
Finding the Most Vital Node of a Shortest Path�Enrico Nardelliy Guido Proiettiz Peter WidmayerxApril 10, 2002AbstractIn an undirected, 2-node connected graph G = (V;E) with positivereal edge lengths, the distance between any two nodes r and s is thelength of a shortest path between r and s in G. The removal of anode and its incident edges from G may increase the distance fromr to s. A most vital node of a given shortest path from r to s is anode (other than r and s) whose removal from G results in the largestincrease of the distance from r to s. In the past, the problem of �ndinga most vital node of a given shortest path has been studied becauseof its implications in network management, where it is important toknow in advance which component failure will a�ect network e�ciencythe most. In this paper, we show that this problem can be solvedin O(m + n logn) time and O(m) space, where m and n denote thenumber of edges and the number of nodes in G.1 IntroductionThe computational infrastructure throughout society is becoming increas-ingly large and complex. Networks of workstations are vulnerable to attack�This work has been partially supported by the Research Training Network contractNo. HPRN-CT-1999-00104 funded by the European Union, by the CNR-Agenzia 2000 Pro-gram, under Grants No. CNRC00CAB8 and CNRG003EF8, and by the Research ProjectREAL-WINE, partially funded by the Italian Ministry of Education, University and Re-search.yDipartimento di Informatica, Universit�a di L'Aquila, Via Vetoio, 67010 L'Aquila,Italy. E-mail: nardelli@univaq.it and Istituto di Analisi dei Sistemi e Informatica,CNR, Viale Manzoni 30, 00185 Roma, Italy.zDipartimento di Informatica, Universit�a di L'Aquila, Via Vetoio, 67010 L'Aquila,Italy. E-mail: proietti@univaq.it.xInstitut f�ur Theoretische Informatik, ETH Zentrum, CLW C 2, Clausiusstrasse 49,8092 Z�urich, Switzerland. E-mail: widmayer@inf.ethz.ch.1

and failure, and it is generally recognized that the survivability of our com-puting systems is a critical issue. We are interested in a particular type ofsurvivability: How is a communication network a�ected by the failure of acomponent? In this paper, we consider the e�ect that a node failure willhave on a shortest path between two nodes. Our scenario assumes that eachmessage is routed along a shortest path in a communication graph from itssource to its destination. When a node on that path fails, we need to replacethe old route by a new one, preferably by a shortest path in the graph thatdoes not contain the failed node. Let us call this new route a replacement(shortest) path; it will in general be longer than the path it replaces, but itcertainly will never be shorter. From a network management point of view,it is desirable to know for a shortest path ahead of time which node failurewill result in the longest replacement path. Such a node is called a mostvital node, because its failure degrades the transmission from the source tothe destination most strongly.The problem of �nding a most vital node of a shortest path has beende�ned and motivated by Corley and Sha [3]. More precisely, they con-sidered the more general problem of �nding the k most vital nodes of ashortest path, that is the k nodes whose removal will increase the distancebetween the source and the destination node the most, and they gave anexponential algorithm for solving the problem. For the case k = 1, an ef-�cient implementation of their algorithm requires O(mn + n2 log n) time,where m and n denote the number of edges and the number of nodes in theunderlying graph. Note that this is not better than the trivial bound thatwe get by recomputing from scratch the replacement shortest path for everynode along the given shortest path. Later on, Bar-Noy et al. [2] provedthat, for arbitrary k, the problem is strongly NP-hard. Finally, Venema etal. [14] studied the problem for k = 1 in a parallel computing environment,providing a polynomial algorithm.In a related scenario, nodes are reliable, but edges can fail. The problemof �nding amost vital edge on a shortest path has been studied extensively inthe past: We look for an edge whose failure leads to the longest replacementpath [1, 2, 3]. Now, naturally a replacement path is just a path avoidingthe failed edge. Let us assume that the source and destination nodes lie ina 2-edge connected component of the given graph; otherwise, a most vitaledge is just a bridge between these nodes, and that is easy to �nd. Thefastest algorithm to compute most vital edges on a pointer machine runsin O(m+ n logn) time and O(m) space [7]; a recent paper [6] rediscoveredthis algorithm, in the mechanism design framework. On a RAM, there is analgorithm that solves the problem in O(m � �(m;n)) time and O(m) space[9], where �(m;n) denotes the functional inverse of the Ackermann functionde�ned in [13]. Notice that with the same time and space complexity, it2

is also possible to solve an interesting variant of the problem, in which thevitality of an edge e = (u; v) is measured with respect to the length of ashortest detour (i.e., a path not using e) from u to the destination node [8].In this paper, we show that the problem of �nding a most vital node fora shortest path in a 2-node connected, undirected and positively weightedgraph can be solved on a pointer machine in O(m+n log n) time and O(m)space. The e�ciency of our algorithm is based on two considerations. First,we make use of speci�c structural properties of replacement paths in thecomputation. This is realized by means of a priority queue that stores certaindistance values for certain nodes. Unfortunately, the priority queue containsboth distance values that would lead to an incorrect result if they ever wouldbe used and the desired distance values leading to the correct result. Thereason for this mix is algorithmic performance: We have no way of e�cientlydistinguishing between both, but we make sure that the algorithm never usesthe undesired values. Second, we perform this computation incrementallyas we visit the nodes along the shortest path.The paper is organized as follows: In Section 2 we de�ne the problemformally and give the required basic de�nitions. In Section 3, we presentthe structural properties of replacement paths, along with our algorithm. InSection 4, we show how to explicitly compute all the replacement shortestpaths, without any additional space and time overhead. Finally, Section 4discusses modi�cations and further applications, and lists some open prob-lems.2 Basic de�nitionsLet G = (V;E) be an undirected graph, where V is the set of nodes andE � V � V is the set of edges. Let n and m denote the number of nodesand the number of edges, respectively, and, for each e 2 E, let w(e) be apositive real length. A graph H = (V (H); E(H)) is called a subgraph of Gif V (H) � V and E(H) � E. If V (H) = V then H is called a spanningsubgraph of G.A simple path (or a path for short) in G is a subgraph P with V (P) =fv0; v1; : : : ; vkjvi 6= vj for i 6= jg and E(P) = f(vi; vi+1)j0 � i < kg, alsodenoted as P (v0; vk) = hv0; : : : ; vki. Path P (v0; vk) is said to go from v0 tovk or, alternatively, to be between v0 and vk. Its length is the sum of thelengths of the path edges, and will be denoted as jP (v0; vk)j. A graph G isconnected if, for any two nodes u; v 2 V , there exists a path in G going fromu to v. A connected acyclic spanning subgraph of G is called a spanning treeof G. Let G � v denote the graph obtained by removing from G the nodev and its incident edges. A graph G is 2-node connected if for any v 2 V ,G� v is connected. 3

A path between two nodes r and s is shortest in G if it has minimumlength among all the paths in G between r and s. In this case, we denote thepath by PG(r; s), and its length, also known as the distance in G between rand s, by dG(r; s). For a distinguished node r 2 V , called the source, andall the nodes v 2 V n frg, a single-source shortest paths tree (SPT) SG(r) inG is a spanning tree of G rooted in r and formed by the union of shortestpaths, with one shortest path from r to v for each v 2 V n frg.Let PG�v(r; s) be a shortest path between r and s in G � v, named areplacement shortest path for v, and let dG�v(r; s) denote its length. Themost vital node (MVN) problem with respect to PG(r; s) asks for �nding anode v� 2 V nfr; sg such that dG�v�(r; s) � dG�v(r; s), for any v 2 V nfr; sg.3 An e�cient solution of the MVN problemLet PG(r; s) = hv0; v1; : : : ; vki be a shortest path between r = v0 ands = vk in G. First of all, notice that a node (other than r and s) whoseremoval increases the distance between r and s must belong to the nodeset fv1; : : : ; vk�1g. Therefore, in the following, we will consider only theremoval of the nodes along the path.3.1 The structural properties of replacement shortest pathsIn this section, we present the structural properties of replacement shortestpaths that will form the basis for the e�ciency of our algorithm.Let SG(r) denote a SPT in G rooted at r and containing PG(r; s), andlet vi; 1 � i � k � 1, be a node on PG(r; s). When node vi and its incidentedges are removed from G, SG(r) is partitioned into a set of subtrees, thatwe classify as follows (see Figure 1):1. the subtree of SG(r) containing the parent vi�1 of vi; we call the nodesof this subtree the upwards nodes of vi, and we denote them as Ui;2. the subtree of SG(r) containing the child vi+1 of vi; we call the nodesof this subtree the downwards nodes of vi, and we denote them as Di;3. all the remaining subtrees of SG(r); we call the nodes of the union ofall these subtrees the outwards nodes of vi, and we denote them as Oi.In the rest of the paper, we will make use of the following properties,that hold for i; j = 1; : : : ; k� 1 and j 6= i:(P1:) Ui [Oi [Di = V n fvig;(P2:) Ui;Oi and Di are pairwise disjoint; 4

rvi�1SG(r) vi: : : : : :Downwards nodes DiUpwards nodes UiOutwards nodes Oi svi+1Figure 1: Node vi is removed from G: SG(r) is partitioned into a set ofsubtrees, with node sets Ui, Oi and Di.(P3:) Ui � Ui+1;(P4:) Di+1 � Di;(P5:) Oi \ Oj = ;.We start by observing that for nodes in Ui, the shortest path to r doesnot contain vi. This immediately implies the following:Lemma 1 For each node u 2 Ui, dG(r; u) = dG�vi(r; u). 2On the other hand, for nodes in Di, we have that the distance to s doesnot change when vi is removed:Lemma 2 For each node u 2 Di, dG(s; u) = dG�vi(s; u).Proof. Suppose, for the sake of contradiction, that dG(s; u) 6= dG�vi(s; u).Let SG(s) be a SPT in G rooted in s containing PG(r; s). From dG(s; u) 6=dG�vi(s; u), it follows that every shortest path in G between s and u, inparticular PG(s; u) in SG(s), contains vi. Therefore, PG(s; u) has to containits parent vi+1 in SG(s). Hence, the edge ei = (vi; vi+1) belongs to PG(s; u),and since subpaths of shortest paths are shortest paths, we have thatdG(vi+1; u) = w(ei) + dG(vi; u) > dG(vi; u):5

On the other hand, by the fact that u 2 Di, we have that PG(r; u) inSG(r) contains vi and vi+1. Hence, since subpaths of shortest paths areshortest paths, we have thatdG(vi; u) = w(ei) + dG(vi+1; u) > dG(vi+1; u);that is, we have a contradiction. 2Let E(Ui [Oi;Di) � E be the cut induced by Di in G� vi, i.e., the setof edges of G � vi with one end node in Ui [Oi and the other one in Di.In the following, an edge f = (x; y) 2 E(Ui [Oi;Di) will be considered ashaving node y in Di. Edges in E(Ui [Oi;Di) will be named the crossingedges associated with vi. Since any replacement shortest path for node vimust use a crossing edge, the length of the path can be expressed as follows:dG�vi(r; s) = minf=(x;y)2E(Ui[Oi;Di)fdG�vi(r; x)+ w(f) + dG�vi(y; s)g: (1)This immediately suggests an algorithm to solve the MVN problem, butunfortunately we do not know how to compute all the dG�vi(r; x) distancessu�ciently fast, since this might require the computation, for each node vion PG(r; s), of the SPT rooted in r in G � vi. Therefore, let us look atreplacement shortest paths more closely. In a path in G � vi from r to s,let us call the path node y 2 Di closest to r the entry node (into Di) of thepath. We can prove that, to minimize (1), not all the distances in G � vibetween r and nodes in Ui [Oi need to be computed:Lemma 3 Any replacement shortest path for node vi can be expressed asa concatenation of PG�vi�Di(r; x), edge (x; y) and PG(y; s), where y is theentry node into Di, PG�vi�Di(r; x) is a shortest path from r to x in G�vi�Di, and PG(y; s) is a shortest path from y to s in G.Proof. Since r is not contained in Di, but s is, there is a �rst node on thepath traced from r towards s that belongs to Di. Call that node y, and callits predecessor on the path x. This proves the �rst and second part of theclaim. Part three is due to Lemma 2. 23.2 Computing components of distancesLemma 3 allows us to compute replacement shortest paths as follows. First,we compute in G a SPT rooted in s. This gives us all distances dG�vi(y; s)for y 2 Di; i = 1; : : : ; k � 1. Second, we compute all paths PG�vi�Di(r; x)6

from r to x 2 Ui [Oi; i = 1; : : : ; k � 1. This is described in more detail inthe following paragraph. Third, we compose these distance components byinspecting all crossing edges as we go along the nodes vi; i = 1; : : : ; k � 1.This is described in more detail in Section 3.3.For x 2 Ui, from Lemma 1 we have dG�vi�Di(r; x) = dG(r; x), and there-fore the SPT rooted in r that contains PG(r; s), denoted as SG(r), gives usall these values. The remaining more interesting task is the computation ofdG�vi�Di(r; x) for x 2 Oi. We propose to do this as follows, making use ofSG(r). When node vi; 1 � i � k � 1, is removed, we consider the subtree ofSG(r) induced by Ui { which is of course a SPT rooted in r of the subgraphof G induced by the node set Ui. Then we compute the distance from r toall the nodes in Oi in the subgraph of G induced by Ui [Oi. We do this byapplying Dijkstra's algorithm [4] in the following way to the nodes in Oi,starting from the precomputed distances for Ui. Let E(Ui;Oi) be the subsetof edges in E having one end node in Ui and the other one in Oi, let E(Ui; x)be the subset of edges in E(Ui;Oi) having one end node in Ui and the otherone in x 2 Oi, and let E(Oi;Oi) be the subset of edges in E having bothend nodes in Oi. We create an initially empty heap Hi, inserting into it allthe nodes x 2 Oi, with keyk(x) = (minf=(u;x)2E(Ui;x)fdG�vi(r; u) + w(f)g if E(Ui; x) 6= ;;+1 otherwise. (2)Afterwards, we extract the minimum k(x) from Hi, corresponding todG�vi�Di(r; x). Then, we update the keys of adjacent nodes still appearing inHi, by making use of edges in E(Oi;Oi), exactly as in Dijkstra's algorithm.The algorithm iterates until Hi is empty.This algorithm has an e�cient implementation, as expressed in the fol-lowing lemma:Lemma 4 The values dG�vi�Di(r; x) for all nodes x 2 Oi; i = 1; : : : ; k� 1,can be computed in O(m+ n logn) time and O(m) space.Proof. The initial computation of SG(r) takesO(m+n log n) time and O(m)space [5]. Throughout the k � 1 iterations in our algorithm, k � 1 = O(n)heaps are created. Let ni denote the number of nodes of Oi, and let mi =jE(Ui;Oi) [E(Oi;Oi)j. On heap Hi, we perform O(ni) Insert operations,and from Lemma 1, key initialization can be performed in O(mi) time onceSG(r) has been computed. Moreover, we perform O(ni) ExtractMin andO(mi) DecreaseKey operations. By using Fibonacci heaps [5], for all thenodes x 2 Oi, dG�vi�Di(r; x) can then be computed in O(mi + ni logni)time. 7

Since each DecreaseKey operation is associated with an edge of G, andeach edge of G is considered at most twice, and given that sets Oi aredisjoint, we �nally have that the total time isk�1Xi=1 O(mi + ni logni) = O(m+ n logn): 23.3 Combining components of distancesWe are now ready to combine the distance components computed so far. We�rst give a description of the algorithm, and we then analyze its correctnessand its time and space complexity.We consider the nodes v1; : : : ; vk�1 in this order along PG(r; s), andwhen the node vi is considered, we maintain in a heap H the set of nodes Diassociated with it. For each node y 2 Di, we consider the subset of edges inE(Ui[Oi;Di) incident to y, denoted as E(Ui[Oi; y). In the heap, with nodey a key k(y) is associated that satis�es the following condition immediatelybefore a FindMin operation on H is performed:k(y) = minf=(x;y)2E(Ui[Oi;y)fdG�vi�Di(r; x) + w(f) + dG(y; s)g: (3)Notice that in general, this key value is not the length of a shortest pathin G � vi from r to s through y, but, as we explained in Section 3.1, wecannot a�ord to maintain these latter values. We will show later that thesekeys, however, give us su�cient information to solve the problem.The algorithm works in stages. At the beginning, the heap H is createdfor D0, that is, all the nodes in the subtree D0 rooted at v1 in SG(r) areinserted, with arbitrarily large keys associated. At the i-th stage, we considerthe node vi on PG(r; s), and we update the heap in the following way:Step 1: We remove from H the node vi and the nodes Oi associated withit. (Comment: This leaves exactly the nodes in Di in H; we updatetheir keys in Steps 2 and 3.)Step 2: We consider all the nodes in Oi; for each such node x, we inspectits incident edges, and we limit further actions on those crossing intoDi. Let f = (x; y) be one of these crossing edges, if any, and letk0 = dG�vi�Di(r; x) + w(f) + dG(y; s); (4)8

where dG�vi�Di(r; x) has been computed by means of the proceduredescribed in Section 3.2. If k0 < k(y), we decrease the key of y in H tovalue k0. (Comment: When this step is completed, all the crossing edgesassociated with vi and induced by its removal have been exhausted.)Step 3: We then consider all the nodes in vi�1 [Oi�1; for each node x inthis set, we look at its incident edges, and we limit further actions onthose crossing into Di. Let f = (x; y) be one of these crossing edges,if any, and let k0 = dG(r; x) + w(f) + dG(y; s): (5)If k0 < k(y), we decrease the key of y in H to value k0. (Comment:When this step is completed, all the crossing edges associated with viand induced by the reinsertion of vi�1 have been exhausted, and thecorresponding key maintenance in the heap is complete.)Step 4: We �nally �nd the minimum of H. (Comment: We will proveshortly that the key associated with this minimum is exactly the lengthof a replacement shortest path in G � vi between r and s, that isdG�vi(r; s).)When all stages 1; : : : ; k�1 have been completed, a most vital node canthen be determined as a node vj on PG(r; s) such thatdG�vj (r; s) = maxi=1;::: ;k�1fdG�vi(r; s)g: (6)Let us now prove that our algorithm indeed computes at each stage thelength of a corresponding replacement shortest path.Lemma 5 The minimum key found in H at the i-th stage is the length ofa replacement shortest path between r and s in G� vi.Proof. We prove the lemma in two steps. First, we prove that each key inthe heap H, say k(y) for node y, is the length of a shortest path in G � vifrom r to s through the entry node y. The reason is that our algorithminspects all crossing edges (x; y) incident to y, and keeps track of the best.Second, we prove that at least one node in the heap has a key correspond-ing to the length of a replacement shortest path between r and s in G� vi.In fact, for any replacement shortest path PG�vi (r; s), the correspondingentry node y is in H. Let x be its predecessor on PG�vi (r; s). Then, k(y)equals the length of PG�vi(r; s), because the pre�x of such a path from r9

to x is contained in G � vi � Di, and then dG�vi�Di(r; x) = dG�vi(r; x).Therefore, (1) and (3) are both minimized when edge (x; y) is considered,and k(y) = dG�vi(r; s). 2The following theorem can �nally be proved:Theorem 1 A most vital node on a shortest path PG(r; s) between two nodesr and s in a 2-node connected, undirected graph G = (V;E) with n verticesand m edges, with positive real edge lengths, can be determined in O(m +n logn) time and O(m) space.Proof. The correctness of the above algorithm derives from Lemma 5. Thetime complexity follows from that of Lemma 4 for the initial phase. Thisallows us to compute (4) in O(1) time for each crossing edge. Clearly, (5)can be computed in O(1) time for each crossing edge as well, once SG(r) andSG(s) have been computed. Globally, we perform O(m) computations of (4)and (5), since a crossing edge is checked at most twice, once each in Step 2and Step 3. Then, we make use of a Fibonacci heap [5] for maintaining H.Since each node of G is inserted into the heap and removed from it at mostonce, we have a single MakeHeap, O(n) Insert, k�1 = O(n) FindMin, O(n)Delete and O(m) DecreaseKey operations (since a key may be decreased onlywhen a new crossing edge is considered), and thus we obtain a total time ofO(m+ n logn) for heap operations. The time complexity for other tasks isrespectively O(m+n log n) time for computing SG(r) and SG(s), O(n) timefor managing sets Oi; i = 1; : : : ; k � 1, and O(n) time for computing (6).Finally, O(m) space is trivially enough to handle all the operations. Thus,the claim follows. 24 Computing the replacement shortest pathsImplicitly, our algorithm computes not only the lengths of replacementpaths, but also the paths themselves, and it can be easily modi�ed to do soexplicitly, without any additional space and time overhead. In fact, let pr(v)and ps(v) denote the parent of a node v in SG(r) and SG(s), respectively.Moreover, for a node v 2 Oi, let p(v) denote its parent in the (partial)shortest paths tree SG�vi(r) obtained from the incremental application ofthe Dijkstra's algorithm described in Section 3.2. Notice that for some ofthe nodes in V , this value will remain unde�ned, as a consequence of theabove procedure. However, as we already know, these nodes do not belongto any replacement shortest path.By making use of the above pointers, we have that a replacement shortestpath PG�vi (r; s) between r and s in G�vi can be computed as follows. First10

of all, we modify the heap H in such a way that it accommodates, along witheach element y it contains, also the respective crossing edge minimizing theassociated key. Hence, assume that fi = (xi; yi) denotes the edge associatedwith the minimum key found by the algorithm at the i-th stage. The pathPG�vi (r; s) is computed by connecting paths PG�vi(r; xi) and PG�vi(yi; s)through the edge fi. The latter path can be easily computed starting fromyi and by making use of the parents in SG(s). Concerning the former path,we build it starting from xi, and by making use of parents from SG�vi(r)and from SG(r), for the outwards and the upwards nodes of vi, respectively.More precisely, let ui be the node of Ui (not necessarily distinct from xi)�rst encountered when moving from xi towards r. Such a node can be easilydetected in O(1) time. Then, we have thatPG�vi (r; s) =
 r; : : : ; pr(ui)| {z }PG(r;ui) ; ui; : : : ; p(xi); xi| {z }PG�vi(ui;xi) ; yi; ps(yi); : : : ; s| {z }PG(yi;s) �:We therefore have the following:Corollary 1 Given an undirected, 2-node connected graph G = (V;E) withn vertices and m edges, with positive real edge lengths, and given a shortestpath PG(r; s) between two nodes r and s in G, the set of replacement shortestpaths between r and s for all the nodes of PG(r; s) can be computed in O(m+n logn) time and O(m) space. 25 DiscussionIn this paper we have presented a fast solution to the problem of �nding amost vital node along a shortest path PG(r; s) between two nodes r and s ina graph G. It runs in O(m+n logn) time and O(m) space, which, as far aswe know, is the �rst improvement over the trivial bound of O(nm+n2 logn)time and O(m) space that we get by recomputing a replacement shortestpath between r and s from scratch after the removal of each node alongPG(r; s).In some applications, such as transportation networks, it appears tobe more realistic to associate costs with both, nodes and edges, insteadof only one type of network components. Our approach also answers thecorresponding more general question that suggests itself: In a graph whereboth edges and nodes have a positive cost, and where both edges and nodescan fail, what is a most vital edge or node on a shortest path? The algorithmcan be modi�ed slightly and still runs within the same asymptotic boundsfor this more general question, for two reasons. First, edge failures can bemodelled as node failures, when each edge is replaced by a path of length two11

with an extra node in the center of that path; then, the failure of the extranode represents the failure of the original edge. Second, Dijkstra's algorithmcan be adapted easily to work also for shortest path computations in graphswith costs on edges and nodes, where the cost of a path is the sum of thecosts of its edges and nodes. Obviously, both modi�cations do not changethe asymptotic bounds for the runtime and the storage space.Our algorithmic solution is also useful in quite a di�erent applicationcontext. In large networks, components (nodes and edges) may be ownedby di�erent owners. The incentive of an owner of a component to forwarda message, naturally, is to get some reward. In standard economic terms,that reward is the price of the service of forwarding the message. It iseconomically desirable that each owner declares the true price for the servicethat its component o�ers, so as to allocate the overall resources in a bestpossible way. Nevertheless, there is an incentive for owners to speculate andask for a higher price, in the hope of getting a higher pro�t. This leads toeconomically suboptimal resource allocation and is therefore undesirable. Afew studies in the computer science literature have devoted their attentionto setting the boundary conditions in such a way that speculating with highprices does not pay o�. This is known as mechanism design for sel�sh agents[10, 11, 12]. In [11], Nisan and Ronen are explicitly suggesting a rewardingmodel for forwarding messages on paths, based on microeconomic theory,that requires the computation of replacement path lengths for edges. Thismodel assumes that only edges charge a price for forwarding a message;nodes perform their service for free. Here, again, it would be more realisticto have a price for both, edges and nodes, than a limitation of the pricingto the edges alone. A straightforward modi�cation of the charging schemefrom [11] to node and edge prices serves the desired purpose. Now, themodi�cation of our algorithm for node and edge costs and failures is ane�cient implementation of the required replacement path computations.Our solution is e�cient, but it is still open whether it is optimal. Noticethat to improve our solution, a faster computation of a single source shortestpaths tree must be provided. For more general settings there are still manyopen problems; one of them deals with multiple edge or node failures on ashortest path.References[1] M.O. Ball, B.L. Golden and R.V. Vohra, Finding the most vital arcs ina network, Oper. Res. Letters, 8 (1989) 73{76.[2] A. Bar-Noy, S. Khuller and B. Schieber, The complexity of �nding mostvital arcs and nodes. TR CS-TR-3539, Institute for Advanced Studies,12

University of Maryland, College Park, MD, 1995.[3] H.W. Corley and D.Y. Sha, Most vital links and nodes in weightednetworks, Oper. Res. Letters, 1 (1982) 157{160.[4] E.W. Dijkstra, A note on two problems in connection with graphs,Numer. Math., 1 (1959) 269{271.[5] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in im-proved network optimization algorithms, Journal of the ACM, 34 (3)(1987) 596-615.[6] J. Hershberger and S. Suri, Vickrey prices and shortest paths: What isan edge worth?, Proc. of the 42nd Annual IEEE Symp. on Foundationsof Computer Science (FOCS'01), (2001) 252{260.[7] K. Malik, A.K. Mittal and S.K. Gupta, The k most vital arcs in theshortest path problem, Oper. Res. Letters, 8 (1989) 223{227.[8] E. Nardelli, G. Proietti and P. Widmayer, Finding the detour-criticaledge of a shortest path between two nodes, Info. Proc. Letters, 67 (1)(1998) 51{54.[9] E. Nardelli, G. Proietti and P. Widmayer, A faster computation ofthe most vital edge of a shortest path between two nodes, Info. Proc.Letters, 79 (2) (2001) 81{85.[10] N. Nisan, Algorithms for sel�sh agents, Proc. of the 16th Symp. onTheoretical Aspects of Computer Science (STACS'99), Lecture Notesin Computer Science, Vol. 1563, Springer, (1999) 1{15.[11] N. Nisan and A. Ronen, Algorithmic mechanism design, Proc. of the31st Annual ACM Symposium on Theory of Computing (STOC'99),(1999) 129{140.[12] J.S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Con-ventions for Automated Negotiation Among Computers. MIT Press,Cambridge, Massachusetts, 1994.[13] R.E. Tarjan, E�ciency of a good but not linear set union algorithm,Journal of the ACM, 22 (1975) 215{225.[14] S. Venema, H. Shen and F. Suraweera, A parallel algorithm for thesingle most vital vertex problem with respect to single source shortestpaths, Online Proc. of the First Int. Conf. on Parallel and DistributedComputing, Applications and Technologies (PDCAT'2000), Chapter 22,http://www2.comp.polyu.edu.hk/PDCAT2000/publish.html.13

