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A B S T R A C T  

In this paper we define a formal model for the discrete 
representation of spatial objects and characterize its 
properties. The model and its manipulation primitives 
are based only on set theory and do not use any metric- 
based concept. A general characterization for 
containment and intersection relations is given. The 
model is based on a mapping from spatial objects to 
their representations as sets of points of Z 2 such that 
queries on spatial objects can be answered by applying 
simple set-theoretic primitives to their corresponding 
discrete representations. The mapping makes reference 
to a suitable topology whose underlying set is a 
canonical decomposition of the real plane in square 
cells. But the introduced model keep its properties 
under every homeomorphic topological space such that 
its underlying set is a countable partition of the plane 
whose cells are simply connected. 

1 .  I N T R O D U C T I O N  

The definition of  a formal framework for the 
representation and manipulation of spatial objects and 
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their relations is a key issue in the theory of  spatial 
databases. Since we want to use computing devices to 
represent and manipulate spatial objects and their 
relations it is of  the greatest importance to focus on 
finite formalizations. 

In this paper we are therefore concerned with the 
definition of a theory which models spatial relations 
among geographical object and is, at the same time, 
based on finite and discrete representations of  spatial 
objects. 

Many different models for spatial objects and relations 
have been introduced in the literature. Among the most 
widely known there is the Egenhofer and Franzosa's 4- 
intersection model [EF91 ] and its extensions ([Her91 ], 
[CDO93], [ES93]), all based on point-set topology. 

Other interesting models formalizing spatial relations 
are based on simplicial complexes ([EFJ89], ['Wor92]) 
or on partial orders or on a combination of  them 
[KEG]. 

Considering finite representation of  spatial objects, 
Guibas, Salesin and Stolfi defined Epsilon-Geometry 
[GSS89, GSS93], which allows to carry out exact 
geometric computations even when only inaccurate 
primitives are available. This approach, while very 
good in dealing with building accurate discrete 
representation of real objects does not explicitly address 
issues of spatial relations. Greene and Yao [GY86] 
introduced a computational geometry framework for the 
topologically correct computation of  intersection 
(discrete) points in a set of  line segments whose 
endpoints have discrete coordinates. A completely 
different approach was taken by Giiting and Schneider 
[GS93]. They introduced the concept of Realm (i.e., a 
set of points and non-intersecting lines over a discrete 
domain)which allows to model spatial relations 
through an algebraic approach. Discrete representations 
at the Realm level are derived from real objects by 



means of  computational geometry primitives which 
take into account rounding problems. Representations 
at the Realm level are then manipulated through a very 
clean algebraic interface, where spatial relations are 
defined by means of  a algebraic specifications. But the 
introduction of an intermediate level, while allowing a 
very good formalizat ion of  spatial relations and 
manipulations, hides the true relations between objects 
in the real world and their counterparts in the model. 

In this paper we address these issues by defining a 
formal model for spatial objects and relations and 
characterizing its properties. We have already introduced 
in [CNT96] a discrete representat ion for spatial  
relations which al lows to test conta inment  and 
intersection relations among convex polygons. We 
defined a topology preserving mapping from the set of 
convex polygons to a discrete space. Here we extend 
and refine that approach. Objects we consider are 
arbitrary polygons and lines whose vertices are points 
with discrete-valued coordinates. 

The discrete space we use as basis for our framework is 
a countable set of points whose coordinates are suitably 
taken from the set of rational numbers. We define a 
correspondence between this discrete space and a 
partition of the continuous real plane in squares. This 
specif ic  par t i t ion is chosen only for ease of  
formal iza t ion ,  s ince our results  hold for any 
decomposition of the real plane that is a partition in 
cells such that the cells are the underlying set of a 
topological  space homeomorphic  to the one we 
introduce. 

The manipulation primitives introduced in the model 
are purely topological and based on set-theory, without 
using any concept based on metrics. Thus we are able 
to give a finite characterization of each of the three 
basic relative positions of spatial objects (namely: 
containment, intersection, and disjointness). These are 
the three fundamental relations to be managed by any 
efficient organization of spatial data. 

The paper is structured as it follows. In section 2 we 
introduce the topological space used for the discrete 
framework and the mapping between it and real objects. 
In section 3 we characterize the containment relation 
be tween po lygons .  Sec t ion  4 comple t e s  the 
characterization by studying the intersection relation. 
Section 5 address generalization issues and, finally, 
section 6 contains conclusive remarks. 

2 .  B A S I C  D E F I N I T I O N S  

In this section we introduce the topological space used 
for the discrete representation of objects and the one-to- 
one mapping between it and objects in the reality. Let 
N, Z, Q, R denote the sets of, respectively, natural, 
integer, rational, and real numbers. Each set is taken 
with its usual total order. 

Let Q a = { p i ~  Q [p i=P i . l+A,  0<A<I ,  A~ Q,  i~ Z} .  
Without loss of generality, we can assume p0=0. We 
note that on Qa a successor function succ: Q,~---~Qa 
can be defined. Given apiE Qa we let succ(pi)=pi+l. Let 
]a,b[, with a<b, denote an open interval in Qa, that is 
]a,b[ = {p I a<p<b, a,b,p~ Qa}. 

Let Gt~=QaXQA and let (Ga,Ta) be the topological  
space whose open sets are generated by the following 
basis Ba={ ]a,b[ x ]c,d[ la,b,c,d~Qa}. 

Let T~ T a. We denote with C(T) the complement in 
Ga of T, i.e. the set C(T)= Ga\T. We denote with T the 
closure of T, i.e. the intersection of all closed sets I of 
(Gzx,Ta) containing T. We denote with b T  the 
boundary of T, i.e. the set aT=TnC(T). 

DEFINITION 1: Let T~ T a. T is called canonical  if 
T={t l,,. ,]vi,ai+l [ × ]bj,bj+l [ [ (ai ,bj)~ Ga)- T is called 
degenerate if {p [pc  T}=O. @ 

Note that a canonical open set is always degenerate. 

DEFINITION 2: Let x~ Gzx. w e  denote with U x the 
family of  open sets of  T a containing x. We call 
U x = (~ V the pointed ndighbourhood of x. @ 

Ve U x 

DEFINITION 3: Let x=(xl,x2) and Y=(Yl,Y2) belong to 
Ga. w e  say x is adjacent  to y if (Xl=SUCC(yl) v 
y l = s u c c ( x l ) )  ^ (x2=Y2) or if (x2=succ(y2)  v 
y2=succ(x2)) ^ (xl=Yl). @ 

DEFINITION4: Let 7={xl,  x2 . . . . .  Xk}, k>2, be a finite 
set of points of Ga, such that xi-i and xi are adjacent 
for i=2 ,3  . . . . .  k, and xi:g:x j for i~:j. We say y is a 
chain. @ 

DEFINITION 5: Let A be a set of points of Ga. We say 
A is connected if for each couple of distinct points x 
and y belonging to A a chain 7={xt, x2 . . . . .  Xk} exists 
such that x l=x and xk=y. @ 

DEFINITION 6: Let ~-={xl, x2 . . . . .  xk), k>_4, be a chain 
such that Xl=X k. We say ~. is a loop. The (possibly 

I A closed set of a topological space (X,T) is a subset of X 
such that its complement in x is an open set of (X.T). 
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empty) union of all maximal connected finite subsets 
of the set Ga~ is denoted tp(~.). ® 

DEFINITION7: Let A be a subset of  the topological 
space (GA,Ta). A is called loop-connected if a loop 
Lc_A exists such that Vxe A it is xe 3.uqo(X). 0 

We can now consider the countable partition in disjoint 
sets induced on R 2 by GA- Such a partition is denoted 
R 2 in the following. 

DEFINITION& Let q={(x,y) J (x,y)e R 2, ai<x<ai+l, 
bj-<y<bj+ I, (ai,bj)E GA}E R~. We say (ai,bj) is the base 
point of q, and we let hbp(q)=ai and vbp(q)=bj. @ 

It is naturally defined a one-to-one function bp: 
R2"~ Ga that associates at each q of  R 2 its base point 
bp(q). We assume GA is provided with the topology 'T a 
above defined and we provide R~ with the topology 'T~' 
defined as the inverse image of  T a under bp. To obtain 
T a '  we can consider its basis B a" obtained as the 
inverse image of  BA under bp. An element of  BA' is 
therefore an open set A'={qe R~I a<hbp(q)<bA 
c~_vbp(q)<d, a,b,c,de QA }" 

Given these assumptions, it can be easily seen that the 
function bp is a homeomorphism. 

DEFINITION 9: Let p, qe R 2. We say that p and q are 
horizontally (resp. vertically)adjacent if bpfp) and 
bp(q) are adjacent and vbp(p)=vbp(q) (resp. 
hbp(p)=hbp(q)). We say that p is on the right of q 

(resp. on the l e f t ) i f hbp(p )>hbp(q )  (resp. 
hbp(p)<hbp(q) ). We say that p is above q (resp. 
below) if vbp(p)>vbp(q) (resp. vbp(p)<vbp(q)). ~) 

3 .  CONTAINMENT RELATIONS 

3 . 1 .  Containment  between convex polygons 

In [CNT96] we characterized containment between 
convex polygons in R 2 in terms of the containment 
between open sets of  the topological space (Ga,Ta). 
We considered in [CNT96] only convex polygons such 
that o(.)'is loop-connected. 

We now briefly recall definitions and results from 
[CNT96]. Afterwards we give the treatment for non- 
convex polygon and in the final section we generalize 
to polygons such that o(.) is not loop-connected. 

DEFINITION 10: Let E be the set o f  convex 
polygons in R 2 whose vertices belongs to Ga. Let 
Ae E. We call skeleton of A the set o(A)=uxU x for 
all xe A n  G~. ® 

In figure I below examples of skeletons are shown. A 
circle indicates a point of  Ga that belongs to an open 
set, while a cross denotes points belonging to the 
boundary of an open set. Endpoints of lines are shown 
as grey circles. 
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-; .............. X X -  X X . . . . . .  X X X 
i ; 
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F i g u r e  I :  ( A ,  B )  - p o l y g o n s  w h o s e  s k e l e t o n s  h a v e  l o o p - c o n n e c t e d  c l o s u r e ;  

( C )  - a p o l y g o n  w h o s e  s k e l e t o n  has  a c l o s u r e  that  is not  l o o p - c o n n e c t e d .  

The containment between two polygons in R z is 
equivalent to the containment of their skeletons. 

THEOREM 1 [CNT96]: Lct A. Be E. Then AC_EB iff 
G(A )C_GaCy( B). @ 

Also, it is possible to define a mapping between R~ 
and Z z, namely T : R , ~ Z  2, that satisfies the 
following conditions: 

1 4 6  



1. a = T ( p ) a n d  b=T(q) are horizontally (vertically) 
adjacent iff p and q are horizontally (vertically) 
adjacent; 

2. a is on the right (on the left) of b i f f p  is on the 
right (on the left) of q. 

3. a is above (below) b i ffp is above (below) q. 

Let P(S)  denote the power set of set S. Let us take 
R~ and Z 2 with their respective topologies, 'T a '  and 
T(Z2). Note that T is open I. Moreover, T is one-to- 
one, since T(p)~:T(q) iffp¢-q. 

THEOREM2 [CNT96]: Let A,Be ~E. Then Ac_TB iff 
T( bpl ( o(A ) ) )cz2T ( bp-t ( o( B) ) ). @ 

The above theorem then allows us to reduce testing of 
containment between convex polygons of R z tO the 
testing of set containment between their correspondent 
sets of  points of Z 2. 

3 . 2 .  Re la t ions  be tween  l ine segmen t s  

We now study relations between line segments with a 
twofold aim. First to be able to generalize to non- 
convex polygons results obtained in the previous 
section, and second to prepare the way for the 
characterization of the intersection relation between 
arbitrary polygons. To obtain this we adopt a formal 
framework that is different from the one we have used 
in [CNT96]. 

Let .L be the set of line segments of R 2 whose 
endpoints belong to Ga. We denote with 1~ the infinite 
line corresponding to a line segment le £. We denote 

+ 
with l~and l~,r~espectively the right and left (according 
to some arbitrarily chosen direction for l ~ )  open 
halfplane of  R 2 defined by/~, .  In this sub-section it is 
always l,l' e L. 

DEFINITION 11: The set .'7~l,~,)={xe ~a I qYe~xx : 
(ye  1 + ^ xe  l~) v (ye l ~  ^ xe  1~,)} is called the set of 
the near points of 1oo. ® 

DEFINITION 12: Let (a,b) and (c,d) be the endpoints 
of l. The set F ( l ) = { ( x , y ) ~  N(loo) I min(a,c )< x< 
max(a,c) ^ min(b,d)<y<max(b,d)} is called the set of 
convex i f i ca t ion  poin ts  of 1. @ 

Note that if line segment 1 is horizontal or vertical then 
the set ~1) is empty. 

DEFINITION 13: We call s k e l e t o n  of l the set 
o( l )=uxUx for all xe 1~ ~.~. The set fl(l)=o(l].o ~r(l) is 
called the envelope of / .  The subset of  if(l) that is 

I A m a p  f rom a t opo log i ca l  space  X to ano the r  t opo log i ca l  
space  Y is o p e n  i f f  the tmage  of  each  open  set  o f  is an 
o p e n  set.  

• + 

contained m loo (resp. l~) is called the right (resp. left) 
envelope of l and is denoted ff+(l) (resp. f -( / ) ) .  @ 

Note that the envelope of a segment line is a closed set 
and is always loop-connected. 

We now characterize the intersection relation between 
line segments in terms of  relations between their 
envelopes. 

FACT 1: If ff(1)nff(l')=O then l~l '=~. @ 

When the intersection between envelopes is not empty 
additional conditions are necessary since in this case 
line segments may have no intersection at all. If the 
intersection between envelopes contains both a point x 
of  G^ and the closure of Ux then the two line segments 
intersect at x. But this sufficient condition is not 
necessary since two line segments may intersect in a 
point y not belonging to Ga. To characterize these two 
different cases of intersection between line segments we 
introduce the following notation. 

When the intersection between envelopes is not empty 
additional conditions are necessary since in this case 
line segments may have no intersection at all. I f  the 
intersection between envelopes contains both a point x 
of ~a and the closure of Ux then the two line segments 
intersect at x. But this su;[icient condition is not 
necessary since two line seunents  may intersect in a 
point y not belonging to ~A. To characterize these two 
different cases of intersection between line segments we 
introduce the following notation. 

I 

We let Y(l, l ' )= { x e  GAIUxC_ff(l)~ff(l ") }. Informally 
speaking X(l,l') is the set of grid points whose closed 
pointed neighbourhood belongs to the envelope of both 
segment lines. 

We now introduce the notation int(l,l') which is true if 
and only if the following predicate is true: 

(3 xe  a( l ) ,  ye  ~(l) [ xe  if-(13 ^ y e  ff+(l') ) ^ 
(3 we  ft(13, ze  c( l ' )  [ w e f t - ( / )  ^ zeff+(/)). 

Informally speaking the boolean predicate int(l,l') tells, 
when true, if both the two segment lines have at least 
one of their skeleton points in each the open halfplanes 
defined by the other segment line. 

In figure 2 various possibi l i t ies  for intersection 
between envelopes are shown: note that in case (A) 
int(l,l') is true while in case (B) and (C) int(l,l') is 
false. Points belonging to 9~lo.) are shown as small 
full circles, those belonging also to .'Rl) are within a 
square. 
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Figure 2: (A) - envelopes of two intersecting lines whose intersection point does not belong to ~A; (B) - envelopes of two intersecting lines 

whose intesection point belongs to ~A; (C) - envelopes of two non intersecting lines. 

Note also that the following two implications ho ld .  

FACT 2: If ff(1)nff(l')=~ then ~int(l,l'). ® 

FACT 3: If int(l,l') then f f (1)nf f ( l ' )~.  ~) 

The f o l l o w i n g  t h e o r e m  g ives  the d e s i r e d  
characterization with reference to the case of a not 
empty intersection: 

THEOREM 3: It is 1(~1"~ if and only if at least one 
of the following condition holds: 

( e l )  X d , l ' ) ) ~  

(C2) int(l,l') is true. 

PROOF: 

(IF) If l n l ' # ~  then an x such that x e  l~ l '  exis t s .  
Two cases are possible: xe  GA or x~ ~a- In the former 
case we have .X(I,I')¢:~. In the latter case int(l,l') must 
be true, otherwise its falsity would imply that at least 
one segment line has both its endpoints in exactly one 
of the open halfplanes defined by the other segment 
line, a contradiction. 

(ONLYIF) The impl ica t ion  X(l, l ' ));~O ~ I n l ' ~ f 3  
follows by the definit ion of  X, the remaining one 
follows by the definition of  int(l,l'). @ 

3 . 3 .  C o n t a i n m e n t  b e t w e e n  a r b i t r a r y  
p o l y g o n s  

In this sub-section we extend the results of subsection 
3.1 by considering also relations between arbitrary 
(i.e.. not necessarily convex) polygons. For the sake of 

s implici ty ,  we again first consider  only convex 
polygons such that ~(-) is loop-connected, and we shall 
later remove this restriction. 

To investigate containment relations between arbitrary 
polygons it is necessary to use the characterization of  
relations between line segments defined in the previous 
sub-section. In fact, it is not possible, working only 
with skeletons to determine containment. This is due 
to the fact that a convex polygon is uniquely identified 
by its skeleton while this is not true for concave 
polygons. Even if the number of sides of  a concave 
polygon is known this is not sufficient to uniquely 
identify the polygon from its skeleton (see figure 3). 

Let 'E '  be the set of all polygons in R 2 whose vertices 
belongs to GA- 

In this sub-section it is always A,Be ~E', le  .L, l" a 
side of A, and l" a side of B. 

LEMMA 2: If int(l,l') then l ~ E  ,A. 

PROOF: If  int(l,l') is true then l n l ' ; ~ .  Then we 
have two cases: either l has at least one endpoint  
outside A or I has both the endpoints inside A. In the 
first case the thesis is trivially true. In the second case, 
since l" has to intersect some side of  A, the only 
possibility is that l intersects an even number of  sides 
of A. It easy to check that this may happen only when 
A is concave and l is not completely contained in A @ 
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Figure 3: two different concave polygons with the same number of sides and the same skeleton. 

COROLLARY 2: If  for some l ' ,  l"  it is int(l,l')then 
A~T ,B .  @ 

FACT 5: If  A c 7:'B then o(A)cqac;(B).  @ 

To  have  

po lygons ,  

skeletons, we have to check that their sides are in a 
suitable relation. From an intuitive point o f  v iew,  the 
condition is that if  envelopes  of  their sides intersect,  
then their intersections have only to be in points o f  the 

a c o n t a i n m e n t  b e t w e e n  two arbi t rary  grid that are endpoints for some side or to be coincident  

beyond  the con ta inmen t  be tween  their  with some side or some part of  it (see figure 4). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : ................ i :  

i " ? i . . . .  i i :  i i i : i i i : i i i i i :  ................ L:LIII::I11111:::511 

i 

. . . . .  r . . . .  

Figure 4: in both cases (r(A)~o(B), but in the left example A is contained in B while in the right one A is not contained in B. 

THEOREM4: It is ACE,B  if  and only if both the 
fol lowing conditions hold: 

(C1) G(A)CGAO(B) 

(C2) V I',l", it is ~int(l',l"). 

PROOF: 

(IF): if both condi t ions  are true then it fol lows,  by 
lemma 2, that A is contained in B. 

(ONLY IF): i fAcE,B  holds, then each l '  side of  A is 
contained in B. Then, by lemma 2, we have ~int(l',l"). 
Moreover ,  CI  must be true: otherwise an x~ Gt, exists 
such that x~ c(B) and x~ (;(A), a contradiction. @ 

In a way analogous to the case of  containment between 
convex polygons, i.e., by means of  maps T and bp, we 
can reduce testing of  containment  be tween arbitrary 
polygons  o f  R 2 to the testing of  set con ta inmen t  
between their correspondents in Z 2. 
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4 .  I N T E R S E C T I O N  R E L A T I O N S  

We now study intersection relations between polygons 
of ~ "  using results derived in the previous section and 
building on the characterization of intersection between 
line segments. 

In this section it is always A,B~ ~,'. Let ~P be denote 
a suitable degenerate open set of  ~ .  Once again we 
consider, for the time being, only convex polygons 
such that o(.)is loop-connected. 

PROPOSITION I: If A n B = O  then o(A ) n ~ ( B ) = O  v 
o(A )no(B)=~.  

PROOF: If  A n B = ~  there is no point of A n  ~a  that 
is belonging to B n ~ a  and viceversa. By definition of o 
we have the thesis. @ 

For the viceversa we have to distinguish between the 
two cases of the intersection of the skeletons being the 
empty set or a degenerate open set. The first is simpler. 

PROPOSITION 2: If ~ ( A ) n c ( B ) = ~  then AnB=~.  

PROOF: By hypothesis we have that Ar~Bn ~a=f~. 
Let us then consider an x~ ~a" Assume, by absurd, that 
x e A n B .  Then it has to exist a q~ such that be 
o (A)no(B)D~,  a contradiction. ~, 

DEHNITION 14: Let A,Be  ~,. We say A and B are 
near if o(A)no(B)  is a degenerate open set. ~, 

When A and B are near it may happen that they 
intersect (e.g., when they are thin). See figure 5, where 
the degenerate open set is shown with bolder symbols. 

• i . . . . . . . . . . . . . .  :.. : ...... : .i . : . . . . . . . . .  : . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . I . . . . . . ._~._ ._X. , . .~  . . ~ . . . ! . . . . . . . ; . . . : . ~ . . :  .......................... 

. . . . . .  : x - ×  x × x × . ×  .: . . . . .  : - . ,  . . . . . . . . . . . . . . . . . . . . . . .  : . . i  . . . . . . . . . . . . . . . . . . . . . .  

x x / , o  o o  o o \ x  × . . . . . . . . . . . . . . . . .  : ................ x . . . . . . . . . . . .  

• × ~ - o  o o o o o ) ~ .  × . . . . .  × . , ~ , . . - . ~ : . . x .  × x x ............. 

• x o o o o . . . . . . . . . . .  . . . . . . . . . . . .  

x \ o  o . x  . . . . . .  . . . . . . . . . . . . . . .  x . .  ff..  . . . . . . . . . . . . . . . . . . . . . . .  

. . . .  x x x x x x . . . . . .  i ................ ;.......: . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  :_....: . . . . . . . . . . .  : . . . . . . . . .  

Figure 5: (left) two near polygons which are not intersecting; (right) two near polygons which are intersecting. 

In the case of near polygons, if we want to distinguish 
disjointness from intersection, we therefore have to 
ana lyze  the in tersec t ion  re la t ion among their  
boundaries. This is necessary only when polygons are 
"thin", since in this case their skeleton is not a 
complete representation of them. 

DEFINITION 15: We say A is f u l l y  r e p r e s e n t e d  
by its skeleton if ~(A) does not contain a degenerate 
open set. @ 

For fully represented polygons, the characterization of 
intersection is provided by the following theorem, 
whose proof is straightforward. 

THEOREM 5: Let A be a polygon fully represented 
by its skeleton• It is A n B : x ~  if and only if an x~ ~A 
exists such that xe cy(A)~c~(B). @ 

Let A and B be two polygons such that at least one of 
them is not fully represented. Clearly, if A and B are 
intersecting in a point of G,x then the intersection 
between their skeletons is not empty. The viceversa is 
not necessarily true: in fact, if the intersection between 
their skeletons contains only a degenerate set, we 
cannot conclude that A and B are disjoint.  The 
following theorem, whose proof is straightforward, 
provides a characterization of intersection between 
arbitrary polygons (fully represented or not) belonging 
to T ' .  

THEOREM 6: Let l ' be a side of A and /"  be a side of 
B. It is Ac~B¢:~  if and only at least one of  the 
following conditions are true: 

(CI) 3 x~ GA I x e c ( A ) n c ( B )  
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(C2) int(l',l°)) is true. @ 

5 .  G E N E R A L I Z A T I O N  OF THE M O D E L  

We now discuss how to remove the restriction of loop- 
connectivity. If  A~ ~E' has a skeleton whose closure is 
not loop-connected, than we introduce a generalized 
skeleton, which includes a(A) and is loop-connected. 

DEFINITION 16: The g e n e r a l i z e d  ske l e ton  of A, 
denoted ~ ' (A) ,  is the largest open set of 'T• that is 
contained in c(A) u { ~ ff(l)~J(l ')  for l,l" sides of A }. 

1,1" @ 

Note that if the skeleton of a polygon is already loop- 
connected then the generalized skeleton coincides with 
the skeletons itself. 

Let A and B be two polygons represented by means of 
genera l ized  skeletons.  In this case also, if the 
intersection between their generalized skeletons is 
empty, we cannot conclude that A and B are disjoint. 
It easy to prove that the interection relation is 
completely characterized by theorem 6. 

6 .  C O N C L U S I O N S  

In this paper we have defined and characterized a 
topology preserving mapping from extended spatial 
objects to a discrete space. This allow us to correctly 
answer  quer ies  about topologica l  relat ions of  
containment and intersection by manipulating the 
discrete representations of spatial objects: we have 
therefore extended to polygons the approach of Greene 
and Yao [GY86]. 

We are thus able to identify each of the three basic 
re la t ive  pos i t ions  of  spat ial  objects  (namely:  
containment, intersection, and disjointness), which are 
fundamental for any efficient organization of spatial 
data. 

We now sketch some of the most interesting directions 
for future research we are currently investigating. First 
of all, the study of  computabili ty and computional 
complexity issues relative to our model. Secondly, a 
formal characterization of relations among spatial 
objects whose endpoints are not bound to be points of 
GA and among spatial objects which are not simply 
connected.  Thirdly ,  a study of how our model 
characterizes other spatial relations and, more in 
general,  supports spatial reasoning. Finally, an in- 
depth analysis of relationships between our model and 
the formal models for topological relations introduced 
in the continuous space. 

R E F E R E N C E S  

[CDO93] E.Clementini, P.DiFelice, and P.vanOosterom. 
A small set of formal topological relationships suitable 
for end-user interaction. 3rd Int. Syrup. on Large Spatial 
Databases (SSD'93), Singapore, 1993. Lecture Notes in 
Computer Science 692:277-295, Advances in Spatial 
Databases, edited by D.Abel and B.Ooi, Springer Verlag. 

[CNT96] F.Coppa, E.Nardelli, M.Talamo, Discrete 
representation of spatial relations, l lth International 
Symposium on Computer and Information Sciences 
(ISCIS-XI), Antalya, Turkey, November 1996. 

[EFJ89] M.J.Egenhofer, A.U.Frank, and A.P.Jackson. 
A topological data model for spatial databases. 1st Int. 
Symp. on Large Spatial Databases (SSD'89), Santa 
Barbara, CA, 1989. Lecture Notes in Computer Science 
409:271-286, Design and Implementation of Large 
Spatial Databases, edited by A.Buchmann, O.Gtinther, 
T.R.Smith, and Y.-F.Wang, Springer Verlag. 

[EF91] M.J.Egenhofer and R.D.Franzosa. Point-set 
topological spatial relations. Int. J. of Geographical 
Information Systems, 5(2):161-174, 1991. 

[ES93] M.J.Egenhofer and J.Sharma. Topological 
relations between regions in R 2 and Z 2. 3rd Int. Symp. on 
Large Spatial Databases (SSD'93), Singapore, 1993. 
Lecture Notes in Computer Science 692:316-336, 
Advances in Spatial Databases, edited by D.Abel and 
B.Ooi, Springer Verlag. 

[GY86] D.H.Greene and F.F.Yao. Finite-resolution 
computational geometry. 27th IEEE Syrup. on 
Foundations of Computer Science (FOCS'86), Toronto, 
Canada, 143-152, 1986. 

[GS93] R.H.Giiting and M.Schneider. Realms: a 
foundation for spatial data types in database systems. 3rd 
Int. Symp. on Large Spatial Databases (SSD'93), 
Singapore, 1993. Lecture Notes in Computer Science 
692:14-35, Advances in Spatial Databases, edited by 
D.Abel and B.Ooi, Springer Verlag. 

[GSS89] L.Guibas, D.Salesin, and J.Stolfi. Epsilon 
Geometry: building robust algorithms from imprecise 
computations. 5th ACM Symp. on Computational 
Geometry, Saarbrucken, Germany, 208-217, 1989. 

[GSS93] L.Guibas, D.Salesin, and J.Stolfi. Computing 
strongly convex approximate hulls with inaccurate 
primitives. Algorithmica, 9:534-560, 1993. 

[Her91] J.R.Herring. The mathematical modeling of 
spatial and non-spatial information in Geographic 
Information Systems. Cognitive and linguistic aspects of 
geographic space, 313-350, edited by D.Mark and 
A.Frank. Kluwer Academic Publisher, Dordrecht, 1991. 

[KEG] W.Kainz, M.J.Egenhofer, and I.Greasley. 
Modeling spatial relations and operations with partially 
ordered sets. Int. J. of Geographical Information Systems, 
to appear. 

[Wor92] M.F.Worboys. A generic model for planar 
geographical objects. Int. J. of Geographical Information 
Systems. 6(5):353-372, 1992. 

!51 


