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Abstract

In this paper we propose an alternative approaches for the efficient solution of
the set union and intersection problem, a variant of the classical disjoint set union
problem, in which two distinct sequences of unions are simultaneously performed
on two distinct collections of n singletons. In this context, it makes sense to
introduce a new operation, named findint(x), that, given an element x, returns the
intersection of the two sets containing x in both collections. We use a new data
structures called intersection lists that reaches the optimal @(p) worst case time for
executing a findint operation, where p is the size of the output, and spends O(n)
worst case time for a union and O(1) worst case time for a find operation.

1 Introduction

Given a collection of # disjoint singletons Sy, Sy, ..., Sy, the disjoint set union
problem [4] consists of efficiently performing an intermixed sequence of the
following operations:

union(S;,5;): combine the disjoint sets named S; and S; into a new set named S;;
Sind(x): return the name of the unique set containing the element x.

The set union and intersection problem [2] is a natural extension of the disjoint
set union problem. It can be formulated in the following way: given two collections
of n disjoint singletons:

S={8), 82, .., Sy}
T={Ty, T2, o T}

such that initially S,-\contains the same element of 7; for i=1, ...n, perform an
intermixed sequence of the following operations:

union(S,S;,S;): combine disjoint sets of the collection S named S; and S; into a
new set named S;

union(1,T;,Tj): combine disjoint sets of the collection 7 named 7; and T ; into a
new set named 7};

Jind(S,x): return the name of the set in collection S containing the element x;

Jind(T,x): return the name of the set in collection T containing the element x;

Jindint(x): return the intersection of the two sets containing x in S and 7.

As an example of application of the set union and intersection problem consider
the incremental maintenance of constraints in a concurrent environment. Here,
concurrent agents working on different sets of constraints define different partitions
into equivalence classes over the universe of feasible values. When it needs to know
which is the equivalence class of a given value with respect to two different agents, a
set union and intersection problem has to be solved.

The known algorithms for the set union and intersection problem make use of
classical data structures employed to efficiently solve the set union problem.
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Furthermore, in [3], a new quick-find data structure, called binary list, having the
same performances of the well-known quick-find trees, has been introduced and
analysed. The model of computation considered is the pointer machine [5], and the
known upper bounds for the set union and intersection problem apply to the class of
algorithms (called separable algorithms) which satisfy the following rules:

(i) The operations are presented on-line, i.e., each operation must be completed
before the next one is known.

(ii) Each set element of each collection is separate node of the data structure.

(iii) (Separability) After any operation, the data structure can be partitioned into
subgraphs such that each subgraph corresponds exactly to a current set. There
exists no edge from a node in such a subgraph to a node outside the subgraph.

(iv) For executing a find(S,x) (find(T,x)) operation the algorithm obtains the node
v containing the requested element in the collection S (7). The algorithm
follows paths with start node v until it reaches the node which contains the
name of the corresponding set.

(v) For executing a find, a union or a findint operation the algorithm may insert
or delete any edge as long as rule (iii) is satisfied.

All of these algorithms perform a findint operation, in the best cases, in O(n)
time. Unfortunately, this time is far from the optimal, corresponding to O(p) time,
where p is the size of the output. In this paper we propose an output sensitive
approach that allows to decrease the cost for a findint operation to the optimal,
without using any additional storage. Thus, in a highly dynamic context, when the
number of findint operations becomes higher and higher, the saving in terms of
global charged time will be larger.

2 A gallery of known algorithms

In this section we recall how to solve the set union and intersection problem using
classical data structures, that is quick-find trees, quick-union trees [5], k-UF trees [1]
and binary lists [3]. All of them are linked structures. The way subgraphs
representing sets are built during union operations determines the complexity of
various approaches. Figure 1 shows the general schema we use to satisfy a findint
operation. Procedure FIND(X,x) returns the pointer to the representative element of
the set containing x in the collection X, while procedure OUTPUT(x) outputs
element x:

procedure FINDINT(x); /*return the intersection of sets find(S,x) and

Sind(T,x);

begin

it (1 FIND(S,x)| = | FIND(T,x)|) then INTERSECT(FIND(T,x),FIND(S.x).S)
else INTERSECT(FIND(S,x), FIND(T,x), T)

end;

procedure INTERSECT(A,B,Z);
/*return the intersection of elements pointed by A4 and B, where elements
/*pointed by B belong to collection Z;

begin

for (each element x contained in the set whose representative element is 4) do
if (B=FIND(Z,x)) then OUTPUT(x)

end;

Fig. 1: Procedure FINDINT(x)
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Note that the efficient execution of the loop in the procedure INTERSECT(),
requires elements in each set be circularly linked together. In this way, from anyone
of them, all the elements in the same set can be reached in time proportional to the
number of elements in the set itself. Details on how to manage these circular lists for
the various classical data structures we are going to study are straightforward and left
to the reader.

2.1 Weighted quick-find trees

In quick-find trees, a union is performed by making all the element of one set
children of the tree root of the other. Thus a union costs O(n) and, since every
element points to the root, a find costs O(1). Using the freedom implicit in each
union operation, we make the children of the smaller tree point to the root of the
larger. This improves to O(logn) the amortized complexity of a union.

Propesition 1: Using weighted quick-find trees, a single findint operation can be
executed in O(n) worst-case time.

Proof: Trivial. ]

2.2 Weighted quick-union trees

In quick-union trees a union is performed by making the tree root of one set children
of the tree root of the other. Thus a union costs O(1). A find is performed by starting
from the node representing the requested element and following the pointer to the
parent until the tree root is reached, and thus a find costs O(n). This time, making
weighted unions (on the basis of the size or the rank of the involved trees), we can
improve to O(logn) the worst case complexity of a find. The best possible solution
for the worst case time of a sequence of operations can be achieved by applying one
of the known compaction rules [6]. This leads to O(n+ma(m+n,n)) amortized time
complexity on a sequence of n union and m find operations, where o is the
functional inverse of the Ackermann's function.

Proposition 2: Using weighted quick-union trees, a single findint operation can be
executed in O(nlogn) worst-case time.
Proof: Trivial. (]

2.3 k-UF trees

k-UF trees [1] support each union and each find in O(logn/loglogn) time in the worst
case, so balancing the cost of the two operations. No better bound is possible for any
separable pointer algorithm.

Proposition 3: k-UF trees support a findint operation in O(nlogn/loglogn) time in
the worst case.

Proof: Trivial. .}

2.4 Binary lists

Binary lists [3] have the same performances of the well-known quick-find trees. In
addition, they allow to sort each set in O(nloglogn) time, while quick-find trees need
Q(nlogn) time. This means, for example, that the new structure is able to produce
sorted output to a findint request in a better time than the classical approaches. Such
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time. Of course, the standard find om0 5 o T san b6 o o mortized
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time, since each element points to the representative element, and then it follows:
Proposition 4: Using binary lists t i "
*ropos 40 Us y lists to represent sets it is ssible Kecute
Jindint operation in O(n) worst case time. ) possible to exceute 2

Proof: Trivial. 0

We resume in T¢ b el belOW worst ca erformances f ca d
S se perf cn era 1
‘ o . a () i op 1on of the

Data Structure find union findint
Quick-Find Trees o) O(n) A Xn)
Quick-Union Trees (logn) (0.0))] O(nlogn)
k-UF Trees 0| togn ) % logn n logn

\loglogn loglogn logli;g};‘
Binary Lists (00))] n) O(n)

Table 1: Worst case time bounds for each operation

_The following Tfibl§ 2 resumes the worst case bounds on a sequence of 2n-2
union, m find and k findint operations for all the considered structures:

Data Structure Time
Quick-Find Trees O(nlogn+m+kn)
Quick-Union Trees O(n+ma(m+n,n)+knlogn)
k-UF Trees O{(Wrm} (_1_0£7) + fn — logn. ,\
loglogn | !oglogn}
Binary Lists O(nlogn+m-+kn)

Table 2: Worst case time bounds on a sequence of operations
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3 An output sensitive approach

Solving the set union and intersection problem using classical approaches allows to
perform a findint operation, in the best cases, in O(n) time. Unfortunately, this time
is far from the optimal, corresponding to O(p) time, where p is the size of the
output. In this section we propose an approach that allows to decrease the cost for a

findint operation to the optimal without using any additional storage. Thus, in a

highly dynamic context, when the number of findint operations becomes higher and
higher, the saving in terms of global charged time will be larger.

Let assume for simplicity that it is initially S=T=1{i}. The universe of elements
over which the two collections are defined is then U={1, 2, ..,n}. Let O=U/R be the
quotient set of U by the equivalence relation R:

xyel, xRy <> x,yes; and xyel;

We improve the cost of a findint operation by dynamically maintaining up-to-date
the set (of sets) Q. Remember that, for the assumptions we made on the model, no
additional nodes can be used to maintain Q. Then we have to represent Q implicitily,
inside the sets of the two collections. To do that, we note that, on the basis of ®,
every set in one of the collections is partitioned in subsets made up of those elements
belonging at a same set into the other collection. If we update this subsets at each
union operation executed on S or T, then a findint(x) can be executed in
O(find(S,x)+p) time, where p corresponds to the output size; this implies that if we
can execute a find operation in constant time, then a findint operation is performed in
optimal time. To obtain this, we represent sets in the collections using trees in
which each element points to the root, so that a find operation can be executed in
O(1) time and we add to the record structure the following field:

INT: this is a pointer field containing the pointer to the next element in the
intersection list; initially, this pointer points to itself.

We call intersection list the structure resulting from this modification. To update ¢
at each union, we use the procedure given in Figure 2.

The collection where most recently has occurred a union operation contains the
updated status of Q. Thus, when a findint(x) occurs, we focus on the most recently
collection interested by a union operation (which can be determined in O(1) time) and
then we output the intersection list attached to x. Resuming, the following can be
easily proved:

Theorem 1: Performing a union operation on S or T and maintaining the
intersection lists costs O(n) operations.

Proof: The analysis of the worst case is given in the comments of the procedure
UNION() given above.

This bound is tight, since there can be union operations on S or I’ producing
€)(n) merging in Q. Consider, for example, the following case: assume, without loss
of generality, that » is even; suppose that after n-2 union operations on S, this is
made up by two sets (the set of odd numbers and the set of even numbers) and that
after n/2 union operations on 7, this is made up by n/2 sets, each containing two
consecutive numbers. At the next union on S, the two residual sets are unified, and



procedure UNION(S,4,B);
/*combine the sets named A and B of the collection S info a new set
/*named 4 and update the intersection subsets of 4;
begin
WEIGHTED_UNION(A,B);
/*make the children of the root of the smaller tree point to root of the
/*larger; this has a worst-case time complexity of
/*O(min(]4],|B]))=0(n) and an amortized cost of O(logn);
for (each element x contained in 4) do
begin
/*this loops costs Lyye4O(|B,]), where B, is the generic set in 7 containing
/*x; since each set in 7' is examined exactly once, summation is limited by »;
B\=FIND(T, x);  /*this costs O(1) time;
if (B, is unmarked) then
begin
MARK_SET(B.); /* By is marked, to be examined only once;
for (each element y other than x contained in B,) do
begin /*this loop costs O(|B,])
Ay=FIND(S, y) /*this costs O(1) time;
if (4,=4) then
begin /*update the intersection lists in S and 7;
APPEND(S,x,y) ;
APPEND(T,x,y);
end
end
end
end
end;

Fig. 2: Procedure UNION(S,4,B)

there will be n/2 merging among the » singletons in Q. This means that the lower
bound for operation is in the worst-case £2(n) and then we have in any case to pay
£2(n) to perform a union operation and simultaneously to update Q. On the other
hand, what it happens on a sequence of union operations? The following proposition
characterizes the problem of maintaining up-to-date the status of Q at each union

operation; for the sake of clarity, we will assume the existence of a third collection C
maintaining on-line the intersections among sets in S and in 7

Theorem 2: Given a complete sequence of 2n-2 unions on two collections S and 7,
any algorithm based on comparisons requires {Xnlogn) comparisons to maintain up-
to-date the intersection collection C at each union operation.

Proof: Without loss of generality, suppose that S and 7 contain n=m?=2k elements.
At the beginning we have:

S={S1, S2, ..., Sp}

T={T\, Ty, ..., Ty}

C:{( 1s Cz, . C,,';
where S;=1;=C={i}. Consider now the following situation, where (n-m-1) unions on
S and (n-m-1) unions on 7 have been done but C is still made up by singletons:

S={A), Ay, ... A} T={By, By, ..., By}
with:

AI:{aI,Ia AL, o AL gy /42:{’22,% a2, o az,m}v o Am:{am,h Ap2s oos Am.m}
with a;; e[1..7]
Bi={a; | i=12, . m} for k=12, .., m.

To complete the union sequence, (m-1) unions on § and (m-1) unions on I are
needed. We now show a particular sequence of unions on S and 7' that requires
Q(nlogn) comparisons to maintain up-to-date C. We divide such a sequence in steps;
one step is a sequence of unions on the same collection which halves the number of
contained sets. The first step manipulates S executing m/2 unions. The i-th union in

i X mo . . .
this step merges sets 4,;-; and Ao, i=1, 2, ..., - Each merging of two sets in S
L

generates m couples in C. This set of m couples belongs to a universe of m(m-1)(m-
2)...1=m! possible sets of m couples'. The size of the universe implies that we have
to do at least log(m!) comparisons, that is (by the Stirling's approximation) at least

. - m . . . . n
mlogm comparisons. Since we execute —- unions in the first step (generating -

couples in C), we spend a total of:

C, = " logm = ——2— =1 logn
2 2 2 4
The second step manipulates 7. The i-th union in this step merges sets By;.; and
- . ~ o . d
By, i=1, 2, L, %’—. Each merging of two sets in T at this step generates ZT quadruples

7

. "y ~ 17 . m .
in C. This set of ™ quadruples belongs to a universe of {—|! possible sets of m
5 q p g )P 5

quadruples. In fact, now in S there are sets of 2m elements each, so when unions are
executed on 7, quadruples result in C.

. m . .
This means that we have to do at least log((;)!) comparisons, that is (by the
ST ) . . m m . . m .
Stirling's approximation) at least 72710g3' comparisons. Since we execute -~ unions

in the second step (generating ’: quadruples in C), we spend a total of:
4

I fact, given two disjoint sets X and Y of m distinct elements each, there exist !
different sets of exactly m couples {x, y} where xeX and yeY. To see why, consider that
each element in the universe can be obtained in the following way: take the first element in
X: this element can be coupled with any of the m elements contained in V; then, take the
second element in X: this element can be coupled with any of the (m-1) remaining elements
contained in Y; following this procedure, at the m-th coupling, we are forced to take the
residual elements in the two merging sets.
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Co M Jog =7 Jog!
22 g2 Sogz

By iterating the process, we have that at the last step on 7" (i.e., the (2logm)-

th=k-th step) we merge two sets of cardinality '27 producing C={U} without any

comparison. The total cost Crpr is therefore:

s 1 kel )
— N n no_« n ( i o ‘) _
Cror= Z C;z Z —log— =3 —y\logn -log2 J=
=1 =) 2 =17
nlogn il 11y 1k 1
= Z o - n— =nlogn S 7/) Bl e e logn - —n
- " pan ) 2 A" . 2
=12 =2 v 2 v 2
from which the thesis. 0

Finally, the following corollary immediately descends by the previous results:

Corollary 1: The set union and intersection problem can be solved dynamically by
maintaining the intersection lists spending O(n%+m+P) time in the worst case on a
sequence of 2n-2 union operations, m find operations and k findint operations, where
P is the output size over all the & findint operations. O

4 Conclusions

In this paper we have proposed an output sensitive approach to the set union and

intersection problem that allows to perform a findint operation in optimal time.
Future work will be focused in the direction of determining lower bounds for a

sequence of find, union and findint operations in the context of separable algorithms.
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Abstract. Multistage interconnection networks (MINs) have a number
of applications in many areas, for example in communication networks
or parallel computer systems. While several performance analyses have
been done. as far as we know a formal description of the behaviour of such
networks is lacking. In the paper we define Markov chains describing the
behaviour of the buffered MIN with a butterfly interconnection structure
and 2 x 2 switching elements. We study several models of packet flow,
which appear in the literature and develop technical mathematical tools
which allow us to compare them. We prove some equivalence results

regarding the models.

1 Introduction

Multistage interconnection networks (MIN) have been widely used for connecting
processors in paralle]l computing systems and in constructing communication
networks [7]. It consists (in general) of (k x k)-switching elements (switches).
which are grouped into several stages. In this paper we are concerned with MINs
having the butterfly interconnection structure containing (2 x 2)-switches with
input buffers of capacity one (see fig. 1). They belong to the broader class of
banyan networks [1].

A number of papers studied the behaviour of MINs, aiming mainly at eval-
nation of their performance ! [3, 5, 9]. In most of these papers some crucial
assumptions (relaxations) are made, simplifying the analysis of the network.
The reason is that the behaviour of MIN, arising from the dependencies between
neighbour switches, is very complex.

In this paper we propose the formal definition of the dynamic behaviour
of MIN without making any simplifying assumptions, i.e. in the full blocking
model. As far as we know, no such definitions have been proposed by now. We
describe the network by means of Markov chain, as its behaviour is history-
independent. We develop some mathematical machinery which allows us to define

* This work was performed at the University of Dortmund.
** Research supported by DAAD (Deutscher Akademischer Austauschdienst ).
! The most frequently evaluated performance measure is throughput (expected number
of packets reaching their destinations per time step).



