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Abstract. We consider spatial databases in the topological data model,
i.e., databases that consist of a finite number of labeled regions in the
real plane. Such databases partition the plane further into elementary
regions. We propose a first-order language, which uses elementary-region
variables and label variables, to query spatial databases. All queries ex-
pressible in this first-order logic are topological and they can be evalu-
ated in polynomial time. Furthermore, the proposed language is pow-
erful enough to distinguish between any two spatial databases that are
not topologically equivalent. This language does not allow the expression
of all computable topological queries, however, as is illustrated by the
connectivity query. We also study some more powerful extensions of this
first-order language, e.g., with a while-loop. In particular, we describe an
extension that is sound and computationally complete for the topological
queries on spatial databases in the topological data model.

1 Introduction and Motivation

We consider planar spatial databases in the topological data model, i.e., data-
bases that consist of a finite number of labeled regions in the real plane. Egen-
hofer and his collaborators, who were among the first to consider this model,
have studied the possible topological relationships between regions in the plane
and proposed a number of predicates (the so-called 9-intersection model) to ex-
press topological properties of pairs of regions [7, 8, 9]. Independently, in the
area of spatial reasoning, these topological relations were studied by Randell,
Cui and Cohn [30]. Later on, the topological data model was investigated fur-
ther and given a theoretical foundation by Papadimitriou, Segoufin, Suciu, and
Vianu [25, 32], who considered first-order languages, built on the predicates of
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the 9-intersection model, to express topological properties of spatial data (for
an overview and a general discussion on topological spatial data and topologi-
cal queries see also [24]). In these languages the input databases as well as the
variables range over some infinite class of regions.

Recently, the advantages of region-based models over point-based models
(e.g., [23, 25, 32]) or coordinate-based models (as are found in the constraint
database model for spatial databases [26, 31]) have been investigated by Pratt
and his collaborators [27, 28, 29]. Although Pratt et al. have concluded that in
some non-topological contexts the power of languages in these three models coin-
cides, they show that a region-based approach is more efficient and parsimonious
in a topological setting both from a logic and an AI point of view.

Inspired by one of the languages of Papadimitriou, Suciu, and Vianu [25],
namely FO(Alg,Alg), in which both the variables and the inputs range over
the set of labeled semi-algebraic disks, we propose, in this paper, an alternative
region-based first-order language, named RL, which is less expressive but which
does have a semantics that is computable. Query evaluation has polynomial time
complexity (in the size of the input database). The languageRL, just like the one
of Papadimitriou, Suciu, and Vianu, is a two-sorted logic. Variables of a first type
range over region labels. The labeled regions of a database in the topological data
model partition the plane further into a finite number of elementary regions. In
RL, a second sort of variables range over elementary regions. Apart from some
set-theoretical predicates, the only topological predicates available inRL express
in which order elementary regions appear around an elementary region.

First, we show that all queries, expressible in RL, are topological. Further-
more, the proposed language is shown to be powerful enough to distinguish be-
tween any two spatial databases that are not topologically equivalent. Although
our first-order language can express all the predicates of the 9-intersection model,
it does not allow the expression of all computable topological queries, however, as
is illustrated by the connectivity query. Also Papadimitriou, Suciu and Vianu [25]
have shown that their logic is not powerful enough to express all computable
topological queries and they study an extension with infinitary recursive disjunc-
tions. The latter language is shown to be complete for the topological queries.
The topological connectivity query can be viewed as the spatial analogue of the
standard relational query of graph connectivity, which is also not expressible in
the standard relational calculus [1, 35]. To be able to express queries such as
graph connectivity, one typically uses a more powerful query language such as
Datalog [35], an extension of the relational calculus with recursion.

Also in the constraint model for spatial data [26, 31], various people have
proposed and studied extensions of first-order logic over the reals with tractable
recursion mechanisms to obtain more expressive languages. For example, Datalog
versions with constraints have been proposed [14, 20]; a programming language
extending first-order logic over the reals with assignments and a while-loop has
been shown to be a computationally complete language for constraint databases
[26, Chapter 2]; extensions of first-order logic over the reals with topological
predicates have been proposed and studied [2, 13]; and various extensions of
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first-order logic over the reals with various transitive-closure operators have been
proposed [12, 14, 18]. These extensions are more expressive, in particular, they
allow the expression of connectivity and reachability queries and some are even
computationally complete (in general or for what concerns topological queries).

Motivated by these results, we also study an extension of the first-order lan-
guage RL, with ad-hoc predicates, with a transitive-closure operator and with
while-loop. Of the latter languages we can show different kinds of completeness
with respect to certain complexity classes. In particular, we describe an exten-
sion of RL with while-loop and some set-theoretic operators that is sound and
computationally complete for the topological queries on spatial databases in the
topological data model.

This paper is organized as follows. In the next section, we define spatial data-
bases in the topological data model, topological equivalence of spatial databases
and spatial database queries. In Section 3, we define the region-based first-order
query language RL and investigate its expressive power. The different exten-
sions of RL their completeness are discussed in Section 4. We end this paper
with a discussion of the obtained results and future work.

2 Definitions and Preliminaries

In this section, we define spatial databases, topological equivalence of spatial
databases and spatial database queries. We denote the set of real numbers by R
and the real plane by R2.

2.1 Spatial Databases

We adopt the well-known topological data model for spatial data in which a spa-
tial database consists of labeled regions in the plane [7, 9, 24, 25, 32]. We assume
the existence of an infinite set Names of region labels.

Definition 1. A spatial database (instance)∆ consists of a finite subset names∆
of Names and a mapping ext∆ from names∆ to semi-algebraic regions in R2

that are homeomorphic1 to the open unit disk. ��
We remark that semi-algebraic regions can be finitely described as a Boolean

combination of polynomial constraint expressions of the form p(x, y) > 0, where
p(x, y) is a polynomial in the real variables x, y with integer coefficients. The up-
per half of the open unit disk, that can be described by the polynomial constraint
formula x2 + y2 < 1 ∧ y > 0 is an example of a semi-algebraic region.

Spatial databases are therefore within the framework of constraint databa-
ses [26, 31] in which spatial data is modeled as semi-algebraic sets. Figure 1
(a) gives an example of a spatial database instance with four regions, labeled

1 Two sets A and B in R2 are called homeomorphic if there exists an homeomorphism h
of the plane, i.e., a continuous bijective mapping from R2 to R2 with a continuous
inverse, such that h(A) = B.
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Fig. 1. In (a), an example of a spatial database with four labeled regions (remark
that the regions are actually the interiors of the curves) and its elementary points,
curves, and regions (b)

with A, B, C and D. All these regions are homeomorphic to the open unit disk.
Remark that the region labeled D is a subset of the region labeled A.

In the remainder of this paper, we denote the topological interior, the topo-
logical border, and the topological closure of a set S respectively by S◦, ∂S,
and S̄.

Definition 2. Let ∆ be a spatial database instance.

– We refer to the union of the bordering curves of the labeled regions of ∆,
i.e., ⋃

A∈names∆

∂(ext∆(A)),

as the frame of ∆, and denote this set by Frame(∆);
– We call the points of the frame where the frame is locally not homeomorphic
to a straight line, the elementary points of ∆, and denote the set of these
points by P∆;

– We call the connected components of Frame(∆)\P∆ the elementary curves
of ∆ and denote this set of curves by C∆;

– We call the connected components of R2\Frame(∆) the elementary regions
of ∆, and denote the set of elementary regions by R∆. ��
For the spatial database instance depicted in Figure 1 (a), these sets are

illustrated in Figure 1 (b). There are three elementary points: p1, p2 and p3 (the
frame has four branches locally around these points). There are seven elementary
curves: γ1, ..., γ7 in Figure 1 (b). The complement of the frame has six connected
components: α1, ...,α5, and α∞ in Figure 1 (b).

From well-known properties of semi-algebraic sets it follows that P∆, C∆

andR∆ are always finite sets and that there is exactly one unbounded elementary
region, which we denote by the constant α∞ [3]. Throughout the remainder of
this paper, we use p1, p2, . . . to denote elementary points, γ1, γ2, . . . to denote
elementary curves, and α1, α2, . . . to denote elementary regions.
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2.2 Topological Equivalence of Spatial Databases

It is well-known that the homeomorphisms of R2 are either orientation-
preserving or orientation-reversing [33]. A reflection around a line is an example
of an orientation-reversing homeomorphism. Orientation preserving homeomor-
phisms are commonly referred to as isotopies [33]. To increase readability, we
will work with isotopies in this paper. We can think of isotopies as continuous
deformations of the plane that take place completely within the plane (for a re-
flection around a line, we need to leave the plane for a moment). The results
presented in this paper can be easily extended to homeomorphisms, however.

Definition 3. We call two spatial databases ∆1 and ∆2 topologically equiva-
lent if names∆1 = names∆2 and if there exists an isotopy i of R2 such that
i(ext∆1(A)) = ext∆2(A) for all A in names∆1 . ��

We denote the fact that ∆1 and ∆2 are topologically equivalent by an iso-
topy i, by i(∆1) = ∆2. Topological equivalence of spatial databases can be
decided in polynomial-time [19, 21].

2.3 Spatial Database Queries

We now turn to spatial database queries. In this paper, we are mainly interested
in Boolean queries. We consider a spatial database query to be computable map-
ping on spatial database instances with a one-bit output. Furthermore, we are
especially interested in topological queries.

Definition 4. We say that a spatial database query Q is topological, if for any
topologically equivalent spatial databases ∆1 and ∆2, Q(∆1) = Q(∆2). ��

“Is the union of the labeled regions in ∆ connected?” is an example of
a (Boolean) topological query. “Are there more than four labeled regions of
∆ that are above the x-axis?” is not topological, however.

The restriction to Boolean queries is not fundamental, however. Indeed, for
instance by reserving specific labels for input database regions and others labels
for output regions, we can simulate a spatial database query Q that on input
∆1 returns output ∆2, by a Boolean query Q′ that takes as input the disjoint
union ∆1 ∪d ∆2 and that is such that Q(∆1) = ∆2 if and only if Q′(∆1 ∪d ∆2)
is true.

3 RL: An Elementary-Region Based First-Order Query
Language

In this section, we describe the two-sorted first-order logic RL, a spatial query
language which uses label variables and elementary-region variables. We also
study its expressive power as a topological query language.
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3.1 Syntax and Semantics of the Language RL
Syntax of RL. The language RL is a two-sorted first-order logic with label
variables (typically denoted by a with or without accents and subscripts) and
elementary-region variables (typically denoted by r with or without accents and
subscripts). The logic RL has α∞ as an elementary-region constant and all A,
for A ∈ Names, as name constants.

A query in the language RL is expressed by a first-order formula

ϕ(a1, . . . , am, r1, . . . , rn),

with free label variables a1, . . . , am and free elementary region variables r1, . . . ,
rn. Such first-order formulas are built with the connectives ∧,∨, ¬, → and ↔,
quantification (∃r) and (∀r) over elementary regions, and quantification (∃a)
and (∀a) over labels, from atomic formulas of the form

– r ⊆ a,
– a = a′, a = A, for A ∈ Names,
– r = r′, r = α∞, and
– cwd1d2d3(r, r′1, r

′
2, r

′
3), for d1, d2, d3 ∈ {0, 1},

where r, r′, r′1, r′2, and r′3 are elementary-region variables and a and a′ are label
variables. ��

Further on, we will also use expressions like r ⊆ A. These abbreviate the
formulas (∃a)(r ⊆ a ∧ a = A). We now turn to the semantics of RL queries.

Semantics of RL. The truth value of an RL query ϕ(a1, . . . , am, r1, . . . , rn),
when evaluated on an input database ∆ and with the instantiations A1, . . . Am

for a1, . . . , am, and α1, . . . , αn for r1, . . . , rn is defined as follows (in terms of logic,
we are going to define the meaning of what is usually denoted as ∆ |= ϕ[A1, . . . ,
Am, α1, . . . , αn]). The elementary region variables appearing in ϕ(a1, . . . , am, r1,
. . . , rn) are interpreted to range over the finite set R∆ of elementary regions of
∆ and the label variables are interpreted to range over the elements of the set
names∆. The expression r ⊆ a means that the elementary region r is contained
in the labeled region with label a. The formula a = a′ expresses equality of labels,
and a = A express the equality of the label variable a and the constant label A.
The expressions r = r′ and r = α∞ express respectively equality of elementary
regions and the equality with the unbounded elementary region in ∆. Finally,
the formula cwd1d2d3(r, r′1, r

′
2, r

′
3) means that the elementary regions r

′
1, r

′
2 and

r′3 (possibly, some or all of these are the same) appear consecutively in clockwise
order around the bounded elementary region r such that the intersection of the
closure of r and the closure of r′i is di-dimensional (i = 1, 2, 3). A 0-dimensional
intersection is a point, and a 1-dimensional intersection is a curve segment. If r
is an elementary region, surrounded by a single elementary region r′, we agree
that cw111(r, r′, r′, r′) holds. We agree that cwd1d2d3(α∞, r′, r′′, r′′′) evaluates to
false for any values of r′, r′′ and r′′′. ��
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For examples of the latter expressions, we turn to the database of Fig-
ure 1 (a). Both the expressions cw101(α1, α∞, α3, α∞), cw010(α4, α∞, α5, α∞)
and cw111(α2, α1, α1, α1) hold but cw000(α1, α∞, α3, α∞) does not hold.

When evaluated on the database shown in Figure 1 (a), the sentence (∃r)(∃a)
(r ⊆ a∧ a = A) evaluates to true, since there is an elementary region within the
region labeled A. The sentence (∃r)(∃r′)(∃a)(¬r = r′ ∧ r ⊆ a ∧ r′ ⊆ a ∧ a =
D) evaluates to false on this database instance, however. Indeed, the region
labeled D contains only one elementary region.

In the above definition, we allow an RL query to be expressed by a formula
ϕ(a1, . . . , am, r1, . . . , rn) with free variables. As stated in the previous section,
we are mainly interested in Boolean queries, i.e., queries expressed by formulas
without free variables.

The following proposition says that RL queries can be efficiently computed.
Proposition 1. RL queries can be evaluated in polynomial time (in the size of
the constraint formulas that describe the input database).

Proof sketch. Let ϕ(a1, . . . , am, r1, . . . , rn) be an RL formula. To evaluate
this formula on a given input database ∆, we can proceed as follows. Firstly, the
sets of elementary points, curves and regions of∆ are computed. The sets P∆, C∆

and R∆ have sizes that are bounded polynomially in the size of ∆ (more pre-
cisely, in the size of the constraint formulas describing ∆) and they can be
computed in polynomial time. The set P∆ can be computed from the polyno-
mial constraint formulas of the labeled regions in ∆ in first-order logic over the
reals (see, e.g., [22]). The computation of C∆ and R∆ from the given polynomial
constraint formulas also requires polynomial time (in the number of polynomials
used to describe ∆ and their degrees) [15].

Subformulas of ϕ(a1, . . . , am, r1, . . . , rn) of the form (∃r)ψ(a1, . . . , ak, r, r1,
. . . , rl) can be equivalently replaced by

∨
α∈R∆

ψ(a1, . . . , ak, α, r1, . . . , rl),

and subformulas of the form (∃a)ψ(a, a1, . . . , ak, r1, . . . , rl) can be equivalently
replaced by ∨

A∈names∆

ψ(A, a1, . . . , ak, r1, . . . , rl).

These formulas are polynomially long in the size of ∆. (Remark that strictly
speaking the latter formulas are not in RL. But we write them in an RL-like
fashion to show how their evaluation can be performed). After these replace-
ments, we obtain a quantifier-free expression, that equivalently expresses the
original query, to be evaluated.

To compute the output set of all of (A1, . . . , Am, α1, . . . , αn) ∈ (names∆)
m

× (R∆)n for which ∆ |= ϕ[A1, . . . , Am, α1, . . . , αn], we can then proceed as
follows. We generate all possible candidate outputs (A1, . . . , Am, α1, . . . , αn)
∈ (names∆)

m × (R∆)n and test each of them. Since, for the given formula
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ϕ(a1, . . . , am, r1, . . . , rn), m and n are fixed, the number of possible outputs
is again polynomial in the size of ∆. The latter test can be done because when
all variables are instantiated, the atomic formulas can be evaluated. Indeed, the
formulas r ⊆ Ai, r = r′ and r = α∞ can be checked in first-order logic over the
reals (in polynomial time again), whereas, cwd1d2d3(r, r′1, r′2, r′3) can be verified
by computing adjacency information on the elements of P∆, C∆ and R∆. Also
the adjacency information can be computed in time polynomial in the size of ∆.

In conclusion, we can say that for a fixed RL expression ϕ(a1, . . . , am, r1,
. . . , rn), this expression can be evaluated on each input database ∆ in time
polynomial in the size of ∆. ��

We remark that, even for a fixed number of labeled regions, the number
of elementary regions is not bounded. So, RL is by no means equivalent to
a propositional logic.

3.2 Some First Observations on Expressing Topological Queries in
RL

Here, we start by observing that the language RL is powerful enough to express
the relations of the 9-intersection model. We also state that all queries expressible
in RL are topological.

The 9-Intersection Model. So, firstly we show that RL is expressive enough to
allow the formulation of the predicates of the 9-intersection model. Consider
these spatial predicates on labeled regions that were investigated in depth by
Egenhofer and his collaborators [7, 8, 9]:

– disjoint(A,B), meaning that the topological closure of A is disjoint with that
of B;

– overlap(A,B), meaning that A and B have intersecting interiors;
– meetLine(A,B), meaning that A and B have disjoint interiors and that part
of their borders have a 1-dimensional intersection;

– meetPoint(A,B), meaning that A and B have disjoint interiors and that part
of their borders have a zero-dimensional intersection;

– contain(A,B), meaning that B ⊆ A and that their borders are disjoint;
– cover(A,B), meaning that B ⊂ A and their borders touch;
– equal(A,B), meaning that A = B.

Proposition 2. The predicates disjoint, overlap, contain cover, equal,
meetLine, and meetPoint of the 9-intersection model are expressible in RL.

Proof. The formula

ψ(A,B) ≡ (∀r)(∀r′)
(
r ⊆ A ∧ r′ ⊆ B → (∀r′′)(∀r′′′)(

∧
δ

¬cwδ(r, r′, r′′, r′′′)
))
,
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where δ ranges over {0, 1}3, expresses that the borders of A and B are dis-
joint. Now, disjoint(A,B) can be equivalently expressed in RL by the sentence
¬(∃r)(r ⊆ A ∧ r ⊆ B) ∧ ψ(A,B). The fact meetLine(A,B) is expressed as

¬(∃r)(r ⊆ A ∧ r ⊆ B)∧
(∃r)(∃r′)(∃r′′)(∃r′′′)(r ⊆ A ∧ r′ ⊆ B ∧

∨
(d1,d3)∈{0,1}2

cwd11d3(r, r′′, r′, r′′′)
)
.

And meetPoint(A,B) is expressed as

¬(∃r)(r ⊆ A ∧ r ⊆ B)∧
(∃r)(∃r′)(∃r′′)(∃r′′′)(r ⊆ A ∧ r′ ⊆ B ∧

∨
(d1,d3)∈{0,1}2

cwd10d3(r, r′′, r′, r′′′)
)
.

The formula overlap(A,B) is expressed as (∃r)(r ⊆ A ∧ r ⊆ B),
contains(A,B) is expressed as (∀r)(r ⊆ B → r ⊆ A) ∧ ψ(A,B), covers(A,B)
is expressed as (∀r)(r ⊆ B → r ⊆ A) ∧ ¬ψ(A,B), and finally equal(A,B) is
expressed as (∀r)(r ⊆ A↔ r ⊆ B). ��

Topological Queries in RL. In Section 2.3 we have given the definition of a topo-
logical query (Definition 4). As already remarked, RL also allows the expression
of queries that produce a non-Boolean output. Using the remark made at the
end of Section 2.3, we can generalize the definition of a topological query to
situations where queries can produce an arbitrary output as follows.

Definition 5. We say that a formula ϕ(a1, . . . , am, r1, . . . , rn) in RL is topolog-
ical if and only if for any spatial databases ∆1 and ∆2 that are topologically
equivalent by some isotopy i, we also have that {(A1, . . . , Am, α1, . . . , αn) ∈
(names∆1)

m × (R∆1)n | ∆1 |= ϕ[A1, . . . , Am, α1, . . . , αn]} is mapped to {(A1,
. . . , Am, α1, . . . , αn) ∈ (names∆2)

m × (R∆2)n | ∆2 |= ϕ[A1, . . . , Am, α1, . . . , αn]}
by the function (id , . . . , id , i, . . . , i), where id is the identity mapping. ��

Using this more general definition of topological query, the following propo-
sition can be proven straightforwardly by induction on the syntactic structure
of RL formulas.
Proposition 3. All queries expressible in RL are topological. ��

3.3 Further Results on Expressing Topological Queries in RL
Here, we discuss lower and upper bounds on the expressive power of RL as
a language to express topological properties of spatial databases.
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Lower Bound on the Expressiveness of RL. First, we give the definition of ele-
mentarily equivalent spatial databases. The notion of elementary equivalence of
a language captures the power of this language to distinguish different databases.

Definition 6. We denote the fact that two spatial databases ∆1 and ∆2 cannot
be distinguished by any Boolean RL query (i.e., for every RL sentence ψ, ∆1 |=
ψ if and only if ∆2 |= ψ) by ∆1 ≡RL ∆2, and we say that ∆1 and ∆2 are
elementarily equivalent. ��

The following result gives a lower bound for the expressive power of RL.
Theorem 1. We have that

(i) if two spatial databases ∆1 and ∆2 are topologically equivalent then they
are elementarily equivalent, i.e., then ∆1 ≡RL ∆2;

(ii) if two spatial databases ∆1 and ∆2 are elementarily equivalent, i.e., if
∆1 ≡RL ∆2, then they are topologically equivalent;

(iii) for every database instance ∆ there exists a RL sentence χ∆ such that
for every database instance ∆′, ∆′ |= χ∆ if and only if ∆ and ∆′ are
topologically equivalent. ��

Item (iii) states that for every spatial database there is a characteristic for-
mula that exactly describes the topology of the spatial database.

Whereas (i) of this Theorem follows immediately from Proposition 3, (ii) and
(iii) require more work.

We first prove the following technical lemma.

Lemma 1. Two spatial database instances ∆1 and ∆2 are topologically equiva-
lent if and only if there exists a bijection between R∆1 and R∆2 that maps the
unbounded elementary region to the unbounded elementary region, that maps el-
ementary regions within certain labeled regions to elementary regions in regions
with the same region label and that preserves for any d1, d2, d3 ∈ {0, 1} the eight
relations cwd1d2d3(r, r1, r2, r3).

Proof sketch. The only-if direction is obvious. For the if-direction, we first ob-
serve that two spatial database instances ∆1 and ∆2 are topologically equivalent
if and only if their frames are isotopic2 by an isotopy that respects the labels.
So, we proceed with their frames. We first remark that the frame of a spatial
database can be constructed by applying the following two operations Op1 and
Op2 a finite number of times starting from the empty plane:

Op1 : add a closed curve in the unbounded region;
Op2 : add a curve in the unbounded region between two points of

already existing curves such that a new region is created.
This can be proven easily by induction on the number of elementary curves

in the spatial database.
2 We call two subsets of R2 isotopic if there is an isotopy (i.e., an orientation-preserving

homeomorphism) of R2 that maps one to the other.



354 Luca Forlizzi et al.

We prove the if-direction by induction on the number of elementary curves
in the frame of ∆1. If the number of elementary curves is zero, ∆1 only has one
elementary region, namely α∞. By assumption, also ∆2 has only one elementary
region and therefore the identity mapping is the desired isotopy.

Assume that the number n of elementary curves of ∆1 is strictly positive.
Let b be the bijective mapping between R∆1 and R∆2 that we assume to exist.
Because any frame can be constructed using operations Op1 and Op2, it follows
that ∆1 has an elementary curve γ that is adjacent to α∞ with contact of di-
mension 1 (since a frame can be constructed using Op1 and Op2, γ can be either
an isolated curve or a curve that connects two points of some other curves). Sup-
pose γ separates α∞ from the elementary region α0 in ∆1 and let γ′ correspond
in ∆2 to γ. So, γ′ separates α∞ from b(α0). If we remove γ and γ′ from ∆1 and
∆2 respectively this results in two spatial database frames F1 and F2 such that
α0 and b(α0) are identified with α∞. It is not difficult to show that hereby the
bijection b induces a bijection between the elementary regions of F1 and F2 that
preserves the clockwise appearance of elementary regions around each elemen-
tary region. By the induction hypothesis, there exists an isotopy i of the plane
that maps F1 to F2, and that respects the labeling. This isotopy maps the curve
γ to i(γ) which is not necessarily equal to γ′. We remark that i(γ) creates a new
elementary region. We can make sure that the labeling is respected. A “local”
isotopy can be constructed however that locally maps i(γ) to γ′ and that leaves
the remainder of the frame F1 unaltered. Since by assumption, the labels of the
elementary regions are respected, the composition of this local isotopy with i
gives the desired isotopy that maps ∆1 to ∆2. ��

Proof sketch of Theorem 1. If two databases ∆1 and ∆2 are isotopic,
they cannot be distinguished by any RL sentence because of Proposition 3.
This proves (i). To prove (ii), it suffices to prove (iii). We show that any spatial
database ∆ can be characterized up to isotopy by an RL sentence χ∆. This
formula is of the form

(∃r1) · · · (∃rn)
((
(∀r)

n∨
i=1

r = ri
) ∧

∧
i<j

ri �= rj ∧
∧
i

ri �= α∞∧
∧
i,ji

ri ⊆ Aji ∧
∧

i,(i1,i2,i3)

cwdi1di2di3 (ri, ri1 , ri2 , ri3)
)

which expresses that there are exactly n bounded elementary regions, says to
which of the labeled regions these n elementary regions belong, and completely
describes the clockwise appearance of elementary regions around all elementary
regions.

Suppose that another database ∆′ satisfies χ∆. Then there exists an assign-
ment of the variables r1, . . . , rn to distinct bounded elementary regions of∆′ that
makes χ∆ true. This variable assignment then determines a bijection between
the elementary regions of ∆ and of ∆′. Because both databases satisfy χ∆, the
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∆1
∆2

D

A

BC D

A

B C

Fig. 2. Two databases ∆1 and ∆2 that cannot be distinguished using the less
powerful predicate cwd1d2(r, r1, r2) alone

corresponding bounded elementary regions have the same clockwise appearance
of areas around them. By Lemma 1, ∆ and ∆′ are therefore isotopic. This proves
the theorem. ��

We remark that a predicate cwd1d2(r, r1, r2), that expresses that r1 and r2
appear clockwise around r with contact of dimension d1 and d2 respectively is
not sufficient to obtain Theorem 1. This is illustrated by the two databases in
Figure 2. They cannot be distinguished using cwd1d2(r, r1, r2) alone. This is the
reason why the more powerful cwd1d2d3(r, r1, r2, r3) is used in RL.

Upper Bound on the Expressiveness of RL. The following result shows that not
all topological queries can be expressed in RL. With connect(r1, r2) we denote
that the elementary regions r1 and r2 can be connected by a connected path
that completely belongs to union of the closure of the labeled regions.

Proposition 4. The predicate connect is not expressible in RL.

This result can be proven using a classical Ehrenfeucht-Fräıssé game argu-
ment. The proof of the above proposition would be too technical to give here in
full, but the idea is outlined below.

Proof idea. An Ehrenfeucht-Fräıssé game is a game played over a certain
number of rounds on two databases by two players; the first player is usually
called the spoiler and the second the duplicator. (For the technical details of
Ehrenfeucht-Fräıssé games we refer to theoretical database books [1] or logic
texts [6].)

Assume that the predicate connect(r1, r2) is expressible in RL. The sentence
ϕconnected given as

(∀r1)(∀r2)(((∃a1)(∃a2)(r1 ⊆ a1) ∧ (r2 ⊆ a2))→ connect(r1, r2))

expresses that the spatial database is topologically connected.3 So, if the predi-
cate connect(r1, r2) is expressible in RL, then also the topological connectivity
3 More precisely, we call a spatial database here topologically connected if the union of

the closure of the labeled regions in the spatial database is a path-connected subset
of the plane.
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test is expressible in RL. The sentence ϕconnected has a certain quantifier rank,
say k (basically, this is the number of quantifiers appearing in the quantifier-
prefix of ϕconnected when it is transformed in prenex normal form). When using
Ehrenfeucht-Fräıssé games to prove that the sentence ϕconnected of quantifier
rank k is not expressible it suffices to give two spatial databases ∆k and ∆′

k

such that ∆k |= ϕconnected and ∆′
k �|= ϕconnected (i.e., ∆k is connected and ∆′

k

is disconnected), and such that the duplicator has a winning strategy for the k-
round game on these two spatial databases. The two databases ∆k and ∆′

k that
are needed here can be found by adapting the well-known Ehrenfeucht-Fräıssé
games that show that graph-connectivity is not expressible in the relational cal-
culus (see, for instance, the proof of Proposition 17.2.3 in [1]) to this situation.
Roughly, ∆k would consist of an exponentially (in k) long chain of regions in
which two neighboring regions are connected and ∆′

k would consist of two dis-
joint such chains. Using similar arguments as in the relational case [1], it can be
shown that the duplicator has a winning strategy on these databases for the k-
round game. ��

We remark that there is a variety of examples of computable topological
queries that are not expressible in RL. For instance, the parity queries “Is the
number of elementary regions in the database even?” and “Is the number of
connected components of the database even?” are both not expressible in RL.

4 More Powerful Query Languages: Extensions of RL
Although many interesting properties of spatial databases in the topological data
model can be expressed inRL, an important deficiency ofRL is that for practical
applications important queries such as the connectivity test and reachability are
not expressible in this first-order language, as we have seen in the previous
section. In this section, we will briefly study a number of extensions of RL:
RL augmented with connect; RL augmented with a transitive closure operator
and RL augmented with a while-loop (and some set-theoretic operators).

4.1 RL Augmented with Connect or Transitive Closure

An obvious approach to obtain the expressibility of the connectivity test is sim-
ply to augment RL with the predicate connect(r1, r2). Then connectivity of
a database is expressible, as shown above, by the formula (∀r1)(∀r2)(((∃a1)(∃a2)
(r1 ⊆ a1) ∧ (r2 ⊆ a2)) → connect(r1, r2)). However, it is not clear if the lan-
guage RL + connect is complete in the sense that all computable topological
queries are expressible in it. In the constraint model, for instance, when first-
order logic over the reals is augmented with a predicate that expresses connec-
tivity of two-dimensional sets, then parity of a set of real numbers is expressible.
For RL+ connect we conjecture the opposite, however.

A transitive-closure operator can be added to RL in several ways. One pos-
sibility is that we add to RL expressions of the form

[TC ϕ(r′1, r
′
2)](r1, r2),
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where ϕ(r′1, r
′
2) is a RL formula with two free elementary-region variables. The

meaning of [TC ϕ(r′1, r
′
2)](r1, r2) is that the couple (r1, r2) of elementary regions

belongs to the transitive closure of the binary relation defined by theRL formula
ϕ(r′1, r

′
2), i.e., the set {(r′1, r′2) | ϕ(r′1, r′2)}. Various more powerful extensions of

RL could be thought of, but this one is strong enough to express the topological
connectivity test. Indeed,

(∀r1)(∀r2)(((∃a1)(∃a2)((r1 ⊆ a1) ∧ (r2 ⊆ a2)))→
[TC (∃a1)(∃a2)((r′1 ⊆ a1) ∧ (r′2 ⊆ a2) ∧meet(r′1, r′2))](r1, r2))

where meet(r′1, r
′
2) abbreviates meetLine(r′1, r

′
2)∨meetPoint(r′1, r

′
2)∨r′1 = r′2 (the

predicates meetLine and meetPoint are defined as in Section 3.2), expresses that
every pair of elementary regions that are in a labeled region are also in the
transitive closure of the binary relation defined by meet (which contains all pairs
of elementary regions which are adjacent). The computation of the transitive
closure is guaranteed to terminate because the number of elementary regions is
finite for any input database. This expresses that the union of the closure of the
labeled regions in the spatial database is a connected subset of the plane. It is
not clear what the expressive power of this extension of RL exactly is, however.

4.2 RL Augmented with a While-Loop

In the final part of this section, we introduce the language RL +While. This
language is essentially the extension of the first-order logic RL with a while-
loop and some set-theoretic operations. This extension of RL is a sound and
complete language for the computable topological queries on spatial databases
in the topological data model.

Definition 7. An RL +While-program is a finite sequence of statements and
while-loops.

A statement is either an RL-definition of a relation, based on previously
defined relations or the result of a set-theoretic operation on previously defined
relations. An RL-definition of a relation has the form

R := {(a1, . . . , am, r1, . . . , rn) | ϕ(a1, . . . , am, r1, . . . , rn)};
where R is a relation variable of aritym+n and ϕ is a formula in RL augmented
with expressions S(a1, . . . , ak, r1, . . . , rl) where S is some previously introduced
relation variable of arity k+l. The other (set-theoretic) form of defining relations
is one of the following: R := S ∩S′; R := ¬S; R := S↓; R := S↑a; R := S↑r; and
R := S∼, where S and S′ are some previously introduced relation variables.

A while-loop has the form

while ϕ do {P};
where P is a program and ϕ is a sentence in RL augmented with expressions
S(a1, . . . , ak, r1, . . . , rl) where S is some previously introduced relation variable
of arity k + l. ��
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In this definition, it is assumed that there is a supply of untyped relation
variables (this is important because relations in the while-language can grow
arbitrarily wide). Semantically, a program in the query language RL+While al-
lows the creation of relations and in a loop like while ϕ do P , P is executed
until ϕ becomes false. A program therefore expresses a query in the obvious
way as soon as one of its relation variables has been designated as the output
variable (e.g., Rout). The semantics of the set-theoretic operations needs some
further clarification. An assignment R := S ∩ S′ simply expresses the intersec-
tion. The assignment R := ¬S expresses the complement with respect to the
appropriate domains. The assignment R := S↓ is projecting out the first dimen-
sion or coordinate. The assignment R := S↑a is projecting in on the right with
a extra label-dimension. And R := S↑r is similar for a region-dimension. Finally,
R := S∼ exchanging the two right-most coordinates of S.

Obviously, the while-loops of RL+While can be non-terminating. However,
if a while-loop terminates (or a RL+While-program for that matter), then all
computed relations are RL-definable.

As an example, we give anRL+While-program that expresses that the input
spatial database is connected (i.e., that the union of all the labeled regions in the
input is a connected subset of the plane). In the following meet(r, r′) abbreviates
meetLine(r, r′) ∨meetPoint(r, r′) ∨ r = r′, where meetLine and meetPoint are in
turn the abbreviations introduced in Section 3.2.

R := {(r, r′) | (∃a)(∃a′)(r ⊆ a ∧ r′ ⊆ a′ ∧meet(r, r′))};
R1 := R;
R2 := {(r, r′) | (∃r′′)(R1(r, r′′) ∧R(r′′, r′)};
while R1 �= R2 do {

R1 := R2;
R2 := {(r, r′) | (∃r′′)(R1(r, r′′) ∧R(r′′, r′)};

};
Rout := {() | (∀r)(∀r′)((∃a)(∃a′)(r ⊆ a ∧ r′ ⊆ a′ → R2(r, r′)))};

Here, an expression like R1 := R is an abbreviation of R1 := {(r, r′) | R(r, r′)}.
In this program, first a binary relation consisting of all adjacent elementary
regions that are in a labeled region is computed. Next, the transitive closure of
this binary relation is computed. The computation of the transitive closure is
guaranteed to terminate because the number of elementary regions is finite for
any input database. Finally, the relation Rout is defined. This relation is empty
for a disconnected input and non-empty for a connected input database.

The main result of this section is the following.

Theorem 2. The language RL+While is sound and computationally complete
for the topological queries on spatial databases in the topological data model.

Proof idea. Using the results in Section 3, it is easy to show soundness. To
prove completeness, we first observe that Cabibbo and Van den Bussche [36]
have shown that many-sorted logics, like RL can be equivalently expressed
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in an untyped logic that is augmented with unary type-predicates (here ER
and L). So, we can consider untyped variants of RL and RL+While: RLuand
RLu + While. The proof of the theorem is then in two steps. For what con-
cerns the first step we observe that the relations RL = {x | L(x)}, RER = {x |
ER(x)}, Rlabel = {(x, y) | ER(x)∧L(y)∧x ⊆ y}, and Rd1d2d3 = {(x, x1, x2, x3) |
cwd1d2d3(x, x1, x2, x3)∧ER(x)∧ER(x1)∧ER(x2)∧ER(x3)} (with d1, d2, d3 ∈
{0, 1}) contain the complete topological information of the input spatial database
(this follows directly from Lemma 1). For a given input spatial database ∆, the
relational database ∆fin, consisting of these eleven relations is therefore defin-
able in RLu, as just shown.

Secondly, we observe that by adding the set-theoretic operations to RL +
While we have obtained a language powerful enough to express all generic Tur-
ing computable functions on ∆fin (we can do this by showing that the query
language QL of Chandra and Harel [4] can be simulated in RLu +While). ��

Finally, we remark that if we extend RL with while as in Chandra and
Harel [5] (also [1, Chapter 17]) and if we assume an ordering on the (elementary)
regions, that then, using a well-known result, this extension of the language RL
captures the PSPACE topological queries on spatial databases in the topological
data model.

5 Conclusion and Discussion

In this paper, we have continued the search for effective, convenient and ex-
pressive languages for querying topological properties of spatial databases in the
topological data model. In searching for such languages we face a number of chal-
lenges. We typically want languages to be natural in the sense that the primitives
appearing in it express natural concepts such as intersection, adjacency and con-
nectivity. We also want that queries are computable and have a complexity that
belongs to a nice class such as PSPACE or PTIME. A third issue is complete-
ness: all topological queries from preferably some suitable computational class
should be captured.

To deal with these issues we propose the two-sorted logic RL and a number
of extensions of it. In the language RL variables range over regions from the
active domain of a spatial database instance, as opposed to an infinite universe
of regions in previously discussed languages [25]. This logic, by the predicate
cw, is descriptive enough to characterize the topological information of a spatial
database instance. As we have shown in this paper, with RL and its extensions
we meet some of the above set challenges. Especially on the level of naturalness
improvement should be expected.

The topological data model allows a representation where a prominent role
is given to the spatial containment relation [10, 11, 16, 17]. This is interesting
from a practical point of view since it allows to use efficient data structures for
the management of (partial) order relations [34]. Future work will focus on the
translation ofRL queries in terms of operations on suitably enriched order-based
data structures.
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