreased. Then, there are f nodes Wc C V3 to be reached along shortest 
paths and this can be done only through the remaining f VPs, of which k can 
start  from the root  and f - k from vl, yielding respectively hop count 1 and 
2. Hence, no node in 1/4 can be reached in two hops without exploiting a VP 
starting from a node wc C l@ Let wj~, . . . ,  wj~ be the k nodes in Va such that  
7-/(wj~) = 1, i = 1 , . . .  ,k. Since there are no k dominating sets, then at least 
one node Zc is not connected to any of the nodes wj l , . . .  ,wj~, and therefore 
7t(Zc) > 3. 

In order to complete the proof, we now show that  if the (h, O)-node layout 
problem is NP-complete, then also the (h + 1, D)-node layout problem is NP- 
complete. 

This can be accomplished simply by observing that  given the graph (Z = 
(V, E)  and the node congestion c corresponding to the instance of the (h, [])- 
node layout problem, the graph G' obtained by adding a new root node r '  and 
connecting it to the old root r of G and to c - 1 additional new nodes has a 
(h + 1, c)-node layout if and only if G has a (h, c)-node layout. In fact, each of 
the new inserted edges in G' has to be a VP, so 7-/(r) = 1, and all the remaining 
VPs car( only start  from the old root r. [] 

A graph G = (V, E)  admits a (1, c)-node layout if and only if c _> [V] - 1, 
as from the root it is possible to reach with a VP at most c nodes and c nodes 
can always be reached along shortest paths by means of c VPs leaving the root. 
Thus the following theorem is trivially proved. 

T h e o r e m  17. The (1, C])-node layout problem is solvable in polynomial time. 

Let us now turn our attention to the second decision problem associated to 
the node congestion case, where c is a fixed constant and the hop count h belongs 
to the input of the instance. 

T h e o r e m  18. For c > 3 the ([3, c)-node layout problem is NP-complete. 

T h e o r e m  19. For c <_ 2 the (D, c)-node layout problem is solvable in polynomial 
time. 

All the polynomial time algorithms for the above tractable cases are con- 
structive, that  is they either find the proper layout (if it exists) or they return a 
negative answer. 
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A final interesting remark concerns the (h, c)-edge layout problem. In fact, 
the same argument which leaded to the introduction of two different problems 
in the node congestion case, i.e. the constant upper bound on the total number 
of nodes in the graph, proves the following theorem. 

T h e o r e m  20. Given any positive integer 5, the restriction of the (h, c)-edge lay- 
out problem to the class of the graphs with maximum node degree 5 is solvable 
in polynomial time. 

5 R e s u l t s  for  s p e c i f i c  t o p o l o g i e s  

In this section we give optimum layouts for specific topologies. 
Let us consider first a chain or path of nodes with node set V = { 1 , . . . N }  

and edge set E = ({i, i + 1}11 < i < N}. In order to give worst case estimations 
on the longest chain admitting a (h, c)-edge or (h, c)-node layout, we assume 
r = 1 as the root node. 

T h e o r e m 2 1 .  Let "P be the family of chain (or path) graphs. Then 
E(h,  c) = ~ _  and g ( h ,  c) = c(c--1)h--2c_2 

Proof. By .Lemma9 E(h,c)  <_ 1 + c~--~_11 - ch+l-lc_l and by Lemma 10 
N(h ,c )  < c(c--1)h--2 

- -  C - - 2  

The lower bound on E(h,  c) (resp. N(h ,  c)) follows by observing that  from 
the root of any chain it is possible to reach the next c nodes in one hop, and from 
each node with hop count at least one again  the first next unreached c nodes 
(resp. c - 1 nodes), thus yielding E(h,  c) > 1 + c + c 2 + + c h - ch+l--1 and _ . . *  

N(h ,  c) > 1 + c + c(c - 1) + + c(c - 1) h-1 c(c-Dh-2 [:3 
- -  " ' "  : C - - 2  

A ring graph consists of a node set V : { 0 , . . . , N  - 1} and an edge set 
E : ( ( i ,  (i + 1)modN}ll <__ i < N ) .  As a ring is node-symmetric, without loss 
of generality it is possible to choose any node as the root. By arguments similar 
those ones for chain graphs it is possible to prove the following theorem. 

T h e o r e m 2 2 .  Let T~ be the family of ring graphs, then E(h ,c)  = 2ch+1---~ 1 1 

and N(h ,  c) = ~(~-1)h-2 c-2 i] c is even, otherwise N(h ,  c) = 1 + (c-D~+1-1~-2 

We now turn our attention to the 2-dimensional extensions of chains and 
rings, that  is to grids and tori. 

Given a square grid Gn×n of N = n 2 nodes, with node set V = {( i , j ) l l  _< 
i < n, 1 < j < n} and edge set E = { { ( i , j ) , ( i  + 1, j )}] l  < i < n, 1 < j < 
n} tJ {{( i , j ) ,  ( i , j  + 1)}11 < i < n, 1 < j < n}, again in order to give worst case 
estimations on the largest grid admitt ing a (h, c)-edge or (h, c)-node layout, we 
assume r = (1, 1) as the root node. 

For the case of edge congestion c : 1, as stated by the following theorem the 
dimension of the largest grid admitt ing a (h, c)-edge layout is dominated by the 
maximum number of nodes reachable in h hops along the first row or column. 
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T h e o r e m  23. Let 7 )2 be the family of square grid graphs, then E(h, 1) = h 2 if 
h <_ 3, otherwise E(h, 1) = (h + 1) 2. 

S k e t c h  o f  proof .  By Lemma 9, taking dr -- 2 and d = 2, the maximum number 

of nodes reachable in h hops is N < (2c)h+1-1 = 2h+1 _ 1, which gives E(h, 1) < 
- -  2 c - - I  

h 2 for h _< 3. Moreover, the maximum number of nodes along the first row or 
column reachable from the root in h hops is h + 1 (the root included), thus 
yielding E(h, 1) _< (h + 1) 2 for h > 3. The layout attaining such bounds will be 
shown in the full paper. D 

T h e o r e m  24. Let p2 be the ]amily of square grid graphs. Then, for c >_ 4, 
, (2c) TM-1 

E(h,c)  = [ NV~,~]2 where Nh,c = 2c-1 

Prod]. Again by Lemma 9 with dr = 2 and d = 2, the maximum number of 

nodes reachable in h hops is Nh~c < (2c)h+1-1 Since every grid has a quadratic 
- -  2 c - - 1  " 

number of nodes, that  is n 2 for a given integer n _> 1, the upper bound on E(h, c) 
derives directly by observing that  n = L ~ J  is the maximum integer such 
that  n 2 <_ Nh,c. 

In order to provide an optimal layout, given a square grid G with at least Nh,c 
nodes, we define a gridoid Gh as the subgrid of G induced by nodes (i, j )  with i 
[ Nv/N-~.c j and j _< [ Nv/~,cJ, i.e. the [ ~ ]  x [ ~ j  subgrid induced by the 
first L ~ J  rows and columns, plus the Nh,c -- [ NV/~,c]2 nodes starting from 
node ( [ ~ ] ~  1), going toward node ( ~ 7 ,  [ ~ ] ) a l o n g  row [ Nv/N~,c] 
and then eventually, if Nh,c -- [ ~ j 2  > [V/-~,c], up along column [ Nv/N~,~ ] 
taking nodes ([ Nv/~,c ~ - 1, [ ~ ) ,  ([x/Nh,c~ - 2, [V/-~,c])~ and so on. 

Let the order of Gh be nh = [ ~ J ,  that  is the number of rows or columns 
of the largest subgrid contained in Gh. We now show an incremental construction 
for layouts with edge congestion at most c such that,  for any positive integer 
h, the subgraph induced by all the nodes with hop count at most h is Gh (see 
Figure 1). The theorem then follows by considering the restriction of the layout 
on the nh x nh subgrid of Gh containing n~ = E(h, c) nodes. 

Clearly Go contains only the root (1, 1) and a (1,c)-edge layout for G1 can 
be easily constructed by putting a suitable V P  from the root to each node in 
G1. Let us now show when h ~ 1 how to construct from a (h,c>-edge layout 
for Gh a <h + 1, c)-edge layout for Gh+l. Notice that,  for any node ( i , j ) ,  all the 
nodes (i ' , j ' )  with i' <_ i and j '  _< j belong to a shortest path from (i , j)  to the 
root (1, 1). Then, we first have a set of expanding VPs that,  for each row i (resp. 
column i) with 1 < i < nh, are between the nodes in row i (resp. column i) with 
hop count h (that is belonging to Gh but not to Gh-1) and the nodes in row i 
(resp. column i) belonging to Gh+l -Gh,  SO that  each of them is reached in h +  1 
hops. All the remaining available VPs from the nodes in Gh -- Gh-1 are used to 
reach the remaining not considered nodes ( i , j )  of Gh+l - G h  with i > nh and 
j > nh, i.e. in the right-down corner. 

For any given row i (resp. column i) with 1 < i < nh, let dh be the number 
of nodes in row i (resp. column i) belonging to Gh+l -- Gh. Since each edge can 
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Fig. 1. The incremental layout for grids 

have congestion at most c, in order to guarantee the correctness of the above 
incremental construction we have to prove that  the c.  dh >_ dh+l. 

By construction, 

Similarly, 

dh < nh+~ - n,,.,, + 1 = L ~ J  - [ v / N ~ , d  + 1 _ 

~ (2c) h+2 - 1 4/(2c)h+1 -- 1 
2-~-~ V ~-~ +2= 

(2c)h+ 1 1 (2C)h+ 1 + 2 < 

V ~ - i  - ~ -  +2=  

-v 2c )+2= 
/' 2 V ~ + 1 _ - 1 . )  ~ \  v~ +2. 

dh >_nh+l - - n h - -  l = L ~ J  -- [ N v / - ~ , c J - l >  

2c-1 V 2c- f  2 > ~  -2. 
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It is possible to verify that  if 4 < c < 11 and h > 2 and if c >_ 12, any h it is 

( 

A case analysis shows that  the construction works also for 4 < c < 11 and 
0 < h < 2. This completes the proof of the theorem. El 

Consider now a square torus Tnxn of N = n 2 nodes. Similarly to grids, for 
edge congestion c = 1 we have the following theorem. 

T h e o r e m  25. Let 7~ 2 be the family of square torus graphs, then E(h,  1) = 
(2h - 1) 2 /] h < 3, otherwise E(h,  1) = (2h + 1) 2. 

T h e o r e m  26. Let T42 be the family of square torus graphs. Then, for c > 4, 
/'(2c) ~+1-1 c~+ 1-2~2+4~) E(h,  c) = [ ~ j 2 ,  where Nh.c -~ 4 \ 2c-1 - -  C - - 1  " 

S k e t c h  o f  p r o o f .  Since tori are node-symmetric, we can consider any node as 
the root. Unfortunately, Lemma 9 does not to give an exact estimation of the 
number of nodes reachable in h hops for any given h, since all the nodes in the 
same row or column of the root have parameter  3, that  is can exploit 3 edges to 
reach the other nodes, while all the remaining ones have parameter  2. 

A finer argument allows the exact estimation of Nh,c in the claim and then, 
after defining like for grids a similar notion of toroid, the proof is similar to that  
of Theorem 24. The complete proof of the theorem will appear in the full paper. 

[] 

Tighter results can be determined for the node congestion case. 

T h e o r e m 2 7 .  Let 7 )2 be the family of square grid graphs, then N(h ,c )  = 
[./c(c-1)h-2j2 
V c-2 " 

T h e o r e m  28. Let T42 be the family of square torus graphs, then N(h ,  c) = 

V ~-2 J 

In the above two theorems the upper bound on N(h ,  c) derives directly from 
Lemma 10, while matching layouts are constructed as in the edge congestion 
case by exploiting the gridoid and toroid methods. The formal proofs of these 
theorems will appear  in the complete paper. 

Before concluding the section, we remark that  the gridoid and toroid methods 
can be easily extended to the d-dimensional case with d > 2, thus yielding 
corresponding optimal edge or node layouts for d-dimensional grids an tori. Even 
if we don't  put  separate claims, for c is suitably large in d-dimensional grids 

1 h 1 

( (ac)h+l-1)~J d and N(h ,c )  = 1(c(~-1) - 2 ~ / d  while this yields E(h,e)  = [ ac-1 L\ c-2 ] J , 
1 

N(h,  c) = [ ( ~(c-1)h-2 ~ 2 ! d also for d-dimensional tori. 
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6 Conclusion and open problems 

In this paper  we have considered two new cost measures related to the commu- 
nication overhead and the space requirements associated to vir tual  pa th  layouts 
in ATM networks, tha t  is the edge congestion and the node congestion. 

All the provided t ime complexity results are tight, and the same holds for 
the layout constructions for specific topologies, except for the cases of an edge 
congestion c = 2 and c = 3 in grids and tori. We are very close to the deter- 
mination of these layouts, but they are not incremental,  tha t  is the subset of 
the nodes with hop count at  most  equal to a given integer h in general does not 
form a gridoid or a toroid. In fact,  it is possible to see tha t  in these cases the 
incremental solution does not work, as there are values of h such tha t  from the 
gridoid or toroid of the nodes with hop count at  most  h it is not  possible to 
build the successive one corresponding to a hop count at  most  equal to h + 1. 
Similar considerations hold for the d-dimensional cases with d > 2. 

An interesting issue to be pursued is the determination opt imal  pa th  layouts 
for other network topologies. Moreover, it would be interesting to extend all these 
results to all-to-all layouts, where communication must  be guaranteed between 
any two pair of nodes. 

Another open question concerns the relationship between the congestion mea- 
sures defined in this paper  and the  load parameter ,  tha t  is the number  of VPs 
tha t  share a physical edge. For instmace, as it can be easily verified, a load l 
implies an edge congestion c < l, but  apar t  from this case it seems that  there is 
no strong relationship between the different parameters .  

Finally, while we have remarked tha t  in this context it does not make sense 
to consider an unbounded stretch factor, a case worth to investigate is when the 
stretch factor is bounded by a given real number greater  than  one. 
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