An Integration Approach to the Management
of Geographical Information: CARTECH®*)

Franco Arcieri(1), Enrico Nardelli(2)

(1) Algotech s.r.l,, Via Biella 10, 00182, Roma, Italy.
(2) Istituto di Analisi dei Sistemi ed Informatica, C.N.R., Viale Manzoni 30, 00185 Roma, Italy.

Abstract

In this paper CARTECH, an SQL-based geographical
information system, is presented. It is based on the
integration approach, sketched in [14], of coupling
systems for dealing with traditional, descriptive data, with
tools for the management of spatial data. Its key feature is
the extension of the relational data model, to deal in a
uniform way with both descriptive and spatial features of
geographical information. The SQL language has also
been extended in order to provide a uniform interface for
processing both alphanumeric and spatial-geometric data.
The architecture integrates the INGRES data base
management system for the treatment of non spatial data
and the GEOTECH library for the management of
spatial/geometric data. We briefly describe the logical data
model and focus on architectural aspects of the developed
integrated system, discussing the extended-SQL interpreter
and query processor. An application of CARTECH to land
resource management is presented and performances are
discussed.

1. Introduction

An increasing and increasing interest is spreading in the
database field for systems able to deal with spatial data
[22, 25, 26, 28]. This derives from the emerging needs of
having databases able to efficiently support new
applications, like CAD or territorial information
management systems, which deal with information having
both descriptive and spatial features.

The difference and the novelty of these applications
derives from the intrinsically complex nature of such data.
For example, the description of the physical shapes and
relations existing among the parts constituting an
assembly, or of the location and geometry of a lake is not
as easy as to represent an address or a price. In the former
case the information associated with each entity is not just
a name or a number, but it is a geometrical shape in the
space, and it has to be considered as a single atomic
object. It is cumbersome to represent it using only simple

(*) Partially supported by research line “Multidata” of the “Progetto
Finalizzato Sistemi Informatici ¢ Calcolo Parallelo”-CNR and
working group “Basic GOODS"” of the “ESPRIT - Basic Research
Action™

0-8186-2697-6/92 $03.00 © 1992 IEEE

726

data types and, in this case, efficiency problems arise
during its processing.

The interest for geographical databases is due to the
importance, in many application sectors, of the
representation of the territory and of the structures built on
it. Some examples are the planning of services structures,
the localizations of geological places, the urban areas
administration, the map drawing, the optimization in
natural resources use, and so on. In all these cases it is
important to have at disposition techniques and tools that
allow an efficient representation and manipulation of
territorial data [27, 24].

A geographical entity has generally associated two
kinds of information. Firstly, the description of its
geometrical shape and its spatial position, secondly, the
presence of descriptive attributes, like the name. This
double nature of geographical entities has a correspondence
in the structure of queries that we can make: so, a DBMS
for geographic applications have to permit queries with
combined geometric and descriptive attributes, having the
same efficiency and facility of use of the normal
operations defined on the traditional attributes [20]. It has
to support direct spatial search, based on the topological
properties of objects; operations on geometric attributes,
as computing the area of a given region or the river’s
length; indirect spatial search, allowing the identification
of geometric entities on the basis of their descriptive
properties.

A widely used approach to the realization of
geographical databases rests on the coupling of traditional
database management systems (DBMS) and specialized
systems for geometrical data or image data processing. The
rationale of such an approach relies both on the wide
availability and reliability of the current DBMS's and the
powerful capabilities of specialized systems for the
spatial/geometrical data processing. In fact, since DBMS's
have been dealing since early '70 with alphanumeric data
and with typical requirements of commercial and business
applications, they are now widely spread and able to
process descriptive data in a very powerful and reliable
manner. On the other side, geometric data and image data
handling applications, with their strong requirements for
manipulating huge quantities of spatial data and efficient
algorithms for exploiting the geometrical and topological
characteristics of such data, have lead during the last two
decades to the development of specialized environments
containing a lot of very powerful capabilities for
efficiently processing geometrical and topological

properties of spatial data.

This approach was proposed in [14], where it was
firstly sketched the use of a logical data model to
overcome the drawbacks due to an integration directly
relying on the physical implementation. Here we present
the continuation of that work, by introducing and
discussing in detail the architecture of the integrated
system.

Beside its practical importance, the study of
geographical databases has a theoretical interest that
derives from the fact they can be considered as a
paradigmatic example of what we call “multimedia”
applications. By “multimedia”, in this case, we denote a
different concept from current proposals, in which the
word takes a physical meaning referring to the diversity
and variety of representation and storage media.

In our interpretation, “multimedia” denotes an
application whose complexity derives from the variety and
from the structural richness of relations that exist among
data of the application. In this framework, geographical
databases may be considered as a paradigmatic example of
multimedia data, because in the representation and
management of spatial-geometric information, if we want
a faithful representation of the reality, we have to take into
account the numerous and complex topological and
geometric relations which implicitly exist among data (as
adjacency, intersection, inclusion, distance, ...).

This paper is structured as it follows: in section 2
relevant problems related to geographical databases and
proposed solutions are addressed; in section 3 a general
description of our approach to the problem is presented;
section 4 briefly describes the logical data model on which
CARTECH is based; section 5 presents geoSQL, our
proposal of extension to the SQL language; in section 6
we describe the main features of GEOTECH, the library
for the management of spatial data; in section 7 the query
resolution strategies are discussed, and, finally, in section
8 the application for land resource management is
discussed.

2. Approaches to the treatment of
geographical data

In (14, 15] an analysis of advantages and drawbacks of
different approaches to the realization of geographical
databases was presented. In the integration approach, it is
necessary to have a logical data model the defines both a
uniform reference schema for the specification of the
integration between subsystems and provides the user with
a high level data manipulation language. The model thus
guarantee to the user a uniform and integrated view of
geographical entities while allow an access trough both
descriptive and spatial characteristics. In this section we
review approaches to the representation of complex data.

Traditional database approaches provide representation
structures which are unsuitable and inefficient when they
are used for the representation of complex entities like
those found in more advanced applications.

727

The most used model in the database logic design is
the relational model [13, 29}, because of its simplicity,
flexibility and theoretical bases founded on the set theory.
But this model has severe limits when it is employed in
advanced applications: the most obvious restriction is that
any relation scheme has to be in first normal form. In
these conditions the representation of complex objects
which can not be described with simple data, is very
difficult and complicated [19, 1, 20, 23].

Atomic domains can not represent adequately spatial-
geometric information: we have to represent it by dividing
the information regarding the object shape and position in
several pieces, which are then represented as tuples of a
relation and, generally, stored in different relations of the
database [11]. But this information is a conceptual unity
from the user point of view, and in a conceptual design it
is represented with a single attribute. As a consequence, a
disaggregated representation forces a more difficult
formulation of the queries : the user has to know deeply
the schemes of all relations, and a query, even if simple,
may be composed by many nested subqueries. Every time
we have to refer to the shape of an entity, for example in a
predicate on a geometric attribute, it is necessary to
approach a new table: therefore, a simple condition in the
where clause is generally translated in a select clause.

Efficiency is also a critical point: even few entities
request a great deal of memory, 5o to resolve geometric
operations on the data becomes very expensive if we use
only the primitives of relational systems. Consider, for
example, a metric query that asks for the distance between
two regions; here, we have to control all the possible
couples of tuples of the two relation; the time complexity
of this operation is quadratic, and this can easily cause
unacceptable resolution time.

It has been acknowledged that the possibility to
represent non atomic values is a feature of any advanced
modeling tool. Therefore, to enrich the modeling
capabilities of the relational model, it is necessary to give
up the first normal form constraint. This choice implies
that the domain of a relation attribute is not simple, but a
set of values.

Models permitting set valued attributes usually also
allow functions that compute single values starting from a
given set of values. Some models [1] generalize this
approach allowing relation valued attributes, i.c. the value
of an attribute of a relation can be, in its turn, a relation.

Models looking at the representation and the
manipulation of spatial data have also been considered.
Some interesting approaches are based on the introduction
of abstract data types to model geometric properties of the
represented data and their manipulation primitives. For
example, [17] introduces data types as point, line and
region to allow the description of geometrical entities and
a set of operators, formally specified by a many sorted
algebra, allowing to carry out the usual geometrical
operations on them.

A similar approach is proposed in [20]. Here, the
introduction of specific domains, geometric and
topological operators permits a high level manipulation of

geometrical entities. In particular, segments and regions
are objects whose internal representation is hidden by the
primitives of the language. To each domain are associated
appropriate representation structures: for instance, the
same region can be described with a sequence of segments
in an application, with points in another and with points
having a different accuracy in another one.

The use of object oriented paradigms [8, 7, 9] for
DBMSs definition seems promising and offers many
advantages: it allows high level manipulation and
representation of the entities by hiding implementation
details; the concept of inheritance offers many advantages
to designers; moreover, data and programs are stored
together because they are two parts of the same entity.

As a consequence, it is possible to face design
problems at a high level of abstraction: for example, the
real world may be represented in a more direct way by
appropriate structures reflecting the peculiar aspects of the
reality itself, without being concerned with a logical
representation that matches physical structure of data.

Unfortunately, although there is a considerable
experimental activity [7, 18, 10], there is today neither a
model accepted as a reference nor a precise formal base for
the object oriented paradigm [8]. Moreover, some of the
advantages mentioned before lose most of their validity
when, in the practice, we have to resolve queries that
involve many entities and regard a large part of the
database. In these cases, object oriented DBMSs are not
efficient: a main reason is that search paths are usually
designed on the basis of the messages that the different
instances exchange and they are not based on the value that
the attributes take up. The related search procedures can
become expensive when a great deal of data is considered.
3. General description of the proposed
approach

The idea on which we have based our proposal is that the
descriptive component and the spatial-geometrical one of a
given territorial datum have to be separated at the physical
level, to obtain efficiency, but they have to be integrated
at the logical level, so their representation and
manipulation are simple and immediate. It has to be
possible to refer to the shape of a region or to an entity
that has a spatial-geometrical component, in the same way
as to any traditional attribute of a relational DBMS. On
the other hand, the treatment of spatial-geometrical data is
fulfilled by special purpose functions assuring higher
efficiency.

Our choice for supporting logical integration has been
of relying on the well founded relational theory [12], and
to suitably extend the relational data model in order to
represent in integrated way the descriptive and geometric
part of geographical information. The possibility of
treating in a relation geometric values as well as
traditional alphanumeric attributes allows to extend the
SQL language with new simple syntactic structures:
topological predicates may be expressed on the

728

geographical entities and it is possible to apply some

geometric operators on these. From now on, we will refer

to this extension of SQL language by the name of
geoSQL.

CARTECH architecture essentially consists of two
functional modules: the relational DBMS and the spatial-
geometric module, i.e. a set of functions for the spatial-
geometric data management. The choice to represent and
separately manage these two types of information,
generates two different activities of data manipulation. The
partial results have then to be compared and integrated for
obtaining the final result. In particular, an interpreter
checks the syntactic correctness of the issued queries and
calls the modules appropriate to their resolution. The
strategy for queries resolution firstly manages the
geometric part of the query and then makes use of the
outcome for the resolution of the relational part by using
the relational DBMS. The different actions carried on by
the relational DBMS and by the spatial module are
completely hidden to the user. He can access and
manipulate data only through the primitives of the
geoSQL language.

The above described approach leads to an architecture,
shown in figure 1, consisting of the following functional
modules:

- an interface which allows the users to access to
system;

- aquery processor for the identification and separation
of the descriptive and geometric parts of the query;

- aprocessor of spatial queries; it manages spatial
subqueries and creates temporary tables containing the
partial results obtained from the their resolution;

- arelational DBMS that resolves the descriptive part of
the query using the temporary tables produced by the
spatial query processor.

The interface connects the system core to the human user

or the application programmers: it makes available the

system functionalities, recognizes the commands and
displays the result of the operations.

The query processor divides spatial subexpressions,
involving exclusively geometric attributes, from non
geometric ones, which refer to alphanumeric attributes.
Spatial subexpressions can be found either in select
clauses as geometric operators, or in where clauses as
topological predicates. This functionality is carried out by
a syntactic analyzer that sends the identified
subexpressions to the spatial processor for their
evaluation.

The relational DBMS, based on the INGRES system,
evaluates the queries concerning alphanumeric data and
executes the commands for creating and modifying the
tables used by the spatial processor.

The spatial query processor, based on GEOTECH
library, accepts as input spatial subexpressions. It carries
out the computation of the temporary tables of the partial
results, that is tables containing the regions satisfying the
imposed topological conditions. Also, it computes the
required geometric functions. This activity produces
geometric values in the case of union or intersection

operators, numeric values when the area of the specified
regions is computed.

< Interface ’

Query
Processor
Relational Geometric que
D resolutor
escriptiv | | geometrica
% data
Temporary tables

Fig. 1: CARTECH System Architecture

Algotech company has developed the CARTECH system
on a 80386 based machine using the SCO-UNIX system V
operating system, the INGRES data base management
system, the GEOTECH library for spatial/geometric data
management, the X-Window and MOTIF toolkits and the
C++ programming language. GEOTECH is the Algotech
internal library of specialized modules for efficiently
representing and manipulating geometrical data.
CARTECH has been used to develop geographical
applications: as an example, a system for land resource
management is presented and discussed in section 8.

4. The logical data model

In [15] a model for the management of complex data based
on an extension of the relational model was formally
defined. In [16] its formal properties were investigated and
its completeness and soundness were proved. The focus of
the model, which we describe briefly in this section, is to
introduce abstract data types for the specification of the
attribute domains. Abstract data types allow to define a set
of objects through their visible properties, without
considering their effective physical representation. As a
consequence, a manipulation of the objects at the same
level of abstraction that objects present in reality can be
performed. At the same time, the approach permits the
definition of possibly several physical representations of a
same objects. This possibility can furnish completely
hidden versions of an object, each of them appropriate 1o a
different application. Furthermore, the approach also
allows to represent and manipulate different kinds of
complex data in a uniform and integrated modeling
framework [15].

We have introduced an extended relational algebra that
allows the safe manipulation of the relations of the
extended model. In the extended algebra we define two
general facilities for aggregating and disaggregating the

729

values of the set-valued attributes of the model,
respectively G-Compose and G-Decompose operators.
These primitives permit a high level manipulation of the
relations exploiting the semantic content of the
specifications of the domains, i.e. the nature of the
elements, the operations and functions defined in the
specification of the relative abstract data type. Obviously,
every abstract data type specification contains the
description of a set of elements and functions according to
the data to model and to the operations to be performed on
these data. We now briefly describe the operators of the
extended algebra suitably defined to manipulate such non
atomic valued attributes. We refer to [15] for a formal and
complete treatment, and to section 5 for examples of their
use.
The operator G-Compose, applied on a set of tuples of
the relation, groups them together on the base of the
equality of one or more specified attributes, geometric or
descriptive. A set G of attributes and a set, of the same
cardinality of G, of functions, called ‘fusion functions’ is
also specified. For each attribute of G, the G-Compose
operator applies the corresponding function to the
collection of values obtained from the grouping. G-
Compose has a sort of inverse function, G-Decompose,
which in the case of set-valued attributes ungroups the
values of the set.

To support the modeling of geographical applications
we have defined an abstract data type, called Geometry(S),
to represent components and properties of geometrical
object. The approach chosen for the definition of the
abstract data type Geometry(S) is to introduce an algebra
as we describe below [Kam83). In fact an algebra is defined
through its elements and the operations it makes available
on them.

Let S be a not empty finite set, let P(S) denote the
powerset of S, we indicate by Hg the set Hg=P(P(S)), that
is the set of all sets of sets of elements of S. We call
SHAPES on § the 6-tuple YS=(HS, u,n,n*,geo,compl),
where U and " denote, respectively, the union and the
intersection operations in the way they are used in set
theory, i. e., forall A,B € S,

* AUB={ce H§:ceAvceB};

* AnB={ce Hg:ceA AceB)}.

and N, geo and comp! are defined as it follows

* An"B={ce PS): (3a) 3b) ac A A be B A
c=anb};

o geo(A) ={ X}, where X ={xeS:aeA A xea}.

* compl(AB) ={Y} where Y ={yeS :aeAUB A
yea}.

An element of the SHAPES algebra is called Shape.

Given a Shape A, each element of A (notice that each

element of A is a set of elements of the ground set S) is

called an A-component. Informally, the ~* operator, when

it is applied to two Shapes A and B, returns a Shape C

such that every C-component is the intersection between

one A-component and one B-component. The geo operator

applied to a Shape A containing more than one component

returns a Shape whose single component results from the
union of all the A-components. If A contains only one
component, the geo operator returns the same Shape. The
compl operator applied to Shapes A and B returns a Shape
whose single component, C, is the set of all points of S

A Pig. 2a

A B
B 13
4 Fig. 2¢
,
W An* B
| Fig.2e
#,
geo (A U B)
>

belonging neither to A components nor to B ones. Figures
2a,...,2f show in informal way, the operators of the
algebra introduced in this section. The shadowed part of
the drawings represents the result of the indicated
operation.

A

Fig. 2b

7

AnNnB

Fig. 24

H

AuUB

Fig. 2: Examples of the operators of SHAPES algebra.

We call 'geometrical attributes' those attributes whose
values belong to the introduced abstract data type
Geometry(S). A value of a geometrical attribute is
therefore an element of the domain Yg=(Hs, U, N, ~*,
geo, compl). We call ‘descriptive’ the “traditional”

730

attributes to distinguish them from the geometrical ones.
Owing to the nature of the geometrical attributes the
scheme of a relation that contains a geometric attribute is
not in first normal form.

5. The geoSQL language

Our query language geoSQL extends SQL to deal with the
new relational operators (G-Compose and G-Decompose)
and with the ADT Geometry(S). Before discussing such
extensions let us first present some examples of its use,
referring to [15] for a more detailed description.

Given the relation RIVERS (fig. 3) let us suppose that
we want to group the river segments of those rivers that
cross a same region. The following extended relational
algebra expression can be issued (for syntactical
explanation we refer to [15]):

G-Composecrossed-region('s River-shape)(RIVERS)

RIVERS
Name | Crossed-region | Length River-shape
river_1 A 2 riv_11} }
river_1 B 4 riv_12} }
river 2 B 2.5 {riv. 2} }
river_3 A 4.7 riv_31) }
river 3 _H 5 riv_32
river_3 B 6 riv_33
river_4 C 1 riv 4} }
river_5 B 10 riv_5) }

Figure 3: relation RIVERS

In this case the G-Compose operator groups the values of
the attribute River-shape applying to the grouped values
the fusion function u and discards the remaining
attributes. The grouping is done on the basis of the
equality of the values of the attribute Crossed-region.
Relation RIVERS-BY-REGION, in figure 4 below, show
the result:

RIVERS-BY-REGION

RIVER-LENGTHS

Name Total-lengt4h'r River-shape
river_1 6 riv_11, riv_12} }
river_2 2.5 riv 2} }

river_3 15.7 {riv_31, riv_32, riv_33} }
river 4 1 riv 4

river_5S 10 riv_5

Figure 5: G-Compose operation with set of fusion

functions.

Notice the difference in the expression of values for River-
shape attribute, obtained through the use of the geo fusion
function. By { (riv_11, riv_12} } we indicate the simple
shape containing the union between the set of the points
denoting the spatial extension of the river segment riv_11
and the one denoting the spatial extension of the river
segment riv_12. The value of the geometrical attribute in
RIVERS-4 is therefore a simple Shape since it results
from the application of the fusion function geo. It follows
that the resulting relation cannot be disaggregated in the
original components.

Notice that a safe use of the fusion functions in the G-
Compose operator is assured because, due to our ADT
approach, the manipulation functions allowed on set of
values of an attribute Aj are only the operation defined in
the ADT specification of type(Aj).

Referring to the relation RIVERS-BY-REGION of
Fig. 4, let us suppose that we want to derive the segments
of the represented rivers, with respect to the region they
cross. The following extended relational algebra expression
can be issued:

G-Decomposecmssed_regim(kiver-shape)(RIVERS-BY-
REGION)

The result is represented in relation REGIONS-AND-
SHAPES shown below in figure 6. In general, this
operator disaggregates the values of a specified attribute

Crossed-region River-shape (e.g. River-shape) with respect to a specified (set of)
A { (riv_11}, {riv 31}) attribute(s) (¢.g. Crossed-region).
B riv_12}, {riv_2}, {riv_5} , {riv_33
C riv 4} } REGIONS-AND-SHAPES
H {riv 32} } Crossed-region River-shape
Figure 4: an example of G-Compose operator. A riv_11}
A riv_31}
The value of the geometric attribute River-shape in each B {riv_12}
tuple of the relation RIVERS-BY-REGION is thus the set B v 2
of the river segments belonging to the same region. B nv_5
Through the use of a set of fusion functions in the G- B riv 33} }
Compose operator it is also possible to calculate new C riv. 4} }
values related to the new obtained entity from the values H riv 3} }

associated to the merged entities:

G-Composename(+» g€o; Length, River-shape)(RIVERS).
The result is shown in Relation RIVER-LENGTHS of

figure 5 where, starting from relation RIVERS of figure 2,

we have merged the values of the River-shape attribute on

the basis of the equality of the values of Name attribute

and have computed the total length of the rivers.

731

Figure 6: G-decompose operator.

The operator has decomposed each Shape in its constituent
components, and therefore now each value of the
geometric attribute River-shapes is the simple Shape (i.e.
a Shape having only one component) of a river segment
that crosses a given region. It can be said that the relation
RIVERS-BY-REGION has been normalized by the
application of the G-Decompose operator. At the same

time, the value of any geometric attribute is always an
element of SHAPES though it may generally be not a
simple shape.

We can therefore say that the introduced extensions of
relational algebra constitute the basis of a high level
geographical database query and manipulation language.
The implementation of G-Compose and G-Decompose has
been done through the definition in geoSQL of the
operators MERGE and SEPARE. The semantics of these
operators is of course based on the model defined in [15].

The operator “MERGE [WRT X] [APPLYING Fy TO|
Y FROM R”, where square brackets represent optionality,
corresponds to our G-Compose. Informally speaking,
MERGE composes the values of attribute Y of relation R,
possibly with respect to the equality of values of X
attribute and possibly appling the set of fusion functions
Fy to the composed set. The operator “SEPARE [WRT X]
Y FROM R” corresponds to the G-Decompose of our

model. Informally speaking, SEPARE disaggregates the

values of set-valued attribute Y of relation R, possibly

coupling each of the resulting elementary component of Y

with the corresponding value of X attribute. As in standard

SQL, relation R may be denoted by nested SQL

espressions.

We give now some more complex examples to show
how general geographical queries (i.e. queries involving
predicates on both geometric and descriptive properties of
geographical data) can be formulated by suitable geoSQL
statements.

- Geometrical Selection: Having at disposal the
relation CULTIVATIONS (figure 7) representing
cultivations and chemical treatment of pieces of lands,
the user can ask the database to "return the names of
the rivers whose river segments cross some tobacco
cultivated lands".

CULTIVATIONS
Cultivation Chemical Cult-quantity Chem-quantity Shape
corn A 20000 13 Al} }
potatoes B 10050 17 A2} }
tobacco R 14500 23 A3)
corm C 37850 30 A4
potatoes B 15070 20 { {AS5} }
Figure 7: relation CULTIVATIONS
CULTIVATIONS of figure 7.
The formulation in geoSQL is:
REGIONS
SELECT Name Name Area Shape
FROM R1 200 { {reg R1} }
(SELECT Name, Cultivation R2 200 reg R2
FROM RIVERS, CULTIVATIONS R3 250 reg R3
WHERE RIVERS.River-shape INTERSECT R4 120 { {reg R4} }

CULTIVATIONS.Shape)
WHERE Cultivation.="tobacco".

Note that the use of INTERSECT predicate (one of the
introduced topological predicates, see below) to manipulate
SHAPES valued attributes as the join operator has the

effect of performing what can be called a

"spatial/geometric join" on the involved geographical

entities. In fact, its effects are similar, from a logical point

of view, to those of the "classical" join when applied to
descriptive attributes.

- Checking spatial differences: The user can ask
the database to calculate the difference in spatial-
geometrical terms of the specified geographical entities
(e.g. for eliminating slivers following a map overlay)
by issuing a query like "return the parts of tobacco
cultivated lands, which are not in region R1".

Let us suppose to have extracted from relation REGIONS

of figure 8 the relation REGION-1 containing tuples with

Name=R1. As well, let us suppose the relation CULT-1,

containing the union of Shape values for all tobacco

cultivated pieces of land, has been extracted from relation

732

Figure 8: relation REGIONS

Then, the expression in geoSQL language for the above
query is:

SELECT Shape FROM
MERGE APPLYING n* TQ Shape
FROM
((MERGE APPLYING Compl TQ Shape
FROM REGION-1) UNION CULT-1)

Further examples, e.g. for processing windowing and
clipping of relations, can be found in [15].

To cope with the manipulation of Geometry(S) a
number of topological predicates and geometric operators
have been introduced. Geometric operators are the
implementation of the 5 operators introduced in the
Geometry(S) ADT definition. Topological predicates are
used in the WHERE clause of SQL to deal with
manipulation of geometrical attributes.

The topological predicates provide a boolean result. In
all cases the arguments are two geometric attributes,

whlch may possibly belong to the same relation.
INTERSECT: it returns “true” when the regions
represented by the two attributes have a non empty
intersection; “false” if the two regions have an empty
intersection.

- INCLUDE: it returns “true” if the region represented
by the second attribute is included in the first one;
“false” otherwise.

- ADJACENT: it returns “true” if the two regions are
adjacent; “false” if they are not.

- EQUAL: it recognizes when two regions are equal.
That is, it returns “true” if the regions represented by
the two attributes have the same shape and location in
the plane; “false” otherwise.

As last set of examples of geoSQL let us show the

interactive use of the topological predicates, by showing

the graphical results of defined manipulations. We use the
following two tables:

Urban-plans

Code-Area Use Year Shape

abc321 building_area 1980 rif pl

xyzl building_area 1982 rif_p2

rstS5 building_area 1985 rif_p3

WWW green_public area | 1985 rif p4
and

Buildings

Civic-Number Street Category | Shape

54 corso_italia cl rif ¢l

21 piazza verdi c2 rif ¢c2

35 Viaroma | o4 | xif c10

whose shapes are graphically represented as it follows:

{ 14
B <4

Oct Elec2 PWes

The following query
“Select geometry of all the buildings of category c1

included in the building area of 1985 urban plan”
corresponds to the geoSQL expression:

733

SELECT BUILDINGS.Shape
FROM BUILDINGS, URBAN-PLANS
WHERE URBAN-PLANS.Year=1985 AND
URBAN-PLANS . Use="Building Area” AND
BUILDINGS.Category=cl AND
INCLUDE(URBAN-PLANS.Shape,
BUILDINGS.Shape);

whose result is the following:

If we want to know
“the geometry and the street of all buildings that are
adjacent among themselves and that lies in the

building area rst55 of the 1985 urban plan”,
we need to formulate the following geoSQL query:

SELECT BUILDINGS.Shape, BUILDINGS. Street
FROM BUILDINGS, BUILDINGS BUILDINGS-1
WHERE URBAN-PLANS.Code=rst55 AND

URBAN-PLANS.Year=1985 AND

ADJACENT(BUILDINGS.Shape,
BUILDINGS-1.Shape) AND

INTERSECT(BUILDINGS.Shape, URBAN-
PLANS.Shape);

obtaining, as far as shapes of buildings is concemned:

6. Implementation of the ADT

Geometry(S)

The implementation of ADT Geometry(S) has been done
by using the GEOTECH library of Algotech for managing
spatial/geometric data. This library see a geometric region
as a set of integer points: in our approach, not all the
couples of integers which belong to the region itself are
explicitly stored. For each region only a limited amount of
information is stored and every point of this region can be
reached by an appropriate algorithm.

The library employs multivalued quad-trees [5, 2], a
direct extension of quad-trees [21]. A multivalued quad-tree
is a hierarchical data structure, introduced and analyzed in
[5] and refined in [2], for the representation of sets of
regions. It is built starting from a regular decomposition

of the plane in quadrants. The plane on which the queries

are defined is represented as an array of 2"x2" elements. It
is recursively split in quadrants and subquadrants until we
arrive either at empty quadrants or at quadrants which
entirely belong to a (set of) region(s). This decomposition
may be represented with a tree, in which every internal
node has four children. The leaves of this tree
corresponding to homogeneous decomposition blocks are
black: to allow the representation of overlapping regions,
to every black node is associated a pointer to the list of all
regions which share the block. Leaves corresponding to
empty areas are marked white. All the other nodes, which
are internal nodes, are marked gray. An example of a
multivalued quad-tree is show in figure 9.

The simplest implementation of a quad-tree is a
representation by a pointer structure; but it needs a large
amount of memory, because of the presence of a great deal
of pointers. Then, we have adopted a linear structure,
executing a pre-order visit of the quadtree and storing the
visit order of the nodes in a manner that permit a non
ambiguous reconstruction of the tree. This kind of
representation is not restrictive because every operation on
a tree can be carried out with a visit.

Using such a data structure, the implementation of the
first three topological predicates and of the geometric
operators is straightforward. = The EQUAL predicate
needs some discussions. It is necessary to distinguish the
case when the two specified regions are values of the same
attribute of a table and when they are not. In the former
case, if the two regions are equal they have to be
considered the same region and not two different entities

m]]]] region 1

B region 2
V7] region 3

me

Fig. 9: a multivalued quadtree

For example let us consider the materialization of a view
whose schema includes a geometrical attribute. Some

734

regions created during the computation of the view may be
identical. If we looked at them as distinct, it would be
necessary to store the same information more times with a
waste of resources and possible risks of inconsistency .
We have to recognize this situation and identify equal
regions by same identifiers so that their geometry is stored
only once.

The sitnation is different when the two regions belong to
two distinct relations, or they are values of two different
geometric attributes in the same relation. The importance
of stating the difference between these two situations
depends upon the semantics attributed to a single quad-tree.
In our approach all the regions belonging to a single
attribute of a relation are represented by a single quad-tree.
As a consequence, if two regions are stored on different
quad-trees they can be equal and their equality can be tested
by applying the predicate EQUAL. In this case they can be
equal, but not coincident.

7. Query resolution

Before the description of the technique adopted for the
queries resolution, a premise is needed about the way used
to identify the regions in the database. The links between
spatial data and descriptive data are maintained by means of
numeric identifiers; in the geometric attributes of a
relational table, the region is indicated by an integer, that
identifies the region among those stored in the same quad-
tree. In the quad-tree also, every reference to a region is
made in the same way.

In the evaluation of a query, the system firstly verifies
the syntactic correctness of the input string. Geometric
predicates are then processed: whenever one of these is
recognized, the spatial query processor processes it and
inserts the results in a temporary relational table. After the
processing of all geometric predicates, the query is slightly
modified: firstly, the just solved predicates are deleted from
the WHERE clause and suitable constraints are added to
impose that result tuples belong to these temporary tables;
then we temporarily eliminate the references to geometric
operators in the SELECT clause and leave only their
operands. This modified query is ready for being processed
by the relational DBMS, which stores the results of this
evaluation in a new relation. This is given back to spatial
query processor which can now process the geometric
operators. Finally, the system presents in output the
requested data.

We can clarify at this point, how the system preserves
the consistency of the data. All the regions belonging to a
geometric attribute of a fixed relation are stored in the
same quad-tree; the name of every file containing a quad-
tree is equal to the name of the relation containing the
attribute, extended with the name of the attribute itself and
completed with the further extension “.qdt”. The
consistency tie is then the existence of a quad-tree
opportunely named for each geometric attribute present in
the relations schemes.

We have illustrated a possible strategy for query

resolution. Another possibility is to firstly calculate the
relational side of the query and to next use these results for
evaluating the spatial side. The choice between the two
possibilities can only be made on the basis of
considerations depending on the specific instance of the
query and on the current extension of the database, which
are usually not known a priori. It is reasonable to choose
the strategy that minimize the amount of the data to
process: but it is not possible to specify a general strategy
which is always valid. A further possibility of
optimization is to provide an information exchange
between the relational DBMS and the spatial processor for
decreasing the complexity of the query processing
algorithms involved. To this end, an approach which is
currently under investigation, is the use of the so-called
“on-line” approach to quickly compute partial approximate
solutions to spatial queries [14] and to use this
information to drive the query optimization process.

8. An application to land resource
management

In this section we describe an application of CARTECH to
the development of a system (TMMS: Thematic Maps and
Models Management System [3], [4], [6]) for land resource
management and discuss its performances.

TMMS is a system realized to support interactive
planning of extraction activities in the “Lazio” region
(about 18.000 km2 area), one of the twenty units of local
government in which Italy is partitioned. The system
manages ten different views of the territory of Lazio: six of
them describe land constraints (e.g. urban, archeological,
environmental, ...), one contains the hydrological
characteristics, one represents the geological aspects, one
describes the distribution and potential productivity of
mineral deposits, and the last one contains the current
distribution and productivity of mines.

The methodology used to define or refine the extraction
plan allow to interactively build thematic maps of the
land, called “cultivation charts”, which describe the regions
where mineral can be extracted anyhow, where its
extraction is depending to the relaxation of some of the
constraints, and where the extraction is anyhow forbidden.
Planning is carried out by defining the geographical region
of intervention, the amount and type of mineral to be
extracted (the objective), the constraints that have to be
taken into account and how they have to be combined and
prioritized with respect to the objective. If the objective
cannot be easily reached, the planner dynamically changes
priority values and/or constraints combination to build and
evaluate alternative scenarios.

TMMS runs on a 33-Mhz 80386 machine, equipped
with the SCO Unix operating system and the INGRES
relational DBMS. As an example of its performances we
consider some queries which are usually part of the mine
planning activities in ‘Lazio’ region. The queries have
been selected among those considered by planners as the
critical ones for the currently available systems. In this

example we have two relations regarding the entire Lazio
region, one describing distribution of minerals (i.e.
MINERAL(name, geometry)) and the other
describing urban constraints (i.e. CONSTRAINT(type,
geometry)). Geometrical information is represented by
two multivalued quadtrees which are 1024x1024 pixels and
are 905 and 557 KBytes large.

A first query in the course of a planning section can be
to search ail zones containing sandstone and not classified
as agricultural. To examine performance in detail we first
build a table called NOTAGR containing all zones not
classified as agricultural:

SELECT CONSTRAINT geometry CONSTRAINT.type
FROM CONSTRAINT

WHERE CONSTRAINT.type NOT LIKE
“Yagricultural” [NTO NOTAGR

and then select the zones containing the mineral

SELECT INTERSECTION(NOTAGR.geometry,
MINERAL .geometry) geometry, MINERAL.name
FROM NOTAGR, MINERAL
WHERE MINERAL .name="sandstone’

The first subquery requires in total 20 seconds and the
second one requires in total 1 minute 50 seconds for an
overall total of 2 minutes 10 seconds, everything included.

A second query can be to search all zones containing
clay and classified as agricultural. Again, to examine
performances in detail, we first build a table called AGR
containing all zones classified as agricultural:

SELECT CONSTRAINT.geometry CONSTRAINT.type
FROM CONSTRAINT
WHERE CONSTRAINT.type LIKE
“Gpagricultural” INTO AGR

and then select the zones containing the mineral

SELECT INTERSECTION(AGR .geometry,
MINERAL.geometry) geometry, MINERAL.name
FROM AGR, MINERAL
WHERE MINERAL .name=°clay’

Here the first subquery requires in total 20 seconds and the
second one requires in total 2 minute 15 seconds for an
overall total of 2 minutes 35 seconds, everything included.

A third query is to build an overall view of extraction
zones by intersecting zones containing minerals and zones
whose constraint is “‘extraction”.

SELECT INTERSECTION (MINERAL .geometry,
CONSTRAINT .geometry) geometry,
MINERAL .name

FROM CONSTRAINT, MINERAL
WHERE CONSTRAINT.type="extraction’

A total of 2 minutes 40 seconds is used in this case.

In the tables below the performances regarding the
resolution of only geometric predicates and operators are
described. Recall that while predicates just output ‘yes’ or
‘no’, operators provide regions as answer. The first table
regards the computation of the intersection between
regions belonging to map 1 and regions belonging to map
2. The second table is concerned with the computation of
how many regions in map 1 are adjacent to at least one
region in map 2. It can be noted how the processing time
required is ‘output sensitive’, in the sense that when the
expected output is small, then little time is spent during
processing.

mT T T

INTERSECTION OPERATOR
Involved Regions Number of Average
Map 1 Map 2 output regions | resolution time
10 10 40 15~
50 50 24 22"
100 100 13 17"
100 100 40 30"
ADJACENCY PREDICATE
Involved Regio:l_ N. of positive Average
Map 1 Map 2] region in Map 1] resolution time
100 100 24 18"
200 200 19 20"
9. Conclusions

In this paper we have presented and discussed a system for
geographical data management, CARTECH. The system
is based on a logical data model developed as extension of
the relational model. It also features an interface based on
an extension of SQL to deal in a uniform way with
descriptive and spatial-geometric information. CARTECH
has been implemented and runs on 80386 machine, under
the-SCO Unix operating system and interfacing with
INGRES database management system.

The usability analysis of the applications developed
using CARTECH are encouraging both for the
manageability and simplicity of use, and for the efficiency
in the treatment of geographic queries. The geoSQL
language, introduced for the geographical data
manipulation, turns out to be a simple and powerful
instrument, being able to satisfy the demands of different
application problems. The behaviour of the data structures
adopted for the resolution of topological queries seems
really good, as it results from the efficiency comparison
between our system and the commercial systems with
analogous functions and comparable computing power.

The extreme modularity of the system architecture
allows to easily extend the data types that it can manage,
keeping always separated the manipulation of the
descriptive component from the more complex ones (i.e.:
three-dimensional data).

Further work is currently being done to enrich geoSQL

736

with more powerful and user-friendly operators, to decrease
time and space complexity of physical data structures, and
to design query optimization algorithms. An extension of
the system for the management of vector data is under
analysis and practical experiments in real life applications
are also continued.

Acknowledgments

We are greatly indebted to Paolo Dell’Olmo, Giorgio
Gambosi, Marinella Gargano, and Maurizio Talamo for
many fruitful discussions on these issues and their
contributions to the work here described. Many thanks
also to Luigi Barella for his contribution to system design
and implementation.

References

1] S. Abiteboul, N. Bidoit: Non First Normal Form
Relations: An Algebra Allowing Data Restructuring, Journal
of Computer and System Sciences 33, 1986

2] F. Arcieri, L.Barella, E.Nardelli: Multivalued quadtrees
for the efficient processing of spatial data, manuscript, 1991
[3] F. Arcieri, G.Gambosi: Ambienti innovativi per la
realizzazione di applicazioni di supporto alla pianificazione
di insediamenti sul territorio, Conference FAST, Venice,
February1990

4] F. Arcieri, G.Gambosi, M.Lancia, E.Nardelli: Un
sistema per la gestione di dati spaziali e di tematismi definiti
sul territorio, Conference of the Italian Association for
Automated Calcoulous (AICA), Bari, October 1990

5] F. Arcieri, P. Dell'Olmo: A Data Structure for the
Efficient Treatment if Topological Join, Fourth International
Symposium on Computer and Information Sciences, Turkey
1989

(6] F. Arcieri, M. Talamo: T.M.M.S.: Un sistema
informativo territoriale per lagestione di dati spaziale e di
tematismi definiti sul territorio: un’applicazione al Piano
Regionale delle Attivitd Estrattive nella Regione Lazio, Proc.
of 1990 Conference on State of the Art in Territorial
Information Systems, Italian Chapter of AM/FM GIS, Rome,
December 1990

{71 A. J. Baroody, D. J. DeWitt, An Object-Oriented
Approach to Database System Implementation, ACM
Transactions on Database Systems, Vol. 6, No 4, December
1981

[8] F. Bancilhon: Object-Oriented Database Systems, 7th
ACM SIGART- SIGMOD SIGACT Symposium on Principles of
Database Systems, March 1988

9 G. Booch: Object-Oriented Development, IEEE
Transaction on SW Engineering, vol 12, no 2, 1986

[10] J. Banerjee, W. Kim, H.-J. Kim, Semantics and
Implementation of Schema Evolution in Objects Oriented
Databases, Proc. ACM SIGMOD Conf. on the Management of
Data, 1987

{11] N. S. Chang, K. S. Fu: A Relational Database System
for Images, in Pictorial Information System, Springer, 1980
[12] E. F. Codd: A relational model for large shared data
banks, Comm ACM vol.13, No. 6, Junel970

[13] C. J. Date: An Introduction to Database Systems,
Addison-Wesley Publishing Company

[14] P.G. Franciosa, E. Nardelli: On-line approximation of
quadtree border, Int. Workshop on DBMSs for geographical

applications, Capri, May 1991.

[14] M. Gargano, E. Nardelli: A logical data model for
integrated geographical databases, Proc. of 1st International
Conference on Systems Integration, Morristown, NJ, April
1990.

{15] M. Gargano, E. Nardelli, M. Talamo: Abstract Data
Types for the logical modeling of complex data, Information
Systems, Vol. 16, N. 6, 1991.

[16] M. Gargano, E. Nardelli, M. Talamo: A model for
complex data: completeness and soundness properties, Int.
Workshop on DBMSs for geographical applications, Capri,
May 1991.

[17] R. H. Giiting: Geo-Relational Algebra: A Model and
Query Language for Geometric Database Systems, Conf. on
Extending Database Technology, 1988, Venice

[18] C. Lécluse, P. Richard, F. Velez: Oy; an Object-
Oriented Data Model, Rapport Technique Altair 10-87,
Septembre 1987

[19] G. Ozsoyoglu, Z. M. Ozsoyoglu, V. Matos: Extending
Relational Algebra and Relational Calculus with Set-Valued
Attributes and Aggregate Functions, ACM Transactions on
Database Systems, vol. 12, no. 4, December 1987

[20] N. Roussopoulos, C. Faloutsos, T. Sellis: An Efficient
Pictorial Database System for PSQL, IEEE Transaction on SW
Engineering, vol 14, no 5, May 1988

[21] H. Samet: The quadiree and other related hierarchical
data structures, Computing Surveys, vol. 16, no. 2, June 1984
[22] H.Samet: Spatial database system based on SQL, Proc.
VLDB 91, June 1991.

[23] M. Scholl, A. Voisard: Modeling of thematic maps: an
application to geographic databases, International
Symposium on the Design and Implementation of Large
Spatial Databases, Santa Barbara, July 1989

[24] T.R. Smith, A.U. Frank: Very Large Spatial Database -
Report from the Specialist Meeting. J. of Visual Languages
and Computing 1 (3): 291-309

[25] Proceedings of First Symposium on Design and
Implementation of Large Spatial Databases, Santa Barbara,
Ca., July 1989.

[26] Proceedings of First International Workshop on
DBMSs for geographical applications, Capri, Italy, May
1991.

[27] T.R. Smith, S.Menon, J.Star, J.E.Estes: Requirements
and principles for the implementation and construction of
large-scale geographical information systems, Intern. Journal
of Geographical Information Systems, 1, 13-31, 1987

[28] Proceedings of Second Symposium on Large Spatial
Databases, Zurich, Switzerland, August 1991.

[29] J. Ullmann: Principles of Database and Knowledge-
Base Systems, Computer Science Press Inc, 1988

737

