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In this paper we present a data structure for searching in multi-dimensional
point sets in distributed environments and discuss its experimental evaluation also
through a comparison with previous proposals. The data structure is based on
an extension ofk-d trees. The technological reference context is a distributed
environment where multicast (i.e., restricted broadcast) is allowed, but it is also
shown how to avoid using it. The data structure supports exact, partial, and range
search queries with a complexity that is optimal in a distributed sense. The set of
multidimensional points is managed in a scalable way, i.e., it can be dynamically
enlarged with insertion of new points. We also propose new performance measures
for the comparative evaluation of the efficiency with which a data structure is
distributed over a communication network.© 1998 Academic Press

1. INTRODUCTION

The impressive progress of communication technology makes it now easy and cost
effective to set up distributed applications running on a network of workstations. The
technological framework we make reference to is the so callednetwork computing: fast
communication networks and many powerful and cheap workstations. In this framework
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it is possible and realistic to efficiently implement main memory applications using the
main memory of distributed machines. Many advanced applications manage very large
amounts of multi-attribute data. Such data can be considered as points in ak-dimensional
space. Hence a key research issue in order to provide efficient implementations of these
applications is the design of an efficient distributed data structure for searching in ak-
dimensional space. The fundamental queries for a data structure fork-d points are exact
match, partial match, and range. It is also important that the structure is able to scale up
to adapt itself to a growing number of points.

In the considered technological framework, efficiency can be obtained by using the
multicast protocol. In this communication protocol with a single message one source
reachesN destinations. This means that a multicast message has a communication cost
which is the same as a point-to-point message. In other words the time used by a multicast
message to reach all its destinations is the same used by a point-to-point message to reach
its unique destination. We callserversthe machines which manage the data structure and
answer to queries.Clientsare the machines which need to access or manipulate thek-d
points for their application needs. It is very realistic to assume that clients are not always
connected to the network to be kept up-to-date with the status of the distributed data
structure. Hence they have to be able to catch up whenever they connect back to the
network. The use of multicast is therefore important in reaching overall efficiency. But
note that an uncontrolled use of multicast may somehow degrade performances of end-
user applications, by forcing a client to process in any case the message delivered to it
by its associated network controller, even if it is useless for the application itself. Design
issues related to the trade-off between the use of multicast and point-to-point queries are
discussed in [NBP97a]. Further discussions on the technological background of multicast
in relation to distributed data structures are in [NBP97b].

In our framework we are concerned with efficiency with respect to the communication
network. Therefore performance is measured in terms of the overall number of messages
on the network. This is the usual performance measure used for data structures in a
distributed environment. Moreover, a client has to be able to determine when the multicast
query is terminated, i.e., when every server interested in the query has answered. An
important performance measure, proposed here for the first time and calleddistribution
efficiency, is the overall efficiency of the communication protocol with respect to a
nondistributed solution. In other words we measure the overall efficiency of having the
servers distributed over a communication network instead of having a single server. We
express this in terms of two indexes measuring how many computational resources are
wasted for message processing. But note that the purpose of this performance measure is
not to provide an absolute evaluation, since a distributed solution will always consume
more computational resources than a nondistributed one. The main aim of distribution
efficiency is to provide a means to compare different distributed data structures.

Litwin et al. were the first to present and discuss the paradigm of scalable distributed
data structures, by proposing a distributed linear hashing, namely LH* [LNS93,
LNS96], and a distributed 1-dimensional order-preserving data structure, namely RP*
[LNS94a]. Extension of RP* to thek-dimensional case was first studied in [LNS94b]
and subsequently published in [LN96]. A variant of LH* with explicit control of the
cost–performance ratio was presented in [VBW94]. The use of hashing techniques for
managing multi-dimensional data in a distributed framework was also studied in [Dev93].
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When a multicast protocol is not supported by the given network, then everything needs to
be done with point-to-point messages. In this case the first solution for multi-dimensional
data was given by Kröll and Widmayer [KW94, KW95], who developed distributed
random trees (DRT). Work related to the field of scalable distributed data structures was
done on parallel distributed B-trees in the case of a fixed number of processors [MS91,
JC92, JK93] and in the case of a fixed number of multiple disks [PK90, SL91]. The use
of a fixed number of multiple disks to improve performances has also been considered
in [KF92] for R-trees, a well-known data structure for spatial data.

The first scalable distributed data structure for managingk-dimensional points over
a network where multicast is available to be published was presented in [Nar96b]. The
solution was based on a data structure, namedlazy k-d tree, for managing a collection of
k-d trees, introduced in [Nar95] and refined in [Nar96a]. The solution featured optimal
search algorithms for exact, partial, and range search. Optimality is in the sense that
(1) only servers that could havek-dimensional points related to a query reply to it
and that (2) the client issuing the query can deterministically know when the search is
complete. In this paper we extend the definition of the scalable distributed data structure
for k-dimensional points to the case of networks where multicast is not available and
provide both a thorough experimental evaluation and a comparison with previous work.
Our solution is able, like RP* (the 1-dimensional distributed data structure defined in
[LNS94a]), to work both with and without using multicast, but our structure provides
this capability also for points in ak-dimensional space. Experimental results show that
our data structure is at least as efficient as previously known data structures for the 1-
dimensional case, but it is also able to manage points in a multi-dimensional space.

The paper is organized as follows. In Section 2 the basic version of the data structure
is briefly recalled. Section 3 deals with termination tests needed for multicast queries.
In Section 4 we briefly recall the version of the structure using an index at client sites
to reduce the use of multicast and in Section 5 the version avoiding the use of multicast
at all. In Section 6 we present performance measures used in experimental evaluation.
Experiments and results are discussed in Section 7, also in relation to previous work.
Section 8 contains a final discussion and conclusions.

2. BASIC STRUCTURE AND BASIC ALGORITHMS

From a conceptual point of view our structure can be considered as a uniquek-d tree.
Each internal nodex has only the function of maintaining track of the split (k − 1)-d
plane which divides in two thek-d space managed by nodex itself. Each leaf nodey has
a bucket associated with it, containing all thek-d points which fall within the portion of
the k-d space managed by leaf nodey. Each server is managing a different leaf, hence
each server manages a single bucket of data. We assume all buckets have the same size.
Clearly the set of buckets is a partition of the wholek-d space managed by the structure.

Clients may addk-d points, which go in the pertinent bucket. A bucketb is pertinent
with respect to pointp if b is associated to the leaf node managing the portion of thek-d
space containingp. In a similar way it may be defined when a bucketb is pertinentwith
respect to any query. When a bucket overflows its point set is split in two (usually equally
sized) parts. The split is done with a (k − 1)-dimensional plane and various strategies
can be used to select which dimension to use. A largely used strategy is theround robin,
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where at each level a different dimension is selected and afterk levels the same order is
used again and again.

Clients can query the structure with any of the following queries: exact match, partial
match, and range. Anexact match querylooks for a point whosek coordinates are
specified. Apartial match querylooks for a (set of) point(s) for whom onlyh < k
coordinates are specified. Arange querylooks for all points such that theirk coordinates
are all internal to the (usually closed)k-dimensional interval specified by the query.

A k-d tree [Ben75] is a binary tree where each internal nodev is associated to a
(bounded or not)k-d interval (or k-range) I(v), a dimension index D(v) and a value
V(v). The interval associated to the left (resp., right) son ofv is made up by every point
in I(v) whose coordinate in dimension D(v) has a value less than (resp., not less than)
V(v). D(v) is called thesplit-dimensionfor nodev. V(v) is the split-point for nodev.
Leaves of thek-d tree are associated only to ak-d interval. To each leafw of a k-d
tree one bucket exactly corresponds, denoted by the same name. Bucketw contains all
points within I(w). Thek-d interval I(v) of an internal nodev is the initialk-range of the
bucket which was associated to nodev whenv was inserted as a leaf into thek-d tree.
When bucketv is split two leaves, sayv′ and y, are created and inserted in thek-d tree
as sons of nodev. Bucketv, with a new, reduced,k-range, is associated to leafv′, and
leaf y takes care of the new buckety, so that I(v) = I(v′) ∪ I(y) and I(v′) ∩ I(y) = ∅.
Therefore, for each leafw but one there exists a unique internal nodez whose bucket’s
splitting created thek-range of the bucket associated tow. Such a nodez is called the
source nodeof leafw (and of bucketw) and is denoted asα(w). The leaf without source
node, for which we let for completenessα(·) = ∅ is the leaf managing the initial bucket
of the k-d tree.

We now briefly recall the version of the structure without indexes. Every operation
is performed through the use of multicast. For more details see [Nar96a, Nar96b]. The
insertion algorithm is straightforward, since a client wanting to insert pointp simply
multicasts its request by putting the point coordinates in the message. The pertinent
server, and there is exactly one, manages the insertion. If it overflows then it splits.
Various algorithms have been proposed for split by Kröll and Widmayer [KL94] and by
Litwin et al. [LNS94a]. The approach for exact match query is also very easy. A client
wanting to access pointp simply multicasts its request and puts the point coordinates in
the message. The pertinent server, and there is exactly one, manages the query. If it finds
the point in its bucket it answers with the required information. Otherwise it answers
negatively. When the client receives an answer it knows the query is terminated.

The approach is somewhat more complex for partial match and range queries. In this
case it is not true, in general, that there is exactly one pertinent server. Hence the client
has the problem of checking that all pertinent servers have answered. If we assume that
each server answers with itsk-d range, then in the case of exact range query we can
simply sum all the receivedk-d ranges and when they add up to thek-d volume of the
exact range query we know the query is terminated. Even if theoretically good, from a
practical point of view either infinite precision multiplication is available or this approach
may be incorrect, if buckets covering very large and very small ranges exist at the same
time in the data structure, due to possible roundings. And in any case this approach
cannot be applied for partial match and partial range queries, where thek-d volume is
infinite. Hence we need a more reliable termination test.
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3. ALGORITHMS FOR A TERMINATION TEST

Two approaches have been proposed for a termination test. The first one (CAR) is based
oncombining adjacent rangesin the set ofk-d ranges returned by buckets which answered
[LNS94b]. The second one (LV) is based on the computation of thelogical volumeof
the range query and on its comparison with the logical volume ofk-d ranges returned
by buckets which answered the query [Nar95]. The first approach can be efficiently
implemented usingk-d range trees [Nar95] and has a worst case time ofO(k Q(log Q)k)
for the whole termination test, using overall a worst case space ofO(Q(log Q)k−1). The
second approach uses balanced binary search trees and has a worst case time ofO(k Q2)

for the whole termination test, using overall a worst case space ofO(k Q). This latter
approach is discussed in more detail below.

3.1. Informal Description of the Logical Volume (LV) Algorithm for Termination Test

To explain the basic idea we use an example in 2-dimensional space (see Fig. 1a). Let us
denote byNx(Ny) the number of distinct split points which divide buckets with a vertical
(horizontal) segment. The split lines defined by these split points identify a partition of
the whole space in(Nx + 1)(Ny + 1) rectangular cells, called thelogical volumeof the
space. A bucket B has a logical volume which is given by the number of cells which
are within its range. In Fig. 1a the logical volume of the space is(3+ 1)(3+ 1) = 16
and the logical volume of buckets B2, B4, B5, and B6 is 3, 2, 2, and 1, respectively. We
define the logical volume for a range query or a partial match query as the number of
cells which are within or intersect its range. For queries Q1 and Q2 in the figure, the
logical volume is 9 and 12, respectively. Assume that a client knows the logical volume
of the query it issues. Assume also that for each bucketinvolvedby the query the client
is able to know the logical volume of the intersection between the bucket range and the
query range. Then the termination test is simply the equality of the query logical volume
to the sum of logical volumes of all buckets which have answered. This can be seen for
the two queries in Fig. 1a. Query Q1 can terminate when a logical volume of nine cells
is reached; this is contributed by buckets B1 (2 cells), B2 (2), B3 (2), B5 (2), and B6 (1).
Whichever is the order of arrival of answers when the sum reaches 9 the client knows
the query has terminated. For query Q2 answers come by buckets B1 (1 cell), B2 (3),
B4 (2), B5 (2), B6 (1), B7 (1), and B8 (2); again, whichever is the order when the sum
arrives at 12 cells the query terminates.

FIG. 1. (a) To the left, (b) to the right.
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FIG. 2. (a) To the top, (b) to the bottom.

To compute the logical volumes above described is a straightforward process. After
each bucket’s answer the client simply adds, if they are not already present, the lower
and upper limits along coordinatex (y) of the bucket to a current list of split points
for coordinatex (y). By using these lists the client can evaluate the current logical
volume of the query, LV_Q, and the current logical volume of all buckets which have
answered, LV_AB. Whenever a new bucket answers the process is repeated, until LV_AB
= LV_Q, when termination point is reached. To see this, consider that when the first
bucket answers it is surely LV_Q≥ LV_AB. The new split points possibly introduced by
each new bucket do not increase LV_AB more than LV_Q. Therefore, when the equality
is reached, this is due to the fact that the last bucket fills the gap with its own logical
volume and all involved buckets have answered. As an example, consider the sequence
of pictures in Figs. 2a and 2b, where for queries Q1 and Q2 of Fig. 1a the evolution of
LV_Q and LV_AB after each bucket’s answer is shown graphically.

Note that it may happen that some split lines are defined by buckets which do not
intersect the query range. This is the case of the boundary line between buckets B7 and
B8 for query Q1 in Fig. 1b. In cases such as this, since neither of the two buckets is
involved by the query none of them will answer and such split lines will not be considered
in computations of logical volumes. The algorithm maintains its validity, which will be
proved after its formal definition.

3.2. A Formal Description of Algorithm LV

For the sake of clarity, the algorithm is presented assuming that buckets answer one at
a time. It is straightforward to extend it and its complexity analysis to the case of more
buckets answering at the same time.

Let AB denote the current set of buckets which answered queryQ. For a bucket B in
AB let B′ 6= ∅ denote the range of B∩ Q and letλB′

j and3B′
j denote the lower and

upper limits, respectively, for each coordinatej of B′. Let SPj denote the ordered list of
distinct split points for thej th coordinate( j = 1, 2, . . . , k) defined by buckets in AB.
|SPj | indicates the length of SPj . Let δ j and1 j ( j = 1, 2, . . . , k) denote the lower
and upper limits, respectively, for each coordinatej of the queryQ. Given two valuesd
and D taken from the domain of the data typeX j , with d ≤ D, let NSP( j, d, D) denote
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FIG. 3. Algorithm LV.

the number of split points along the coordinatej in the list SPj which are internal to
the open interval(d, D), open at both ends. Note that NSP( j, −∞, +∞) = |SPj | and
if d and D are two consecutive split points in SPj then NSP( j, d, D) = 0. For each
bucket B in AB let CLS( j, B) be the currentlogical lengthof open interval(λB′

j , 3
B′
j )

defined as CLS( j, B) = 1+ NSP( j, λB′
j , 3

B′
j ). Finally, let CLV(B) denote the current

logical volumeof B defined as CLV(B)= 5k
j=1 CLS( j, B). A formal statement of

Algorithm LV is given in Fig. 3. Algorithm LV can be used with every data typeX j ,
as long as a total order can be defined on it. But this is always true if range searches
on X j are needed. Moreover the precision of integer multiplication is able to ensure a
correct termination even in the case of many buckets of small range. Finally, the same
approach based on logical volume can provide in all cases a deterministic termination
test in the case of partial match query. In fact, for those coordinates whose range is not,
or is only partially, specified in the query, the logical volume approach provide a means
of computing their contribute to the logical volume of query space and to the logical
volume of buckets which have answered.

3.3. Proof of Correctness Algorithm LV

The proof is by induction on the number of buckets which have answered.

Base step.The answer of the first bucket B, that is its lower und upper limitsλB′
j

and3B′
j ( j = 1, 2, . . . , k), may introduce 0, 1, or 2 split points on each coordinate. If

and only if no split point is introduced for any coordinate then LV_Q= 1 and LV_AB
= 1; therefore the algorithm terminates. Otherwise it is LV_Q> LV_AB = 1.

Induction step.Each time a new bucket C answers to query Q, its lower and upper
limits λC′

j and3C′
j may either (i) leave LV_Q unaffected or (ii) increase it.
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Case (i) occurs when allλC′
j and3C′

j are already present in the various SPj s. In this
case LV_AB is increased only by the logical volume of C′ = C ∩ Q; if equality between
LV_Q and LV_AB is reached the algorithm terminates, otherwise LV_AB cannot become
greater than LV_Q. To see this consider that (a) buckets are a partition of the whole space,
(b) only buckets whose range is within or intersect with the range of the query answer,
(c) the computation of LV_Q and LV_AB in lines 4 and 5 use the same SPj s. Therefore in
this case either the algorithm terminates or the invariant LV_Q> LV_AB is maintained.

Case (ii) occurs when new split points are introduced in some SPj s. In this case the
increase of LV_AB is given by two terms. One term corresponds to the logical volume
of C′ = C ∩ Q and the same considerations of the previous case apply. The other
one corresponds to the fact that new split lines cut buckets which answered in previous
steps. But the increment in LV_AB due to new split points cannot be greater than the
corresponding increment in LV_Q. This is due to the fact the whenever a new split point
is introduced in a certain list SPh the relative split lines cut a number of buckets which
cannot be greater of5k

j=1, j 6=h(|SPj |+1). Therefore also in this case either the equality
between LV_Q and LV_AB is reached and the algorithm terminates or the invariant
LV_Q > LV_AB is maintained.

Since the number of buckets is finite the algorithm terminates after a finite number of
answers with LV_Q= LV_AB. Let us prove that whenever it terminates, only and all the
buckets whose range is within or intersects the query range have answered. The “only”
part is trivial. For the “all” part, if some bucket has not answered then, due to the fact
that the cells define a partition of the whole space, at least one cell has to exist which
contributes to LV_Q, since its boundaries are provided by the split lines defined by some
other bucket, but which does not contribute to LV_AB, since the bucket which contains
it did not answer. This would imply LV_Q> LV_AB, which is a contradiction.

3.4. Complexity Analysis

Let M denote the total number of buckets andQ the number of buckets which answer
the query. It is clearlyQ = O(M). Each split list can be managed as a balanced binary
search tree, which has to be suitably modified to efficiently process insertions (Step 1),
the update of CLS( j, ·) (Step 2), and the computation of NSP function (Steps 3 and 5).
Hence each nodex stores the number of split points in the subtree rooted atx and the
minimum and maximum of their values. The set of all trees uses spaceO(k Q). With
these modifications Steps 1 and 3 can be executed, in the worst case, in timeO(log Q),
but Step 2 requires timeO(Q) (due to the fact that it may be necessary to updateO(Q)
bucket ranges. Computation of LV_AB in Step 4 can be done inO(k Q) worst case time
and that of LV_Q in Step 5 inO(k log Q). Therefore each new answer can be processed
in worst case timeO(k Q). Since the “repeat” cycle is executedO(Q) times we have
a worst case time ofO(k Q2) for the whole termination test, using overall a worst case
space ofO(k Q).

Algorithm LV has a better worst case space complexity than Algorithm CAR, but at
the price of a worse worst case time complexity. From a practical point of view, though,
it has to be pointed out that: (i) both algorithms are working in main memory, therefore
their impact on the overall performance of the distributed data structure is significant
only for very large range queries; (ii) the range tree is a more complex data structure
than the binary tree used by Algorithm LV; (iii) the worst case analysis should not be
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the only argument used in choosing among the algorithms; their average case behavior
should also be investigated through simulation or analysis.

4. DATA STRUCTURE WITH INDEX AT CLIENT SITES

In this section we shortly recall the version having an index at client sites to reduce
the use of multicast. For more details see [Nar96b, NBP97b] and for a discussion of
design issues see [NBP97a].

If clients have an index the use of multicast can be reduced. In fact, a client can search
in its index to individuate the server(s) which should answer to its query and can then
issue a (set of) point-to-point query. The key observation is that the client index does
not need to cover the whole data space, since alazy approach can be taken. Namely, if a
client has the pertinent part of the data space covered by its index then search queries can
be managed by issuing a (set of) point-to-point query. Otherwise the query is multicasted.
The same holds for insertions.

Given the assumption we have on clients behavior it may happen that a client has
an out-of-date index. This has two consequences. First, the server which receives the
point-to-point query may not be the server managing the whole set of keys involved by
the query itself anymore (in this case we say the client has done anaddressing error).
Second, the client index has to be adjusted to avoid repeating the same addressing error
again and again. The adjustment of a client index is done by means of index correction
messages (ICMs) from the pertinent servers. Adjustment is required when servers that a
client considers as the one that is managing a certain setS of keys has split an unknown
number of times. Therefores cannot any more, in general, manage all queries regarding
S. But s has some knowledge about the subtree generated by its split. This knowledge
is given back to the client in the ICM so that it can avoid repeating the same error. This
means that, in general, an ICM contains a part of the overallk-d tree that has to be added
to the client index or to substitute a part of it.

A client index is therefore acollectionof loosely relatedsubsetsof a k-d tree. We call
such a collection a lazyk-d tree (lkd-tree for short). This means that the client knows
only some nodes and some paths of the overallk-d tree and has the problem of efficiently
managing such a collection. Algorithms for insertion and querying when a client has an
index and more details on how to build an lkd-tree and how to efficiently adjust it using
ICMs are contained in [Nar96b, NBP97b].

5. DATA STRUCTURE WITH INDEX ALSO AT SERVER SITES

If we also allow servers to have an index, then we can distribute the overallk-d tree
(with some possible replications) among all servers. Each servers keeps track of the
part of the tree in whichs was involved when it was created. Hence multicast can be
avoided completely since if a server is not currently pertinent to a query it knows how
to forward the query toward the pertinent server(s) anyway. When the pertinent server
is reached the answer is sent to the client by following the chain of forwarding servers
backward. In this process index adjustment information is added to the answer message
by each server in the chain.

The management and behavior of an lkd-tree when an index is also maintained at server
sites is conceptually similar to the DRT of Kröll and Widmayer [KW94]. We only note
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FIG. 4. Algorithms for insertions with index both at client and server sites.

that a faster convergence of a client index can be obtained if index adjustment information
is always sent back to the client, even if the server has been able to completely answer the
query without forwarding. This approach also allows a larger degree of fault tolerance
in the case of servers’ failure, since it increases the degree of replication of the various
parts of the overall index managed by each server. We give, for completeness, algorithms
for insertion, exact query and range query respectively in Figs. 4, 5, and 6.

6. PARAMETERS FOR PERFORMANCE EVALUATION

We experimentally investigated the behavior of our data structure under different
conditions. As representative classes of queries we considered, beyond insertions,
both exact and range queries. Concerning data distributions we analyzed synthetically
generated data, studying both uniform and gaussian random distribution, in a 1-
dimensional space as well as in a 2-dimensional space. The performance measures used
for comparison are:

— load factor, i.e., percentage of bucket space used in the average over all servers;

FIG. 5. Algorithms for exact queries with index both at client and server sites.
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FIG. 6. Algorithms for range queries with index both at client and server sites.

— average number of messages required for each insertion, including split
messages and ICMs when addressing errors are made;

— averagenumber of messages required for each query, including ICMs when
addressing errors are made;

— convergence, that is the average number of index correction messages required
for a new client to obtain an up-to-date version of the overallk-d tree.

We also introduced and studied thedistribution efficiencyof our data structure both
from the point of view of a single server and from an overall point of view. With this
approach we want to measure how large the waste of computational resources is deriving
from the fact that servers are distributed over a communication network. The main purpose
of distribution efficiency measures is the comparison between different distributed data
structure, since a distributed solution always consumes more computational resources
than a nondistributed one. Hence we defined the following two parameters:

— local overhead(l_ovh) that measures the average fraction of useless messages
that each server has to process; this is expressed by the average over all servers of the
ratio between the number of useless messages and the number of messages received by
a server. A message is useless for a server if it is received by it but it is not pertinent
to it.

— global overhead(g_ovh) that measures the fraction of overhead messages
traveling over the network; this is expressed by the ratio between the overall number
of overhead messages and the overall number of requests. A message is considered to
be overhead if it is not a query message issued by a client.

The mathematical definition of these two parameters is now provided. Let us denote
by s the overall number of servers, with #rec_msg(i ) and #pert_msg(i ), respectively, the
number of messages received by serveri and the number of pertinent messages received
by serveri . Then it is
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l ovh =

s∑
i=1

#rec msg(i )− #pert msg(i )

#rec msg(i )

s

and

g ovh =

(
s∑

i=1

#rec msg(i )

)
− #queries

s∑
i=1

#rec msg(i )

.

Note that both formulas compute values between zero (the highest distribution effi-
ciency) and one. Also, note that while for insert or exact queries we have #queries≡∑s

i=1 #pert msg(i ), for range queries the item on the right-hand side of this formula is
generally much larger than the one on the left. A local overhead value closer to zero
means that the server’s CPU is spending less time in processing useless messages. A
global overhead value closer to zero means that each query is processed by the distributed
data structure with a lower number of overhead messages. Finally, we also investigated
the behavior of the distributed indexes both in terms of distribution of heights of client
and server indexes and in terms of the largest number of messages required to answer
a query.

7. EXPERIMENTS

In this section we report results of the simulation of the behavior of our distributed
data structure. We implemented it using the CSIM simulation software package [Sch92].
This approach was followed also by Litwinet al. for LH* and RP* and by Kröll and
Widmayer for DRT. We compared the behavior of our data structure with that of LH*,
DRT, and RP*. We did not implement any of these structures, hence to make significant
comparisons we have used, for performing our experiments, the same parameter space
and have chosen the same sample points in the parameter space which are reported in
papers describing them. The experimental setting is therefore fully comparable. Note,
though, that the two performance parameters introduced to measure distribution efficiency,
namelyglobal overheadand local overhead, are, to our knowledge, not known in the
literature, hence we have no data about it for other data structures.

7.1. Performance Results for Insert

For load factor (Tables 1 and 2) and insertion (Tables 3–6) we took as a reference the
results reported in [KW94], where DRT and LH* are compared. We hence performed a
sequence of 10,000 insertions of distinct integer keys on an empty file, under different
bucket capacities and number of clients (of different activity levels). Integer keys to
be inserted were drawn independently from two different distributions: a uniform
distribution in the range from 0 to 106 and a gaussian distribution generated according to
the polar method of Knuth [Knu81], with a mean of 103. Each experiment was repeated
five times (for the uniform distribution) or seven times (for the gaussian distribution).
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Table 1

Load Factor for the Uniform Distribution

1-dimensional 2-dimensional

Number BC NC INS LH* load DRT load NS Load NS Load

1 17 1 10,000 0.570 0.707 837.2 0.70264 834.2 0.70521

2 33 1 10,000 0.566 0.701 431.2 0.70277 435.2 0.69633

3 40 1 10,000 0.532 0.697 356.8 0.70071 362.6 0.68953

4 40 2 5,000
5,000

0.531 0.697 356.8 0.70071 362.6 0.68953

5 40 3 3,333
3,333
3,333

0.532 0.697 356.8 0.70064 362.6 0.68946

6 40 3 6,977
2,326

697

0.532 0.697 356.8 0.70071 362.6 0.68953

BC, capacity of each bucket; NC, number of clients; INS, number of insert for each client; NS, average
number of servers.

The three variants of the data structure discussed in this paper all reported the same value
of load factor, hence results are reported only once (Table 1 for the uniform distribution
and Table 2 for the gaussian one). Load factor has practically the same values for our
data structure as for DRT (which is better than LH*).

Results in Tables 3 and 4 regard the average number of messages for each insert for all
1- and 2-dimensional distributions. We report, for the experiments regarding more than
one client, each client value and the average value (shown with boldface numbers). The
average number of messages for each insert is slightly better for our data structure without

Table 2

Load Factor for the GaussianDistribution

1-dimensional 2-dimensional

Number BC NC INS LH* load DRT load NS Load NS Load

1 40 1 10,000 0.264 0.697 359.6 0.69533 356.4 0.70142

2 40 2 5,000
5,000

0.260 0.694 359.6 0.69533 356.4 0.70142

3 40 3 3,333
3,333
3,333

0.250 0.697 359.6 0.69526 356.4 0.70135

4 40 3 6,977
2,326

697

0.257 0.695 359.6 0.69533 356.4 0.70142

BC, capacity of each bucket; NC, number of clients; INS, number of insert for each client; NS, average
number of servers.
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Table 3

Average Number of Messages for Each Insert (Uniform Distribution)

No index Client index Server index

Number LH* DRT 1-dim. 2-dim. 1-dim. 2-dim. 1-dim. 2-dim.

1 1.4265 1.2932 1.33448 1.33328 1.47840 1.48152 1.55576 1.55636

2 1.2301 1.1578 1.17208 1.17368 1.25360 1.25632 1.29436 1.29764

3 1.2121 1.1371 1.14232 1.14464 1.21032 1.21320 1.24432 1.24748

4 1.2262 1.2315 1.14384
1.14080
1.14232

1.14208
1.14720
1.14464

1.27416
1.27264
1.27340

1.27296
1.27832
1.27564

1.33932
1.33892
1.33912

1.33840
1.34424
1.34132

5 1.2389 1.3183 1.14329
1.13345
1.15026
1.14233

1.14569
1.13945
1.14881
1.14465

1.33243
1.30651
1.33411
1.32435

1.33339
1.31299
1.33771
1.32803

1.42700
1.41518
1.43270
1.42496

1.42814
1.42280
1.43234
1.42776

6 1.2329 1.2874 1.14230
1.14308
1.14003
1.14232

1.14425
1.14377
1.15151
1.14464

1.23804
1.38160
1.48379
1.28856

1.24119
1.37524
1.46313
1.28784

1.28539
1.52046
2.01119
1.39066

1.28858
1.53001
1.99455
1.39394

index (both for 1-dimensional and 2-dimensional data) than for DRT and LH*, while it
is slightly worse for our data structure with index on clients only or on both clients and
servers (both for 1-dimensional and 2-dimensional data) than for DRT and LH*.

Tables 5 and 6 present distribution efficiency results for the two considered data
distributions. As you can see, overhead of the data structure is almost independent from
the considered number of dimensions and from the specific distribution of data. Overhead
is greatest for the version without index but very low for the version with index at server

Table 4

Average Number of Messages for Each Insert (GaussianDistribution)

No index Client index Server index

Number LH* DRT 1-dim. 2-dim. 1-dim. 2-dim. 1-dim. 2-dim.

1 1.4534 1.1394 1.14343 1.14217 1.21157 1.21020 1.24564 1.24421

2 1.5351 1.2401 1.14114
1.14571
1.14343

1.14537
1.13897
1.14217

1.27246
1.27606
1.27426

1.27497
1.26971
1.27234

1.33811
1.34123
1.33967

1.33977
1.33509
1.33743

3 1.5999 1.3384 1.14847
1.14521
1.13664
1.14344

1.14624
1.14299
1.13733
1.14219

1.33586
1.33209
1.32249
1.33015

1.32969
1.33295
1.32378
1.32880

1.43033
1.42784
1.41824
1.42547

1.42643
1.42806
1.41970
1.42473

4 1.5634 1.3188 1.14505
1.14224
1.13117
1.14343

1.13792
1.15158
1.15331
1.14217

1.24104
1.39405
1.46854
1.29249

1.23350
1.39885
1.51117
1.29131

1.28872
1.52328
1.99959
1.39283

1.28098
1.53292
2.02132
1.39119
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Table 5

Global and Local Overhead during Insert Operation (Uniform Distribution)

No index Client index Server index

Number Global Local Global Local Global Local

1 1-dim.
2-dim.

0.99760
0.99760

0.99814
0.99811

0.97541
0.97145

0.98096
0.97769

0.19433
0.19433

0.35519
0.35017

2 1-dim.
2-dim.

0.99539
0.99540

0.99639
0.99638

0.89920
0.90159

0.92138
0.92345

0.11269
0.11376

0.23998
0.24117

3 1-dim.
2-dim.

0.99443
0.99443

0.99557
0.99562

0.86004
0.86211

0.88914
0.89236

0.09532
0.09649

0.21230
0.21895

4 1-dim.
2-dim.

0.99443
0.99443

0.99557
0.99562

0.92331
0.92361

0.93940
0.94012

0.12046
0.12133

0.22610
0.23231

5 1-dim.
2-dim.

0.99443
0.99443

0.99557
0.99562

0.95199
0.95308

0.96197
0.96308

0.14207
0.14303

0.23754
0.24352

6 1-dim.
2-dim.

0.99443
0.99443

0.99557
0.99562

0.95431
0.95787

0.96390
0.96690

0.14099
0.14096

0.24430
0.24858

sites. This is not surprising, since it is exactly the purpose of the introduction of indexes.
Also, it is reasonable that the lowest overhead is reached with the highest bucket capacity
and the lowest number of clients (Experiment 3 in Table 5). Remember that there are no
measures in the literature about this performance parameter for other data structures.

As a further experimental analysis for the version with index at server sites we studied
(Table 7) the height reached by the whole index, when considered as a single tree. Since
no balancing operation is supported in the index, it is theoretically possible to have a tree
which has degenerated to a linear list. The values of the height provide an indication about
the overall shape of a tree. Height is compared both to the logarithmic lower bound for
the case of a nondistributed balanced search tree and to the square root lower bound for
the case of a distributed search tree where balancing is explicitly maintained [KW95].
Even if lower bounds are worst case values and height values in our experiment are

Table 6

Global and Local Overhead during Insert Operation (GaussianDistribution)

No index Client index Server index

Number Global Local Global Local Global Local

1 1-dim.
2-dim.

0.99442
0.99442

0.99564
0.99558

0.86050
0.86017

0.89167
0.88991

0.09583
0.09527

0.22496
0.20989

2 1-dim.
2-dim.

0.99442
0.99442

0.99564
0.99558

0.92205
0.92153

0.93961
0.93806

0.12075
0.12001

0.23859
0.22349

3 1-dim.
2-dim.

0.99442
0.99442

0.99564
0.99558

0.94788
0.94931

0.95947
0.96004

0.14232
0.14199

0.24980
0.23489

4 1-dim.
2-dim.

0.99442
0.99442

0.99564
0.99558

0.95181
0.95236

0.96260
0.96241

0.14276
0.14118

0.25779
0.24228
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Table 7

Behavior of the Version with Index at Server Sites during Insert Operation

(U, Uniform; G, Gaussian)

Number

of servers

lg (number

of servers) Index height
√

Number of servers

Max number

of messages

1-dim. 2-dim. 1-dim. 2-dim. 1-dim. 2-dim. 1-dim. 2-dim. 1-dim. 2-dim.

U-1 837.2 834.2 9.71 9.70 14.6 14.8 28.93 28.88 10.0 9.4

U-2 431.2 435.2 8.75 8.77 13.0 12.4 20.77 20.86 8.6 8.4

U-3, 4, 5, 6 356.8 362.6 8.48 8.50 12.2 12.2 18.89 19.04 8.8 8.6

G-1, 2, 3, 4 359.6 356.4 8.49 8.48 12.3 12.0 18.96 18.88 8.8 8.6

average measures, Table 7 shows that the data structure behaves well in practice. This is
not surprising since for a uniform distribution the expected height of a search tree under
random insertion is logarithmic in the number of insertions [Knu73, CLR90]. Once again,
the behavior of the data structure is almost independent from the considered number of
dimensions and from the specific distribution of data. A further measure shown in the
same table is the maximum number of messages required to complete an operation;
remember that the theoretical worst case is two times the height of the tree. In the first
column U-1 to U-6 refers to the six cases considered in Table 1, while G-1 to G-4 refers
to the four cases considered in Table 2.

The study of the behavior of index for the version with index at server sites is completed
by an analysis of the average distribution of the number of leaf nodes (i.e., the number
of pointers to other servers) in the index of each server. In a certain sense this measures
the average distribution of the branching factor of servers. It is shown in Table 8 for the
1-dimensional case. A new server has one leaf (that is, the root). On each row the first
line refers to the uniform distribution and the second line to the gaussian one.

The good behavior in practice of the version with index at server sites discussed in
Table 7 with reference to the height of the index is confirmed by Table 9. This shows,
for the 2-dimensional case, the same parameters of Table 7 but refers to a larger number
of insertions. Bucket capacity is 40 and only one client is active.

We also studied the behavior of the load factor of the version with index at server sites
for a larger number of insertions. Results are shown in Table 10, confirming the good
behavior of the data structure for a larger number of insertions. Bucket capacity is 40,
only one client is active, and a 2-dimensional space is considered.

7.2. Performance Results for Exact Search

For an exact search (Table 11) we also took as a reference the results reported in
[KW94]. Hence we performed, under different bucket capacities and number of clients
(of different activity levels), a sequence of 10,000 searches on a file with 10,000 keys,
randomly generated by a different client. We used, like Kröll and Widmayer [KW94],
a uniform distribution in the range from 0 to 106. Keys to be searched for were drawn
independently from a uniform distribution in the range from 0 to 106. Each experiment
was repeated five times. We also report results for the 2-dimensional case, showing that
the same performance as the 1-dimensional case is obtained. The version of our data
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Table 8

Distribution of Servers with Respect to Number of Leaves in Their Index (1–dimensional)

Number of insert operations

10,000 30,000 50,000 100,000

Leaves Servers % Servers % Servers % Servers %

1 Ua

Gb

177.40

174.60

48.92

49.04

527.20

529.60

48.98

49.23

883.33

882.00

49.15

49.10

1766.33

1772.33

49.47

49.44

2 U

G

95.60

94.40

26.37

26.52

284.40

274.60

26.42

25.53

467.33

462.33

26.00

25.74

912.00

910.67

25.54

25.40

3 U

G

44.80

42.60

12.36

11.97

133.40

141.80

12.39

13.18

225.00

233.00

12.52

12.97

447.00

463.00

12.52

12.92

4 U

G

22.40

22.80

6.18

6.40

64.40

64.20

5.98

5.97

111.00

111.67

6.18

6.22

231.67

227.00

6.49

6.33

5 U

G

12.20

9.80

3.36

2.75

34.00

34.20

3.16

3.18

60.33

56.00

3.36

3.12

103.00

99.33

2.88

2.77

6 U

G

5.20

6.40

1.43

1.80

17.00

16.20

1.58

1.51

20.67

25.33

1.15

1.41

58.67

56.00

1.64

1.56

7 U

G

2.20

3.00

0.61

0.84

8.40

7.40

0.78

0.69

19.00

13.00

1.06

0.72

25.67

30.67

0.72

0.86

8 U

G

1.80

1.40

0.50

0.39

4.20

3.40

0.39

0.32

4.33

6.67

0.24

0.37

14.33

12.67

0.40

0.35

9 U

G

0.40

1.00

0.11

0.28

1.40

3.00

0.13

0.28

2.67

3.00

0.15

0.17

6.00

6.33

0.17

0.18

10 U

G

0.60

0.00

0.17

0.00

1.00

0.20

0.09

0.02

2.33

1.33

0.13

0.07

1.67

3.67

0.05

0.10

11 U

G

0.00

0.00

0.00

0.00

1.00

1.00

0.09

0.09

0.67

1.33

0.04

0.07

2.67

1.67

0.07

0.05

12 U

G

0.00

0.00

0.00

0.00

0.00

0.20

0.00

0.02

0.00

0.67

0.00

0.04

1.00

0.66

0.03

0.02

13 U

G

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.67

0.00

0.04

0.00

0.33

0.33

0.01

0.01

14 U

G

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.33

0.33

0.01

0.01

aUniform.
bGaussian.

structure with index only at client sites always has a better behavior than both DRT and
LH*. The version with index both at client and server sites is always better than DRT
(both structures do not use multicast). We did not test the version without index, since
in this case a single multicast request is always sufficient, hence each query is answered
with exactly two messages.

Table 12 presents results for distribution efficiency measures. Again, the version
without index was not tested. In fact, by manipulating formulas in Section 6 it can
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Table 9

Behavior of the Version with Index at Server Sites for Large Numbers of Insert Operations

Number

of servers

lg (number

of servers) Index height
√

Number of servers

Max number

of messages
Number

of inserts Uniform Gaussian Uniform Gaussian Uniform Gaussian Uniform Gaussian Uniform Gaussian

10,000 362.6 356.0 8.50 8.48 12.2 12.0 19.04 18.87 8.6 8.6

30,000 1076.4 1075.8 10.07 10.07 14.0 14.0 32.81 32.80 10.2 10.4

50,000 1797.3 1796.3 10.81 10.81 14.7 15.0 42.39 42.38 11.3 10.7

100,000 3570.7 3584.7 11.80 11.81 16.0 16.3 59.76 59.87 12.3 11.7

be seen that both the global overhead and local overhead are equal to 1− 1/s, wheres
is the number of servers.

Concerning convergence (Table 13), we took as a reference the results reported in
[LNS94a]. Hence we measured, under different bucket capacities, the speed of a new
client to bring its index up-to-date with the overallk-d tree. Clearly, here LH* (that is
not order-preserving) has the fastest convergence, being upper-bounded by the logarithm
of the overall number of buckets [LNS93, LNS94a]. But our data structure with index
only at client sites has practically the same behavior of RP*C (i.e., RP* with index only
at client sites), both for 1-dimensional and 2-dimensional data. The version of our data
structure with index also at server sites has a slower convergence than RP*S, which is the
variant of RP*C where some servers are fully dedicated to the management of the index.
This is reasonable since by sacrificing some servers exclusively for index management
RP*S obtains a much higher branching factor, but a lower degree of fault tolerance against
server failures.

7.3. Performance Results for Range Query

Concerning range queries there are no experimental studies in the literature, since both
LH* [LNS93, LNS96] and RP* [LNS94a] and DRT [KW94] only considered insertion

Table 10

Behavior of the Version with Index at Server Sites for Large Numbers of Insert Operations

Number
Number
of inserts

Number
of servers Load factor

Number
of messages

1 10,000 uniform
gaussian

362.6
356.0

0.68953
0.70227

1.24748
1.24406

2 30,000 uniform
gaussian

1076.4
1075.8

0.69682
0.69722

1.24591
1.24533

3 50,000 uniform
gaussian

1797.3
1796.3

0.69549
0.69588

1.24625
1.24605

4 100,000 uniform
gaussian

3570.7
3584.7

0.70015
0.69743

1.24537
1.24651
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Table 11

Average Number of Messages for Each Exact Search (Uniform Distribution)

Client index Server index

Number BC NC QUE LH* DRT 1-dim. 2-dim. 1-dim. 2-dim.

1 17 1 10,000 2.0006 2.1127 2.00010 2.00010 2.05136 2.05148

2 33 1 10,000 2.0002 2.0587 2.00010 2.00010 2.02744 2.02752

3 40 1 10,000 2.0004 2.0500 2.00010 2.00010 2.02368 2.02388

4 40 2 5,000
5,000

2.0008 2.0873 2.00020
2.00020
2.00020

2.00020
2.00020
2.00020

2.03944
2.03888
2.03916

2.04248
2.03600
2.03924

5 40 3 3,333
3,333
3,333

2.0012 2.1200 2.00030
2.00030
2.00030
2.00030

2.00030
2.00030
2.00030
2.00030

2.05005
2.05160
2.05028
2.05065

2.05413
2.05101
2.05065
2.05193

6 40 3 6,977
2,326

697

2.0012 2.1200 2.00014
2.00043
2.00143
2.00030

2.00014
2.00043
2.00143
2.00030

2.03039
2.06965
2.20373
2.05160

2.03044
2.07206
2.20488
2.05228

BC, capacity of each bucket; NC, number of clients; QUE, number of queries for each client.

and exact search. We performed range queries with three different ratios between query
area and total area, namely 0.1, 1, and 10%. In the 2-dimensional case we tested range
queries with two different shape ratios:square(that is 1:1) andrectangular(1:3). These

Table 12
Global and Local Overhead during Exact Search Operation

(Uniform Distribution)

Client index Server index

Number Global Local Global Local

1 1-dim.
2-dim.

0.98593
0.98583

0.98592
0.98582

0.32124
0.32905

0.26383
0.26532

2 1-dim.
2-dim.

0.94896
0.94984

0.94895
0.94983

0.19254
0.18366

0.15728
0.14956

3 1-dim.
2-dim.

0.92716
0.92930

0.92718
0.92931

0.15707
0.16756

0.12777
0.13634

4 1-dim.
2-dim.

0.96210
0.96326

0.96211
0.96326

0.20323
0.21758

0.17108
0.18083

5 1-dim.
2-dim.

0.97439
0.97518

0.97439
0.97518

0.23307
0.23455

0.19827
0.19853

6 1-dim.
2-dim.

0.97305
0.97393

0.97305
0.97393

0.25066
0.25525

0.20999
0.21540
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Table 13

Average Number of Messages Required to a New Client to Build an Up-to-Date Index

Client index Server index

BC RP*C RP*S LH* 1-dim. 2-dim. 1-dim. 2-dim.

1 50 2867 22.9 8.9 2865 2865 634.57 634.57

2 100 1438 11.4 8.2 1447 1447 316.71 316.71

3 250 543 5.9 6.8 543 543 120.57 120.57

4 500 258 3.1 6.4 256 256 58.42 58.42

5 1000 127 1.5 5.7 127 127 29.71 29.71

6 2000 63 1.0 5.2 63 63 13.00 13.00

BC, capacity of each bucket.

experiments were done using two different frameworks: in the first (static), a sequence
of 10,000 searches was executed on a file with 10,000 keys, randomly generated by
a different client; in the second (dynamic) the structure was first filled with only 1,000
points then 1 range query was done every 10 further insertions, until all the 10,000 points
were inserted (so the number of queries was 900). Bucket capacity in all cases had the
value of 40. Each experiment was repeated five times. In Table 14 you can see the results
regarding the average number of messages required to answer each range query, in the
dynamic framework, for the version without index and the version with index at server
sites. Regarding the version with index at client sites remember that if the client has all
servers in its index it always issues point-to-point queries. For this version we report in
Table 15 the results in the static framework also.

In Tables 16 and 17 we present overhead results for the considered distribution.
Remember that there are no measures in the literature about this performance parameter
for other data structures. As it is expected, distribution efficiency is highest in the version
with index at server sites. Table 16 reports global and local overhead for the dynamic
framework and for the version without index and with index at server sites. Table 17
reports results for the version with index at client sites, both for static and dynamic
frameworks.

Table 14

Average Number of Messages for Each Range Query

(No Index and Server Index—Dynamic)

No index Server index

2-dimensional 2-dimensional

% 1-dimensional Square Rectangular 1-dimensional Square Rectangular

0.1 2.20667 3.02556 3.24822 2.53489 4.12133 4.55622

1.0 3.95867 6.23311 6.79333 5.82489 10.42156 11.52667

10.0 20.62422 21.70622 21.85333 38.93889 41.23200 41.53467
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Table 15

Average Number of Messages for Each Range Query (Client Index)

Static Dynamic

2-dimensional 2-dimensional

% 1-dimensional Square Rectangular 1-dimensional Square Rectangular

0.1 2.57067 4.69556 5.31667 2.48511 4.00133 4.42911

1.0 8.54889 14.81156 16.43956 5.80244 10.10978 11.26111

10.0 68.73733 68.65289 68.29511 39.06267 40.71044 40.76111

8. CONCLUSIONS

We have discussed in this paper a scalable distributed data structure fork-dimensional
point data, with optimal search algorithm for exact, partial, and range searches. The set
of k-d points is managed in a scalable way, i.e., it can be dynamically enlarged with
insertion of new points. We have also proposed new measures to evaluate the efficiency
of distributing the management of a data structure over a communication network.

Experiments discussed in previous section show that the load factor is as good for our
data structure as it is for DRT and RP* (these structures being based on key comparison)
and it is better than LH* (this structure being based on hashing). Values of the average
number of messages for insert and query operations show that if multicast is available we
obtain the same performance of RP*, not only in the 1-dimensional case, but also for a
multi-dimensional point set. If multicast is not available we are not worse than DRT. For
range queries there was no previous result in the literature. Experiments we have reported
prove that our data structure makes possible an efficient management and querying of
a set of multi-dimensional points in a distributed framework. Experiments also seem to

Table 16

Global and Local Overhead during Range Query
(No Index and Server Index—Dynamic)

No index Server index

% Global Local Global Local

0.1 1-dim.
square
rectangular

0.99447
0.99447
0.99447

0.99549
0.99520
0.99352

0.15451
0.20642
0.36269

0.24910
0.25311
0.20121

1.0 1-dim.
square
rectangular

0.99447
0.99447
0.99447

0.99470
0.99510
0.98675

0.24386
0.21746
0.64356

0.21562
0.24876
0.12325

10.0 1-dim.
square
rectangular

0.99447
0.99447
0.99447

0.98709
0.99377
0.98671

0.62953
0.34313
0.64515

0.10933
0.20619
0.12466
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Table 17

Global and Local Overhead during Range Query (Client Index)

Static Dynamic

% Global Local Global Local

0.1 1-dim.
square
rectangular

0.89464
0.86178
0.85191

0.98821
0.97089
0.96476

0.91081
0.91629
0.92101

0.92755
0.92738
0.90766

1.0 1-dim.
square
rectangular

0.78250
0.74262
0.72589

0.91868
0.83566
0.80734

0.91833
0.91654
0.92891

0.92151
0.92613
0.83120

10.0 1-dim.
square
rectangular

0.71921
0.74010
0.74474

0.20023
0.29907
0.32308

0.92800
0.92032
0.92785

0.83023
0.91058
0.82903

suggest that using a pure multicast approach is not a good solution for application with
tight time requirements.

Our structure has the advantage over its competitors of being able to manage both
1-dimensional and multi-dimensional data (like DRT is able to do) but can operate both
using multicast and avoiding its use (like RP* is able to provide). We also argued that
our solution is able to provide a better fault tolerance against server failures.

Work in progress is concerned with the extension to other multi-dimensional data
structures and to extended objects [Bar96, Pep97]. Candidates under considerations for
this are R+-trees, quad-trees, and grid-files. A further line of investigation is considering
a fully dynamic (i.e., also supporting deletions) version of the distributed data structure.
A first proposal is described in [BNP97]. Finally, an explicit analysis of fault tolerance
issues is highly desirable.
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