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Abstract

In this paper we give a first formulation of a model for
evaluating performances of a message passing architecture
parallel machine in the context of spatial data processing.
We consider 2-dimensional data of the type ‘region’ and
analyze operations of union and intersection between
them. On the basis of the characteristics of manipulation
algorithms and of the architecture we individuate as the
best way of implementing them, we propose and validate
through experiments a model able to estimate time
required to execute union or intersection operations
between two regions of arbitrary shape as a function of a
small number of parameters describing input data. Though
derived on a specific machine, the model obtained is of
general validity, since only the values of numerical
constants are dependant by the machine used. Such a
model is the first necessary step in tackling the issue of
query optimization for spatial data in a parallel
environment. The work is a part of a more general research
programme aiming at studying the best approach to take
advantage from parallel architectures for spatial data
processing.

1. Introduction

Efficient processing of spatial data is of increasing and
increasing importance. It is a basic step in many advanced
application environments, such as CAD, image procesing,
scientific visualization, environment monitoring, land
planning, and so on.

But to efficiently processing spatial data a high computing
power is required, since applications usually deal with very
large amounts of data and manipulations required may be
very heavy (complex transformations repeatedly applied
many times) [Arc92, Arc93b].

An help may come from the use of parallel architectures,
since computation on 2-dimensional data sets may be
easily partitioned and assigned to different processing units
working in parallel. This issue is examined in the ITU-
LAND project, in the framework of the ESPRIT's research
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programs, where the use of high performance architecture
for land planning is considered [ITU92].

In this work we consider 2-dimensional spatial data of the
type ‘region’, which is one of the most important classes
of such data in the context of geographical data
management. Basic operations used for region
manipulation are union and intersection, since others may
be derived from them.

Regions can be represented using a ‘vectorial’ approach,
that is maintaining for each region the list of segments
which make up its boundary. This approach allows a ‘high
fidelity" representation but makes union and intersection
operations quite complex since computational geometry
algorithms are required. To an opposite side there is a ‘low
fidelity’ representation which maps each region to its
bounding box. In this case operations may be performed
with high efficiency and using highly performant data
structure, such as the grid-file [Nie84], but the loss in
fidelity may be unaffordable. An itermediate way is the so-
called ‘raster’ approach where each region is represented by
the set of points of a discrete decomposition of the 2-
dimensional space which are covered by it. The loss in
fidelity is here limited by the discretization step and union
and intersection operation may be efficiently implemented
since are operations on set. When this approach is
followed, a widely used data structures, which allow to
save space where regions are more regular, is the ‘refion
quadtree’ [Sam90].

Previous work has been done by Chien and Kanada
[Chi90] with reference to a distributed framework,
focusing on how to split computation and balancing load,
but only a static schema of allocation of work to
processors plus algorithms to transfer work if some
processor becomes idle is proposed and no general solution
is given. Algorithms for parallel processing of spatial data
using quadtrees have been studied and analysed in a general
and abstract way by Bestul [Bes92].

With regard to the bounding-box based approach, work has
been done in a parallel environment by Kamel and
Faloutsos [Kam92] using the R-tree. But, as remembered
above, R-trees do not allow to exactly represent shapes of
region, since they approximate a region with its
rectangular bounding box.

Here we follow the approach of Bestul, but considering the
impact of real parallel architectures on an environment for




spatial data processing.

The structure of the work is the following. In section 2 we
revise data structures and algorithms used for processing
spatial data of the type region in a parallel environment. In
section 3 we describe the characteristics of the
environment used for experiments in terms of machine,
data, and system software. In section 4 we analyse the
most important issues from the software architecture point
of view of the experiments and how we tackled them. In
section 5 we define the model and identifies its parameters.
Section 6 contains conclusions and directions for future
work.
2. data and

Spatial structures

algorithms

In this section we briefly describe data structures and
algorithms used for parallel quadtree processing.

Spatial data we consider are described by sets of points
belonging to a raster decomposition of the plane. That is,
we represent the space R2 with its discrete approximation
Z2, This is not a reductive assumption for representing
the spatial/geometric nature of geographical entities, given
the limitations of the finite representation of real numbers
available in computers, and is considered an important
aspect of a logical data model for spatial data [Giit92].

Thus, a region is a finite subset of the points of the plane
that have integer coordinates. No assumptions on its
connectivity status is made. We assume the universe of
discourse is a finite subset of Z2. The fundamental
operators for any sound and complete manipulations of
spatial data are union, intersection and negation [Gar91a,
Gar91b]. Notice that, since we are working with a finite

Figure 1: A binary

The way quadtree is defined leads naturally to a pointer-
based representation. But when dealing with large
quantities of spatial data a pointer-less representation is
preferrable since it is more space efficient, improves
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universe set, negation may be safely used.

A widely used and long-time studied approach to the
representation of regions defined as above is the quadtree
[Sam90] The term quadtree is generally used to denote a
hierarchical data structure developed on the basis of a
regular decomposition of the space. The hierarchical
decomposition is data-driven, but always proceeds
according to a regular scheme, going to deeper levels only
where represented features are more densely distributed. In
this way space is saved where the distribution is more
scarce.

Assuming to have at disposal a binary image of size TxT
(e.g., pixel elements), where T is such that there exists an
integer such that 2™=T, we proceed in the following way:
at height 0 there is the whole image, of side length T. At
the first stage of decomposition the image consists of four
quadrants of side length 7/2. At a second stage each
quadrant is then subdivided into four quadrants of side
length 7/22 and so on. The decomposition stops either
when a quadrant is wholly covered (it is said to be black)
or wholly uncovered (it is said to be white). We shall use
also the term block to denote a quadrant. The
decomposition can go on until the pixel level, with
quadrants of side length 7/2™. The decomposition can be
represented as a tree of outdegree 4, with the root (at
height 0) corresponding to the whole image and each node
(at height d) to a quadrant of side length T/24 The sons of
a node are, in preorder, labeled NW, NE, SW and SE. For
a given image, nodes are then black, white (leaf nodes) or
grey (intermediate nodes). Correspondingly, we speak of
black, white and grey blocks. Look at the figure below for
an example:

image and its quadtree

performance of sequential operations, and is better suited
to a disk based management of data. A widely used
pointer-less approach is the “collection of leaf nodes”, also
called the linear quadtree [Gar82, Abe83, Nar93a). See




[Sam90] for other representations.

With such an approach we only represent the leaf nodes of

the quadtree, associating to each of them:

(1) a locational key (I-key in the following), corresponding
to a sequence of digits describing simultaneously the
path from the root to the node and the depth level;

(2) a colour bit which is set to 0 if the leaf is white and to
1 if it is black.

The l-key for a node of height d in a 2™x2™ space is
recursively defined as follows. Define the I-key for the root
as an all-zero string of length m. Let the immediate
ancestor of k have the key &’. Then:

k=K +s5™4
where:
s=1 if kis the NW son of &’
s=2 if k is the NE son of &’
s=3 if k is the SW son of &’
s=4 if k is the SE son of k’.

The 1-key is then a base S code with m as fixed length.
So, for example, the l-keys over a 22x22 space are the
following:

1 |1z 21 |22
—10 20—
13 |14 23 |24
31 |32 41 |42
——30———40——
33 |34 43 |44

Figure 2: Locational keys in a 4x4 space

If the list is kept sorted according to ascending values of
the 1-keys we obtain a total ordering of the 2-dimensional
space. Such an order is called also Morton order or Z-order

[Sam90]. As an example, for the quadtree in figure 1, we
have the following sequence:
(110,0),(120,0),(130,0),(141,1),(142,1),(143,0),(144,1),
(210,0),(220,0),(230,1),(240,1),(300,0),(400,1).

Algorithms for union and intersection between two
quadtrees are very simple to define, since they correspond
to a synchronized visit of both structures. Synchronized
means that at each step the algorithm is visiting a couple
of nodes, one for each tree, which are at the same depth
and have the same label. At each step, when confronting
these corresponding nodes, the action to be taken is decided
according to a truth table. Here below, in figure 3, truth
tables for both operations are reported, where either the
resulting color of the operation or what it needs to be done
As you can see, if both nodes are leaves then the result can
always be immediately computed. Otherwise, different
actions have to be taken for the two operations. More
precisely, ‘recurse’ means to recursively visit all sons in
both structures in synchronized way, ‘subtree’ means to
return the whole subtree of the grey node involved in the
operation.Both algorithms can be easily trasformed to
work on linear quadtrees.

Due to their recursive nature which divide the space into
disjoint subregions, these algorithms can be made parallel
quite naturally. See [Bes92] where a complete logical
framework, including a parallel computation model, has
been proposed for quadtree manipulation. Here we can just
recall the basic idea. Suppose we are given a certain
number of logical processing units. Then, instead of
recursively visiting the sons of the current nodes, as the
sequential algorithm does, the parallel algorithm invokes
four new logical processing units, transmit them the four
subregions to examine, and waits for the result. Each
logical processing unit then executes the same algorithm:
if it is able to compute the result then returns it to the
calling unit otherwise calls four new logical processing
units. When all leaves have been visited the algorithm
terminates and the logical processing unit which is the
root of the whole process has the result.

UNION || White Black Grey INTER. || White Black Grey

White !l White Black | subtree White ]| White | White | White

Black || Black Black Black Black | White Black subtree

Grey I subiree Black recurse Grey R White subtree Tecurse
Figure 3: Truth tables for union and intersection

3. Experimentation environment

The approach described in [Bes92 for quadtree processing
in a parallel environment gives a unified a coherent logical
view of the whole subject, but needs to be expanded and
refined when considering real architectures. We have
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analysed message passing architectures and studied how the
architecture affects time performances.

In this section we describe the environment used in our
analysis.

3.1 Machine
The machine we have used is a MEIKO Computing



Surface with five boards having four 32-bit processors
each. There is no shared memory among processors. Each
physical processor has about 1.9 Mbytes of private RAM,
and can host up to 59 logical processes (i.e. software
modules or tasks), but without support for virtual memory
management. On each board an advanced interface unit is
able to guarantee reconfigurable physical communication
links between processors. A physical communication link
can be established between any two of the processor, and
each processor can have at most four of them.

The machine is therefore able to support any
communication network whatsoever. It needs only to
declare which is the logical topology of the needed
communication network. At compile time such a logical
topology is realized using the physical links, and if these
are not enough (e.g. when five links are requested for a
given processor), additional routines from the
communication software! of the parallel operating system
are automatically loaded so that at run-time the required
logical topology is available in a transparent way to the
user.

Allocation of logical tasks to physical processors is done
at compile time of the parallel program, tasking also into
account the declared topology of communication, and is
fixed until the termination of the parallel program.
MEIKO machine interacts with end-users through a
SUN/SPARC executing interface as well as disk
management functions. Secondary memory available to
parallel processors is therefore only what is offered on the
SUN/SPARC and is a serialization point for a parallel
program.

3.2 Data

Data used for experiments are 512x512 binary images
represented with linear quadtrees. Notice that the choice of
using linear quadtrees, that is list of nodes, is forced by the
parallel paradigm used. In fact, to work with pointers is
extremely awkward in the message passing context since
in this case data need to be transformed back and forth each
time they have to be passed from a processing unit to
another, which uses its address space in a different way.
Due to the absence of virtual memory management we
have not been able to experiments with larger images.

Images we have used have been either produced manually
from geographical maps, or randomly generated. The
random process used to produce data is a branching process
where, starting from the root (at level 0), each node of

level k has a probability ﬁ to be grey; if it is not

grey then it is black or white with the same probability.
This approach gives raise to random images that are more
similar to geographical maps than other approaches. We
have no space here to discuss probabilistic models for

! The communication software is called CSN (Computing
Surface Network).
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spatial data (see [Nar93b] for a complete discussion of the
topic)

3.3 Software environment

The system software environment available in the MEIKO

machine, though supporting all basic functionalities

needed in a message passing architecture, offer no help in
implementing the logical framework describe in [Bes92].

The main point is that there is no practical way of

dynamically creating tasks (which is the comer stone of

the Bestul approach). In fact, we made many different
attempts, but the only possibilities were of so limited
functionalities ot be of no practical use. We found that:

- a task which dynamically creates other tasks may be
run only on the interface SUN/SPARC and not on the
parallel processors: it is therefore impossible for tasks
running on one of the parallel processors to
dynamically create new tasks;

- when a task dynamically creates new tasks it has to
suspend its activities until all spawned tasks have
terminated their work: it is therefore impossible for it
to exchange messages with spawned tasks; the only
thing it can do is to create all offsprings it needs and to
wait for the termination of all of them;

- tasks which have been dynamically created can
communicate only among themselves and cannot
exchange messages with statically created tasks;

- dynamic creation of tasks may be done only once in
the life of a task.

Given the above constraints, the only viable solutions is
the static creation at compile time of a number of tasks
not less than the maximum number of tasks needed and to
dynamically activate/deactivate them according to current
needs. The management of static tasks which are
dynamically activated and deactivated now requires an
additional task which takes care of the overall management
of the parallel program,

Now the main question is: how many tasks to create for
each processor? If more than one task is created and given
the absence of virtual memory management a direct
management of each processor’s memory, able to ensure a
correct behavior to all tasks allocated on it, is needed.
Secondly, the larger is the number of tasks created, the
larger is the time required at the beginning for their
creation, Finally, it is expected that context switching is
an overhead for overall computation. Experiments on
small istances of spatial data (which therefore does not
require such a memory management) prove this (see
figures 4 and 5) and also indicates that, given that one task
per processor is better than multiple tasks, the overall
optimum number of tasks (i.e. of processors) is four.

This is not surprising since this is the maximum number
which allows to the task managing the whole parallel
program to directly exchange messages with all other tasks
without communication delays.



From now on we speak indifferently of task or processor, aspect (i.e. the task) and the hardware one (i.e. the
when it is immaterial the distinction between the software processor).

Time (in seconds)
P

36 18 9 8 4

Number of processors

Figure 4: Allocation time vs number of processors.

time does not include, beyond an unavoidable very small
percentage, time spent by the operating system in services
unrelated to our computations.

3.4 Setting for experiments

Time has been measured using machine’s clock, which
return number of ticks, where each tick is 64x10-9
seconds (64 nanoseconds). Experiments have been done
with the machine completely available, therefore measured
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Figure 5: Overall computation time vs number of processors for four different series
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4.

4.1 Adopted software architecture

Given the limitation above described in terms of dynamic

creation of tasks the solution adopted in architectural terms

is made up by:

- ascheduler for sending processing requests to tasks,

- aserver for receving their answers,

- aqueue of processing requests, and

- a certain number of tasks to carry out the required
computations.

Architectural considerations

The scheduler has the job of servicing the queue, by
passing the processing requests to tasks that are available
since have finished their previous job. Requests are sent to
task using a round-robin policy based on task availability.
All tasks communicate with the scheduler using the same
communication channel and an asynchronous blocking
protorcol.

The server has the job of receiving the results of data
processing or the requests for further processing sent back
by tasks when finish their current job. It communicates
with tasks using a communication channel different from
the scheduler’s one. All tasks share the same channel and
use an asynchronous blocking protocol.

The queue is where all processing requests are stored, with

N
o

n

+—|-l-——|

a first-came first-served policy.

Each task is created at the beginning of the parallel
computation of the required operation and lives until the
operation is completely terminated. It processes the data
received as current job and decides if the result can be
computed or four new tasks are required. The decision is
taken on the basis of the truth table for the operation. It
returns either the result of the operation, which may be a
long series of nodes in the case marked ‘subtree’ in the
truth table or the parameters for the creation of four new
tasks (corresponding to the sons of current node). After
returning to the server whichever result it has computed in
the current invocation it falls asleep and it is awaken by
the scheduler when a new job is ready for it.

4.2 Tuning the architecture

Given that the above described architecture is practically
the only feasible solution to implement the parallel
approach in the MEIKO machine, the two most important
questions are: how many tasks are required for a lowest
overall (i.e. initialization plus real processing)
computation time? which is the best communication
network (in the sense of contributing to reach the lowest
possible overall computation time)? These two questions
are strictly intertwined and before answer a more detailed
analysis of the communication aspects is required.
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Figure 6: Overall computation time vs number of processors for four different series

From the architectural solutions above it derives that it is
easier and more efficient to implement the scheduler and
the server within the same task (called simply scheduler in
the sequel, for the sake of shortness); this processor
therefore requires communication with all the other
processors. This fact, plus what we have discussed about
the way communication between tasks is implemented,
implies that when there are four task communicating
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directly with the scheduler no delay is introduced by the
communication network. Given that computations
performed by each task are fairly simple this would
suggest the optimum number of processor is four. We did
experiments with 12, 8 and 4 tasks, shown in figure 6
(instances of data different from ones used for experiments
reported in figure S have been used), connected through a
communication network with a square grid topology with




the scheduler at the center (see figure 7), which show that
indeed four is the number of tasks that allows to obtain
the lowest overall computation time.

The rationale for this is that 4 is the maximum number of
tasks that may be connected to the scheduler at a
communication distance equal to 1, that 8 forms a
complete square grid with 3 processors on each side, and
12 is maximum number of tasks that may be connected to
the scheduler+server at communication distance equal to 2.
These experiments show that with more than 4 tasks the
overall computation time increases. A more detailed
analysis, not reported here, shows that this increase is
exactly due to communications. In fact, in this case
processors closer to the scheduler have to interrupt their
work to forward messages to and from farther processors!.

4.3 Inizialization

The chosen software architecture requires, as a
consequence, that the data structure(s) required for
computation are completely sent at the beginning of the
parallel computation to each logical processor. The
alternative approach, of sending only the portion required
for the current step of computation is not feasible, since
using the linear quadtree it is not in general possible to
know in which position in the list are the sons of the
current node. If the scheduler did this search, then the bulk
of the tasks® work would be completed and there would be
no reason to use parallel processing. Moreover, given the
overhead for opening and closing communication
channels, it is better to send once-and-for-gver the data each
task requires at the very beginning instead of sending them
in smaller batches while computation proceeds.

ﬁ
&
Ll

Figure 7: Communication network topologies for 12, 8, and 4 processors.

We have found that the maximum size of messages
exchanged between processors is 1024 bytes. With our
choice for the data structures, this correspond to 128
elements of the linear quadtree. We have estimated through
our experiments that the time required to transmit a buffer
with 128 elements is 11620 microseconds, including the
overhead for starting and closing the transmission.

In figure 8, below, results of experiments of sending
different data structures to processors in the case of 4
processor (3 communication steps), 8 and 12 (4
communication steps) are reported.

4.4 Load balancing

Load balancing is a critical issue in every parallel
machine. Given that four is the best number of tasks in
our case; the balancing issue is not a very difficult
problem, since it can be easily proved that in the average
the architectural solution based on queue of requests and
round-robin scheduler ensures an homogeneous
distribution of load to each processor. Experiments prove
that this is true also in practice. Load is defined in terms

(1) We have been able to determine that when a
communication channel is required at the same time by more
two tasks to communicate with the scheduler, precedence is
given to the farther task, and the closer one has to wait.
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of time spent by each task working on data, not simply in
terms of number of activations of tasks, since work done
during each activation may vary.

4.5 Speed-up and efficiency

We recall that the speed-up of a parallel algorithms is
measured as the ratio between the time required to the best
sequential algorithm running on a single processing unit
of the parallel machine to complete the job and the time
required to the parallel algorithm to complete the same job
using a certain number of processors. The efficiency is the
ratio between the obtained speed-up and the number of
processors used.

We have measured speed-up and efficiency for a number of
different data sets (see figure 9). Obviously, only the case
of four tasks has been examined. Results are shown in
figure below. Note that since both union and intersection
have the same algorithmic structure, reported result are
valid for both operations.

S. The performance evaluation model

5.1 Initialization issues

As discussed above, data structures are completely sent to
each task at the beginning of the whole process. We derive
here a model for estimating the initialization time. It is
made up by two components, that is Ty, i.c. the time



required to the environment to create scheduler, server, and
task, to load them into memory and to start them, and

3,5

2,5

1,5

0,5

Time (in seconds)

Tyst, i.€. the time required to send data structures to all
tasks.

M seriet
O serie2
B series

M series

-

8 or 12

Number of processors

Figure 8: Initialization time vs number of processors.

Let a C4-network denote a communication network where
each processor is connected to exactly four other
processors. Each processor can send only one data item to
exactly one other processor during a step. Assume a

processor in such a network wants to communicate one
data item to all the other processors and this is the only
communication activity in the network.

# leaves Time (ms) | Time (ms) 4 procs

in the result | sequential | parallel Speed-up Efficiency
4048 4,154 3,04 1,37]  34,16%
5539 14,3 5,7 2,51 62,72%
7666 13,9 6,7 2,07 51,87%
8095 20,18 9,9 2,04 50,96%
10171 15,46 8,13 1,90 47,54%

Figure 9: Speed-up and efficiency

Lemma 1. The number of processors Py which after k
steps have received one data item originated at a single
point in a C4-network satisfies the following recurrence

relation:
Py = {

Proof (draft): Any processor, but the one originating the
message, has used all its communication links after
having sent three messages. Therefore, at each step, the
number of processors that has received the data item is the
number of processors that had received it at previous step
plus the number of those that has received it in this step.
But the latter number is equal to the number of those that
had received it at previous step minus the number of those

2k
2Pg.1 - Px.4

0<k< 4
k> 4
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that received it four steps before (since those have now
used all the channels).
CvD

The following theorems characterize the above recurrence.

Theorem 1: P, = O(2K).
Proof (draft): We can approximate Py by above as Py <
2Py

CVD
Theorem 2: Py = £2((9/5)%).
Proof (draft): We can approximate Py by below as gk <
Py and then calculate that g=9/5.

CvD




Let Ly and Ly denote the number of leaves of the two
linear quadtrees to be processed. Then

{1

processors. The time, expresses in microseconds, required
to initialize Q processors (Tysy) is given by the following
corollary:

2
128 ) buffers have to be sent to all

Corollary 1: 11620 [4(F-1) + 1g2Q] < Ty <

11620 [4(F-1) + Igg;5Q] .
CVD

5.2 Model parameters

The model for evaluating processing time is described in
terms of a number of parameters. Some of them describe
the behavior of the scheduler, others refer 1o tasks. Let us
denote with N the number of tasks. From the discussion
above about the best software architecture, it follows that
we have studied the case N=4, but the result maintain their
validity for all N<4.

Parameters for the scheduler are the following:

Tsix: it is the total time required by the scheduler to send
all data items to the tasks;

Tsrx: it is the total time required by the server to receive
all data items from the tasks;

Tsar: it is the total time the server waits for result from
the tasks;

Tsu: it is the total time the scheduler performs useful
computations.

Parameters for describing a task are now introduced. They

are averaged across tasks.

Tus: it is the total time a task wait to start its next job;
it includes the real waiting time (called sleep in the
following and due to the fact that scheduler is busy
with other tasks) and the total time used to receive
data items from the scheduler, i.e. Tirs=Tiso+Tirx
(see below);

Tiso: it is the total time a task sleeps before receiving
data items describing its next job;

Tux it is the total time a task spends to receive data
items describing its next job; it is equal to the total
time required by the scheduler to send all data items
to the tasks divided by the number of tasks, i.e.
Tx = Tsex/N 5

Try: it is the total time a task performs computation
useful for the operation;

Tux: it is the total time required by a task to send all its
results back to the scheduler.

The total time required for processing is the sum of the
four times introduced above for the scheduler, and is equal
to the sum of the analogous times for each task:

Tstx + Tsrx + Tsat + Tsut = Tiso + Tux + Trut + Tiex

5.3 Identification

In this section we describe in which way we have been

able to estimate a value for each of the parameters. The

analysis we have done are based on the analysis of:

- the structure of the algorithms for union and
intersection,

- the way scheduler and server works, and

- the policy for servicing the queue.

Hypothesis made on the basis of this analysis have been

then verified by experiments where value for constants

have been derived. Time is expressed in micro-seconds

(psec).

In the analysis we speak of:
grey-grey couples to indicate the couples of nodes
where both nodes are grey, and GG denotes the number
of such couples;

- colour-colour couples to indicate the couples of nodes
where both nodes are different from grey (that is nodes
are either white or black), and CC denotes the number
of such couples;

- grey-colour couples to indicate the couples of nodes
where one node is grey and the other is different from
grey (white or black is the same), and GC denotes the
number of such couples, and DGC denotes the number
of descendants of the grey node in such a couple.

* Tax

This time is directly related to the number of grey-grey

couples. It is only in this case, infact, that recursion is

needed and four new tasks have to be created. The scheduler
therefore executes four transmissions to tasks for each
grey-grey couple.

Let us denote with GG the number of grey-grey couples.

We have derived from the experiments the following

relation:

Tsix = 1764 (GG *4) .

* Tsx

Th1s time is directly related to three factors:
the number of grey-grey couples; for each of these
couples, in fact, four data items are received
(corresponding to parameters for the activation of four
new tasks);

- the number of colour-colour couples; for each of these
couples, in fact, one data item is received
corresponding to the result of the operation (union or
intersection);

- the number of grey-colour couples; once the first of the
descendants of a grey node is found (which requires
time proportional to % L—L—ZZL since we use linear
search), for each couple a number of data items are
received corresponding to all the nodes in the subtree
rooted at the grey node and must be added to the list of
results. Moreover, we need to consider that in the case
of union the subtree is returned when white-grey
couples are found, while for the intersection this role is



played by the black-grey ones. We can estimate that in
the average white-grey couples and black-grey couples
equally divide the number of grey-grey couples! .

From the discussion above and the experiments the
following relation derives:
Terx = 101.5 (GG * 4) + 1022 * CC +

1L1+L) )@
(0.882 5 -+ 227* DGC ) 7=.

Note that the two constants 101.5 and 102.2 are very close
as it should be, since they refers to transmission time of
simple data items of the same kind (theoretically they
should be equal).

* Tsat

To derive a formula for waiting time of the scheduler we
need to consider that it may depend only by Ty, and by
Tiso, since during task transmission and reception phases
the scheduler is busy in communication. A precise
derivation of such a dependance is highly complex since
requires to model the distribution of waiting, transmission
and processing times and their interactions for all the
tasks. From experiments we have derived a simpler
formula, reported below:

Tsat = 0.56 ( Tryt + Tiso ) -

* Tsut

This time is directly related to the three factors below

described.

- The number of grey-grey couples: each of these
couples generates four data items in the queue; they
have to be deleted from the queue and prepared for the
delivery to the tasks.

- The number of colour-colour couples: for each of these
couples, one data item in the queue containing the
result sent by a task must be delcted from the queue
and stored in the list of results.

- The number of grey-colour couples: for each of these
couples, a variable number of data items is received by
the scheduler and added to the list of results; time is
required to prepare such a reception. Like in the
discussion for the analogous factor in the case of Tgrx
also in this case, depending on the type of operation, it
is the number of white-grey couples or black-grey ones
which counts.

From the discussion above and the experiments the
following relation derives:
Tsur=261.4 (GG *4)+3274*CC +

1 Note that since grey nodes are not in the linear quadtree we
discover that a node is grey node by arriving at the end of the
list without having found it. Therefore, to find the first of the
descendants list has to be searched a second time: in the
meantime scheduler has been told that 2 grey-colour couple
has been found and is waiting.
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280.8*DGC92—C-.

Tiso

The time each task spend sleeping is usually short, since
both computation time and communication time in the
scheduler are reasonably short. But when a task is sending
a long list of nodes back to the scheduler as result, tasks
that have already finished their work and are waiting for a
new jobs sleeps for all the time required by the scheduler
to receive such a transmission. We can reasonably assume,
to simplify things, that sleeping deriving from short
transmissions is negligible and that sleeping times are
distributed so that no more than one task at a time is
sleeping.

From a detailed analysis of data we have derived that 44
elements is the boundary condition between long deliveries
and short ones. Let us denote with GC’ the number of
times such a long delivery happens, that is anytime a
subtree of the grey node in a grey-colour couple contains
more than 44 nodes, and with DGC’ the number of the
descendants of the grey node in such a case. Then we can
estimate this time using a relation with the same structure
as the one used for the last term of Tgrx :

Tiso = (o.ss 1L14L2 | 527 * DGC’ )g;_:_

2 2

* Tt

This time is directly related to the two factors described

below.

- The number of grey-grey couples: this affects Ty in
two ways. Firstly, because in each of the four newly
activated tasks, the path received must be find in the
lists of leaves of both quadtrees. Secondly, because
when a grey-grey couple is found it has to be managed
by preparing data to be sent back to the scheduler.

- The number of grey-colour couples: in this case either
the couple enables the task to immediately compute
the result for the considered operation (i.e. it is a black-
grey couple for union , or a white-grey for intersection)
or requires the task to prepare the transmission of a list
of leaves as result.

From this discussion and the experiments, the following
relations derive:

Tmt=(2*0.88)(%IL2L2-)(GG*4)+12.9*GG+

+ (0.88 %5;—1‘2 + (227-101.85) * DGC ) GTC .

The factor (227-101.85) considers that here only the time
for moving on the list has the to be considered (101.85 is
the average time for transmitting one data item).

* Tux

Note that it is less than the total time required by the
server to receive all data items from the tasks since, from




the discussion above about Ty, it is clear that scheduler
waits while the task find the first data item in a subtree of
a grey node, and waits white the task is moving along the
list of leaves.

Tux = Terx -

(0.88 %Ii;i% (227-101.85) * DGC )%9 .

6. Conclusions

In this paper we have defined and tested through
experiments a model for evaluating performances of a
message passing architecture parallel machine in the
context of spatial data processing. 2-dimensional data of
the type “region” have been considered under the
operations of union and intersection.

The model is able to predict the overall processing time
needed to execute union or intersection operation between
two regions of arbitrary shape as a function of a small
number of parameters describing input data. The model
obtained is of general validity, and is the first necessary
step in tackling the issue of query optimization for spatial
data in a parallel environment.

Refinements to this work will be addressed to optimize
algorithms by eliminating all useless waiting times and
improving operations on list of leaves (e.g. binary instead
linear search ...), to refine the model for what regards the
scheduler’s waiting time, to include collisions on the
communication channels in the model, which is useful for
a number of tasks N>4, even if this is not a really
interesting case since the overall processing time
increases.

More interesting is to examine the possibility of
estimating “a priori” some of the model input parameters
on the basis of a probabilistic model of the data.
Extensions will also be made towards a more general
model to be used for query optimization purposes in
systems for spatial data management, which is one of the
most important research topic in this field [Giin90].
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