
ADST: An Order Preserving
Scalable Distributed Data Structure

with Constant Access Costs

Adriano Di Pasquale1 and Enrico Nardelli1,2

1 Dipartimento di Matematica Pura ed Applicata, Univ. of L’Aquila,
Via Vetoio, Coppito, I-67010 L’Aquila, Italia.

{dipasqua,nardelli}@univaq.it
2 Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche,

Viale Manzoni 30, I-00185 Roma, Italia.

Abstract. Scalable Distributed Data Structures (SDDS) are access
methods specifically designed to satisfy the high performance require-
ments of a distributed computing environment made up by a collection
of computers connected through a high speed network. In this paper we
propose an order preserving SDDS with a worst-case constant cost for
exact-search queries and a worst-case logarithmic cost for update queries.
Since our technique preserves the ordering between keys, it is also able to
answer to range search queries with an optimal worst-case cost of O(k)
messages, where k is the number of servers covering the query range.
Moreover, our structure has an amortized almost constant cost for any
single-key query.
Hence, our proposal is the first solution combining the advantages of
the constant worst-case access cost featured by hashing techniques (e.g.
LH*) and of the optimal worst-case cost for range queries featured by
order preserving techniques (e.g., RP* and DRT). Furthermore, recent
proposals for ensuring high-availability to an SDDS can be easily com-
bined with our basic technique. Therefore our solution is a theoretical
achievement potentially attractive for network servers requiring both a
fast response time and a high reliability.
Finally, our scheme can be easily generalized to manage k-dimensional
points, while maintaining the same costs of the 1-dimensional case.

Keywords: scalable distributed data structure, message passing envi-
ronment, multi-dimensional search.

1 Introduction

With the striking advances of communication technology, distributed computing
environments become more and more relevant. This is particularly true for the
technological framework known as network computing : a fast network intercon-
necting many powerful and low-priced workstations, creating a pool of perhaps
terabytes of RAM and even more of disc space. This is a computing environment

L. Pacholski and P. Ružička (Eds.): SOFSEM 2001, LNCS 2234, pp. 211–222, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

212 Adriano Di Pasquale and Enrico Nardelli

very apt to manage large amount of data and to provide high performances. In
fact, the large amount of RAM collectively available combined with the speed
of the network allow the so-called RAM data management, which can deliver
performances not reachable using standard secondary memory.

A general paradigm to develop access methods in such distributed environ-
ments was proposed by Litwin, Neimat and Schneider [9]: Scalable Distributed
Data Structures (SDDSs). The main goal of an access method based on the
SDDS paradigm is the management of very large amount of data implement-
ing efficiently standard operations (i.e. inserts, deletions, exact searches, range
searches, etc.) and aiming at scalability, i.e. the capacity of the structure to keep
the same level of performances while the number of managed objects changes
and to avoid any form of bottleneck. In particular, a typical distributed struc-
ture made up by a set of data server and a unique server directory cannot be
considered an SDDS.

The main measure of performance for a given operation in the SDDS
paradigm is the number of point-to-point messages exchanged by the sites of
the network to perform the operation. Neither the length of the path followed
in the network by a message nor its size are relevant in the SDDS context. Note
that, some variants of SDDS admit the use of multicast to perform range query.

There are several SDDS proposals in the literature: defining structures based
on hashing techniques [3,9,12,15,16], on order preserving techniques [1,2,4,8,10],
or for multi-dimensional data management techniques [11,14], and many others.

LH* [9] is the first SDDS that achieves worst-case constant cost for exact
searches and insertions, namely 4 messages. It is based on the popular linear
hashing technique. However, like other hashing schemes, while it achieves good
performance for single-key operations, range searches are not performed effi-
ciently. The same is true for any operation executed by means of a scan involving
all the servers in the network.

On the contrary, order preserving structures achieve good performances for
range searches and a reasonably low (i.e. logarithmic), but not constant, worst-
case cost for single key operations. Among order preserving SDDSs, we recall
RP*s [10], based on the B+-tree technique and BDST [4], based on balanced
binary search tree. Both these structures achieves logarithmic costs for single key
operations in the worst-case. Structures in the DRT family [5,8] can guarantee
only a linear bound in the worst-case, but provide very good performances in the
amortized case [5]. Finally, Distributed B+-tree [2] is the first order preserving
structures with constant exact search worst-case cost, but at the price of a linear
worst-case cost for insertion.

Here we further develop the technique presented in [2] with the major objec-
tive to keep logarithmic the worst-case cost of insertions. This allows to obtain
the following results: (i) worst-case constant cost for exact searches and inser-
tions that do not causes splits, namely 4 messages; (ii) worst-case logarithmic
cost for insertions that causes splits; (iii) amortized almost constant cost for any
single-key operations.

ADST: An Order Preserving Data Structure with Constant Access Costs 213

Therefore, this is the first order preserving SDDS proposal achieving single-
key performances comparable with the LH*, while continuing to provide the
good worst-case complexity for range searches typical of order preserving access
methods, like RP* and DRT.

Our structure is also able to support deletions: these are not explicitly con-
sidered in previous proposals in the literature, but for BDST [4] and, to some
degree, for LH* [12]. Moreover, the technique used in our access method can be
applied to the distributed k-d tree [14], an SDDS for managing k-dimensional
data, with similar results.

2 ADST

We now introduce our proposal for a distributed search tree, that can be seen as
a variant of the systematic correction technique presented in [2]. We first present
the basic technique and then discuss our variation.

Each server manages a unique bucket of keys. The bucket has a fixed capacity
b. We define a server “to be in overflow” or “to go in overflow” when it manages
b keys and one more key is assigned to it. When a server s goes in overflow it
starts the split operation. After a split, s manages b

2 keys and
b
2 + 1 keys are

sent to a new server snew. It is easy to prove the following property:

Lemma 1. Let σ be a sequence of m intermixed insertions and exact searches.
Then we may have at most

⌊
m
A

⌋
splits, where A = b

2 .

Moreover, clients and servers have a local indexing structure, called local
tree. This is needed to avoid clients and servers to make address errors. From
a logical point of view the local tree is an incomplete collection of associations
〈server, interval of keys〉: for example, an association 〈s, I(s)〉 identifies a server
s and the managed interval of keys I(s).

For further details on buckets and local trees management see [2,8].
Let us consider a split of a server s with a new server s′. Given the leaf f

associated to s, a split conceptually creates a new leaf f ′ and a new internal
node v, father of the two leaves. This virtual node is associated to s or to s′.
Which one is chosen is not important: we assume to associate it always with the
new server, in this case s′. s stores s′ in the list l of servers in the path from the
leaf associated to itself and the root. s′ initializes its corresponding list l′ with a
copy of the s′ one (s′ included).

Moreover if this was the first split of s, then s identifies s′ as its basic server
and stores it in a specific field. Please note that the interval I(v) now corresponds
to the basic interval of s.

After the split s sends a correction message containing the information about
the split to s′ and to the other servers in l. Each server receiving the message
corrects its local tree. Each list l of a server s corresponds to the path from the
leaf associated with s to the root.

This technique ensures that a server sv associated to a node v knows the
exact partition of the interval I(v) of v and the exact associations of elements

214 Adriano Di Pasquale and Enrico Nardelli

of the partition and servers managing them. In other words the local tree of sv

contains all the associations 〈s′, I(s′)〉 identifying the partition of I(v). Please
note that in this case I(v) corresponds to I(lt(sv)).

This allows sv to forward a request for a key belonging to I(v) (i.e. a request
for which sv is logically pertinent) directly to the right server, without following
the tree structure. In this distributed tree, rotations are not applied, then the
association between a server and its basic server never changes.

Suppose a server s receives a requests for a key k. If it is pertinent for the
requests (k ∈ I(s)) then it performs the request and answers to the client.
Otherwise if it is logically pertinent for the requests (k ∈ I(lt(s))) then it finds
in its local tree lt(s) the pertinent server and forwards it the requests. Otherwise
it forwards the requests to its basic server s′. We recall that I(lt(s′)) corresponds
to the basic interval of s, then, as stated before, if the request for k is arrived to
s, k has to belong to this interval. Then s′ is certainly logically pertinent.

Therefore a request can be managed with at most 2 address errors and 4
messages.

The main idea of our proposal is to keep the path between any leaf and the
root short, in order to reduce the cost of correction messages after a split. To
obtain this we aggregate internal nodes of the distributed search tree obtained
with the above described techniques in compound nodes, and apply the technique
of the Distributed B+-tree to the tree made up by compound nodes. For this
reason we call our structure ADST (Aggregation in Distributed Search Tree).

Please note that the aggregation only happens at a logical level, in the sense
that no additional structure has to be introduced. What happens in reality is
simply that a server associated to a compound node maintains the same infor-
mation maintained by the one associated to an internal node in the Distributed
B+-tree.

Each server s in ADST is conceptually associated to a leaf f . Then, as a
leaf, s stores the list l of servers managing compound nodes in the path from f
and the (compound) root of the ADST. If s has already split at least one time,
then it stores also its basic server s′. In this case s′ is a server that manages a
compound node and such that I(lt(s′)) contains the basic interval of s.

Any server records in a field called adjacent the server managing the adjacent
interval on its right. Moreover, if s manages also a compound node va(s), then
it also maintains a local tree, in addition to the other information.

2.1 Split Management

Let s be a server conceptually associated to a leaf f , and let the father compound
node va∗ of f be managed by a server s∗. Let us now consider a split of s with
snew as new server. The first operation performed by s is to send correction
messages to each server in l.

Then, exactly like in the technique described for distributed B+-tree [2], a
new leaf f ′ and a new internal node v father of the two leaves are conceptually
created. v is associated to snew.

ADST: An Order Preserving Data Structure with Constant Access Costs 215

In ADST two situations are possible:

– The node v has to be aggregated with the compound node va∗. Then v is
released, s does not change anything in its list l and snew initializes its list
lnew with a copy of l. If this was the first split of s, then s identifies s∗ as
its basic server and stores it in a specific field. Please note that the interval
I(lt(s∗)) contains the basic interval of s.

– The node v has not to be aggregated with the compound node va∗. Then
a new compound node va is created as a son of va∗ aggregating the single
internal node v. snew is called to manage va. s changes its list l adding snew.
snew initializes its list lnew with a copy of l. If this was the first split of
s, then s identifies snew as its basic server and stores it in a specific field.
Please note that the interval I(lt(snew)) is now exactly the basic interval of
s.

The field adjacent of snew is set with the value stored in the field of s. The field
adjacent of s is set with snew (see figure 1).

correction
message

adjacent pointer

basic server
 pointer

s

va(snew)

I(va(snew))

I(snew)

snew

I(s) I(s) I(b)I(b)

b bs

Fig. 1. Before (left) and after (right) the split of server s with snew as new server.
Intervals are modified accordingly. Correction messages are sent to server managing
compound nodes stored in the list s.l and adjacent pointers are modified. Since the
aggregation policy decided to create a new compound node and snew has to manage
it, then snew is added to the list s.l of servers between the leaf s and the compound
root nodes, snew sets snew.l = s.l. If this is the first split of s, then s sets snew as its
basic server

2.2 Aggregation Policy

The way to create compound nodes in the structure is called aggregation policy.
We require that an aggregation policy creates compound nodes so that the height

216 Adriano Di Pasquale and Enrico Nardelli

of the tree made up by the compound nodes is logarithmic in the number of
servers of the ADST. In such a way the cost of correcting the local trees after a
split is logarithmic as well.

One can design several aggregation policies, satisfying the previous require-
ment. The one we use is the following.
(AP): To each compound node va a bound on the number of internal nodes

l(va) is associated. The bound of the root compound node ra is l(ra) = 1. If the
compound node va′ father of va has bound l(va′), then l(va) = 2l(va′) + 1.

Suppose a server associated to a leaf son of va splits. If the bound l(va) is
not reached, va aggregates the new internal nodes v. Otherwise a new compound
node has to be created as a son of va and aggregating v.

It is easy to prove the following:

Invariant 1 Let va0 be the compound root node. Let va0, va1, ..., vak be the com-
pound nodes in the path between va0 and a leaf. Then #internal nodes(vai) =
l(vai), for each 0 ≤ i ≤ k − 1, and #internal nodes(vak) ≤ l(vak).

With reference to figure 2, we have for example: I(a) = A, I(b) =
B, and so on; a.adjacent = b, b.adjacent = c, c.adjacent = q, and
so on; a.l = {a}, b.l = {c, a}, c.l = {q, c, a}, and so on; lt(f) =
{〈d,D〉 , 〈f, F 〉 , 〈g,G〉 , 〈h,H〉 , 〈i, I〉 , 〈l, L〉 , 〈o,O〉 , 〈p, P 〉 , 〈m,M〉 , 〈n,N〉} and
then I(va(f)) = I(lt(f)) = D ∪ F ∪ G ∪ H ∪ I ∪ L ∪ O ∪ P ∪ M ∪ N ; from
the given sequence of splits, a.basic server = a, b.basic server = c, c.basic server
= c, and so on.

Theorem 2. Aggregation policy AP guarantees that the length of any path be-
tween a leaf and the compound root node is bounded by ha = k ≤ 	log n
 + 1,
where n is the number of internal nodes of the distributed tree.

Proof. Let us consider a generic leaf f , and let ha = k be its height in the tree
of compound nodes. Then there are k compound nodes va0, va1, .., vak−1 in the
path between f and the root compound node, and va0 is just the compound
root node. It follows directly from the definition of policy AP that: #inter-
nal nodes(va0) = l(va0) = 1, #internal nodes(va1) = l(va1) = 21 + 1, #in-
ternal nodes(va2) = l(va2) = 22 + 1, ..., #internal nodes(vak−2) = l(vak−2) =
2k−2+1 and #internal nodes(vak−1) ≥ 1. Then the number n of internal nodes,
in the case k > 1, is such that:

n ≥ 1 +
k−2∑
i=1

(2i + 1) + 1 = k − 2 +
2k−1 − 1
2− 1

+ 1 = k − 2 + 2k−1

⇒ n ≥ 2k−1,∀k ≥ 1

Then we have ha = k ≤ 	log n
+ 1.

ADST: An Order Preserving Data Structure with Constant Access Costs 217

a

c

A

B

C

d ef g

l

m nh i

o p

q r

D EF G

L

MNH I

OP

b

Q R

va(a)

va(c)

va(r)va(f)va(q)

va(o)

Fig. 2. An example of ADST with policy AP. Lower-case letters denote servers and
associated leaves, upper-case letters denote intervals of data domain. The sequence of
splits producing the structure is a → b → c → d → e, then d → f → g → h → i → l →
m → n, then l → o → p, then c → q and finally e → r, meaning with x → y that the
split of x creates the server y

We recall that for the binary tree we are considering, that is a tree where
every node has 0 or two sons, the number of leaves, and then of servers, is
n = n′ +1, where n′ is the number of internal nodes. Substantially the previous
theorem states that the cost of correcting local trees after a split is of O(log n)
messages, where n is the number of servers in the ADST.

2.3 Access Protocols

We now analyze what happens when a client c has to perform a single-key request
for a key k. We describe the case of exact search, insertions and deletion:
Exact Search: c looks for the pertinent server for k in its local tree, finds

the server s, and sends it the request. If s is pertinent, it performs the request
and sends the result to c.

Suppose s is not pertinent. If s does not manage a compound node, then it
forwards the request to its basic server s′. We recall that I(lt(s′)) includes the
basic interval of s, then, as stated before, if the request for k is arrived to s,
k has to belong to this interval. Therefore s′ is certainly logically pertinent: it
looks for the pertinent server for k in its local tree and finds the server s′′. Then
s′ forwards the request to s′′, which performs the request and answers to c. In
this case c receives the local tree of s′ in the answer, so to update its local tree
(see figure 3).

Suppose now that s manages a compound node. The way in which compound
nodes are created ensures that I(lt(s)) includes the basic interval of s itself. Then

218 Adriano Di Pasquale and Enrico Nardelli

s has to be logically pertinent, hence it finds in lt(s) the pertinent server and
sends it the request. In this case c receives the local tree of s in the answer.

s

va(s’)

client c

request

forward to
basic server

forward to
pertinent server

+
lt(s’)

answer + lt(s’)

s’’

Fig. 3. Worst-case of the access protocol

Insertion: the protocol for exact search is performed in order to find the
pertinent server s for k. Then s inserts k in its bucket. If this insertion causes s
to go in overflow then a split is performed. After the split, correction messages
are sent to the servers in the list l of s.
Deletion: the protocol for exact search is performed in order to find the

pertinent server s for k. Then s deletes k from its bucket. If this deletion causes
s to go in underflow then a merge, which is the opposite operation of a split, is
performed.

We consider a server to be in underflow whenever it manages less than b
d keys

in the bucket, for a fixed constant d. The merge operation consists basically in
releasing an existing server s which is in underflow. If s is not empty, it sends its
remaining keys to another server s′. From now on I(s′) is enlarged by uniting
it with I(s). After the merge, correction messages are sent to the servers in list
l of s. Moreover, an algorithm to preserve the invariant of policy AP is applied
after a merge. A detailed presentation of this algorithm is quite long, and is left
to the extended version of this paper. Please note that s′ is only chosen if it is
able to receive all the keys of s without going in overflow. If there is not such a
server, a server s∗, whose interval is adjacent to I(s), is chosen and it sends a
proper number of keys to s in order to allow s to exit from the underflow state.
I(s) and I(s∗) are modified accordingly.

Previous SDDSs, e.g LH*, RP*, DRT, etc., do not explicitly consider dele-
tions. Hence, in order to compare ADST and previous SDDSs performances, we
shall not analyze behavior of ADST under deletions.

ADST: An Order Preserving Data Structure with Constant Access Costs 219

2.4 Range Search

We now describe how a range search is performed in ADST.
The protocol for exact search is performed in order to find the server s

pertinent for the leftmost value of the range. If the range is not completely
covered by s, then s sends the request to server s′ stored in its field adjacent. s′

does the same. Following the adjacent pointers all the servers covering the range
are reached and answer to the client. The operation stops whenever the server
pertinent for the rightmost value of the range is reached, see figure 4.

The above algorithm is very simple and applies to the case when only the
point-to-point protocol is available. Other variants can be considered, for exam-
ple a client can send more than one request messages, if it discovers from its
local tree that more than one server intersects the range of the query.

Usually whenever the range of a query is large, the multicast protocol is
applied, if it is available in the considered technological framework. The same
technique can be applied for ADST as well.

client c

request

answers

s k-1 messages following
adjacent pointers

va(s’)forward to
basic server

forward to
pertinent server

s*

Fig. 4. Worst-case of the range search. The server s is pertinent for the leftmost value
of the range

3 Complexity Analysis

In what follows we suppose to operate in an environment where clients work
slowly. More precisely, we suppose that between two consecutive requests the
involved servers have the time to complete all updates of their local trees: we
call this a low concurrency state. Any communication complexity result in SDDS
proposals is based on this assumption. In the extended version of this paper [6]
we show how the complexity analysis of SDDSs is influenced by this assumption,
and we give some ideas on how to operate in the case of fast working clients (also
called high concurrency).

220 Adriano Di Pasquale and Enrico Nardelli

3.1 Communication Complexity

The basic performance parameter for an SDDS is the communication complexity,
that is the number of messages needed to perform the requests of clients. We
present the main results obtained with ADST for this parameter.

Theorem 3. An exact search has in an ADST a worst-case cost of 4 messages.
An insertion that does not cause a split and a deletion that does not cause a
merge has also in an ADST a worst-case cost of 4 messages.

Proof. Follows directly from the presented algorithms.

Theorem 4. A split and the following corrections of local trees have in an
ADST a worst-case cost of log n+ 5.

Proof. Follows directly from the fact that a split costs 4 messages and from
theorem 2.

Theorem 5. A range search has in an ADST a worst-case cost of k + 1 mes-
sages, where k is the number of servers covering the range of query, without
accounting for the single request message and the k response messages.

Proof. Follows directly from the algorithm. Theorem 3 ensures that the search
of server covering the leftmost limit of the range adds, without accounting for
the requests and answer messages, 2 messages at the cost. Then we add other
k − 1 messages to reach by following the adjacent pointers the remaining k − 1
servers covering the range.

As presented in sub-section 2.3, in ADST a merge is followed by the correction
of local trees and by a restructuring of the tree made up by compound nodes in
order to keep the invariant 1. In the extended version of this paper we prove the
following theorem.

Theorem 6. In ADST a merge costs O(log n) messages, accounting the local
trees correction messages and the restructuring algorithms.

The following theorems show the behavior of ADST in the amortized case.

Theorem 7. A sequence of intermixed exact searches and insertions on ADST
has an amortized cost of 4 + 2(log n+5)

b messages per operation, where b is the
capacity of a bucket.

Proof. Let us consider a sequence of m intermixed exact searches and insertions
performed on ADST. From lemma 1 we have at most

⌊
m
A

⌋
splits, where A = b

2 .
From theorems 3 and 4 the total number of message for the sequence is C ≤
4m+

⌊
m
A

⌋
(log n+ 5) ≤ m

(
4 + 2(log n+5)

b

)
, hence the result holds.

Theorem 8. Let b be the capacity of a bucket and b
d be the merge threshold, for

a fixed constant d > 2. Then a sequence of intermixed exact searches, insertions
and deletions on ADST has an amortized cost of 4 + 2d

d−2
O(log n)

b messages per
operation.

ADST: An Order Preserving Data Structure with Constant Access Costs 221

Proof. (Sketch). Let us consider a sequence of m intermixed exact searches,
insertions, and deletions performed on ADST. Let D = b

2 − b
d = d−2

2d b. For
ease of presentation, we assume without loss of generality that

⌊
m
D

⌋
= m

D . From
lemma 1, it is easy to verify that we can have at most

⌊
m
D

⌋
operations among

splits and merges. In the extended version we show that the worst-case for such a
sequence is when, respect to a server, one split is followed by one merge, and vice-
versa. From theorems 3, 4 and 6 the total number of message for the sequence
is C ≤ 4m+

⌊
m
D

⌋
O(log n) ≤ m

(
4 + 2d

d−2
O(log n)

b

)
, hence the result holds.

We conclude showing a basic fact that holds in a realistic framework.

Assumption 9. The number n of servers participating in an ADST is such that
log n < kb, where b is the capacity of a bucket and k > 0 is a constant.

In fact, since in a realistic situation b is at least in the order of hundreds or
thousands, then, assuming k = 1, it is true in practice that n < 2b. Hence the
assumption is realistically true. For the rest of the paper we therefore assume
that: logn < b.

Under the assumption 9 the results of theorems 7 and 8 show that in practice
ADST has an amortized constant cost for any single-key operation.

4 Conclusions

We presented the ADST (Aggregation in Distributed Search Tree). This is the
first order preserving SDDS, obtaining a constant single key query cost, like
LH*, and at the same time an optimal cost for range queries. More precisely
our structure features: (i) a cost of 4 messages for exact-search queries in the
worst-case, (ii) a logarithmic cost for insert queries producing a split, (iii) an
optimal cost for range searches, that is a range search can be answered with
O(k) messages, where k is the number of servers covering the query range, (iv)
an amortized almost constant cost for any single-key query.

The internal load of a server is the typical one of order preserving SDDSs
proposed till now. In particular, servers managing compound nodes may be also
the ones managing buckets of the structure, like it is in DRT [8], or they may be
dedicated servers, like in RP* [10]. The choice does not influence the correctness
of ADST technique.

Moreover ADST is also able to manage deletions, and it is easily extendible
to manage k-dimensional data, keeping the same results. Furthermore, ADST
is an orthogonal technique with respect to techniques used to guarantee fault
tolerance, in particular to the one in [13], that provides a high availability SDDS.

Hence our proposal is a theoretical achievement potentially attractive for
distributed applications requiring high performances for single key and range
queries, high availability and possibly the management of multi-dimensional
data.

In [7] experimental comparisons exploring behavior of ADST in the average
case and comparing it with existing structures are considered. The result is that

222 Adriano Di Pasquale and Enrico Nardelli

ADST is the best choice also in the average case. This makes ADST interesting,
beyond the theoretical level, also from an application point of view.

Future work will also study the impact of using different aggregation policies.
Any aggregation policies ensuring results of theorem 2 can be applied.

References

1. P. Bozanis, Y. Manolopoulos: DSL: Accomodating Skip Lists in the SDDS Model,
Workshop on Distributed Data and Structures (WDAS 2000), L’Aquila, June 2000.

2. Y. Breitbart, R. Vingralek: Addressing and Balancing Issues in Distributed B+-
Trees, 1st Workshop on Distributed Data and Structures (WDAS’98), 1998.

3. R.Devine: Design and implementation of DDH: a distributed dynamic hashing
algorithm, 4th Int. Conf. on Foundations of Data Organization and Algorithms
(FODO), Chicago, 1993.

4. A.Di Pasquale, E. Nardelli: Fully Dynamic Balanced and Distributed Search
Trees with Logarithmic Costs, Workshop on Distributed Data and Structures
(WDAS’99), Princeton, NJ, May 1999.

5. A.Di Pasquale, E. Nardelli: Distributed searching of k-dimensional data with al-
most constant costs, ADBIS 2000, Prague, September 2000.

6. A.Di Pasquale, E. Nardelli: ADST: Aggregation in Distributed Search Trees, Tech-
nical Report 1/2001, University of L’Aquila, February 2001.

7. A.Di Pasquale, E. Nardelli: A Very Efficient Order Preserving Scalable Distributed
Data Structure, accepted for pubblication at DEXA 2001 Conference.

8. B. Kröll, P. Widmayer: Distributing a search tree among a growing number of
processor, in ACM SIGMOD Int. Conf. on Management of Data, pp 265-276 Min-
neapolis, MN, 1994.

9. W. Litwin, M.A. Neimat, D.A. Schneider: LH* - Linear hashing for distributed files,
ACM SIGMOD Int. Conf. on Management of Data, Washington, D. C., 1993.

10. W. Litwin, M.A. Neimat, D.A. Schneider: RP* - A family of order-preserving scal-
able distributed data structure, in 20th Conf. on Very Large Data Bases, Santiago,
Chile, 1994.

11. W. Litwin, M.A. Neimat, D.A. Schneider: k -RP∗
s - A High Performance Multi-

Attribute Scalable Distributed Data Structure, in 4th International Conference on
Parallel and Distributed Information System, December 1996.

12. W. Litwin, M.A. Neimat, D.A. Schneider: LH* - A Scalable Distributed Data
Structure, ACM Trans. on Database Systems, 21(4), 1996.

13. W. Litwin, T.J.E. Schwarz, S.J.: LH*RS : a High-availability Scalable Distributed
Data Structure using Reed Solomon Codes, ACM SIGMOD Int. Conf. on Man-
agement of Data, 1999.

14. E. Nardelli, F.Barillari, M. Pepe: Distributed Searching of Multi-Dimensional Data:
a Performance Evaluation Study, Journal of Parallel and Distributed Computation
(JPDC), 49, 1998.

15. R.Vingralek, Y.Breitbart, G.Weikum: Distributed file organization with scalable
cost/performance, ACM SIGMOD Int. Conf. on Management of Data, Minneapo-
lis, MN, 1994.

16. R.Vingralek, Y.Breitbart, G.Weikum: SNOWBALL: Scalable Storage on Networks
of Workstations with Balanced Load, Distr. and Par. Databases, 6, 2, 1998.

	1 Introduction
	2 ADST
	2.1 Split Management
	2.2 Aggregation Policy
	2.3 Access Protocols
	2.4 Range Search

	3 Complexity Analysis
	3.1 Communication Complexity

	4 Conclusions
	References

