Journal of
Parallel and
Distributed

ACADEMIC o Computing
PRESS J. Parallel Distrib. Comput. 62 (2002) 1617-1628

www.academicpress.com

Fully dynamic distributed search trees can be
balanced in O(lg® N) time ™

Fabio Barillari®, Enrico Nardelli®**, and Massimo Pepe®

Dipartimento di Matematica Pura ed Applicata, Universitd degli Studi di L’ Aquila, Via Vetoio, Coppito,
1-67010 L’ Aquila, Italy
® Dipartimento di Informatica, Universitd degli Studi di L’ Aquila, Via Vetoio, Coppito,
1-67010 L’ Aquila, Italy
€ Istituto di Analisi dei Sistemi ed Informatica, C.N.R., Viale Manzoni 30, I-00185 Rome, Italy

Received 1 September 1997; received in revised form 13 October 1998; accepted 19 July 2002

Abstract

In this paper we consider the dictionary problem in a message-passing distributed
environment. We introduce a new version, based on AVL-trees, of distributed search trees, the
first to be fully scalable, that is, able to both grow and shrink as long as keys are inserted and
deleted. We prove that in the worst case a key can be inserted, searched, or deleted with
O(Ig? N) messages. We show that for the introduced distributed search tree this bound is tight.
Since the defined structure maintains the relative order of the keys, it can also support queries
that refer to the linear order of keys, such as nearest neighbor or range queries.
© 2002 Published by Elsevier Science (USA).

Keywords: Scalability; Distributed data structures; Distributed memory machines

1. Introduction

In the past years more and more work has been devoted to the study and design of
search structures that perform efficiently in a distributed environment e.g.,
[Dev93,JK93,KW94, 1. NS93,MS91,SPW90]. The rationale is that, due to the striking
advance of communication technology, it is now feasible to gain computing power
by running applications on a network of workstations [KW94,LNS94,LNS97].
Following the approach pioneered in [LNS93], we focus only on the efficiency
aspects of distributing a search structure. The fundamental measure of the efficiency
of an operation in this distributed context is the number of messages exchanged. A

*Parts of this work were done while Fabio Barillari was visiting the Eidgenossische Technische
Hochschule, Ziirich, whose financial support is gratefully acknowledged. Research described here is
partially supported by the ““Algoritmi, Modelli di Calcolo e Strutture Informative” 40%-Project of the
Italian Ministry for University and Scientific & Technological Research (MURST) and by the
“Chorochronos” Research Network of the ESPRIT Research Programme of the European Union.

*Corresponding author. Dipartimento di Informatica, Universita degli Studi di L’Aquila, Via Vetoio,
Coppito, 1-67010 L’Aquila, Italy.

E-mail address: nardelli@univaq.it (E. Nardelli).

0743-7315/02/$ - see front matter © 2002 Published by Elsevier Science (USA).
PI: S0743-7315(02)00009-6

1618 F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

critical requirement for the efficiency of a distributed search structure is its
scalability. This implies that no server can play a master role, i.e., act as a bottleneck
for access to data, and that the number of servers sharing the management of the
data structure adapts to the (varying) number of keys stored to keep performance
level almost constant.

Litwin, Neimat, and Schneider were the first to present and to discuss the
paradigm of scalable distributed data structures, by proposing a distributed linear
hashing, namely LH* [LNS93,LNS97]. Distributed hashing meeting the scalability
requirement was investigated also by Devine [Dev93]. While offering good
performances for exact search, hash-based techniques do not perform well for
range queries, since they do not maintain the given order of data items. Comparison-
based techniques, i.e., search trees, have to be considered for this purpose. Kroll and
Widmayer [KW94, KW95] were the first to introduce an order-preserving scalable
distributed data structure, by defining distributed random trees (DRT), a general-
ization to the distributed environment of binary search trees. Litwin, Neimat, and
Schneider defined a distributed one-dimensional order-preserving data structure,
namely RP* [LNS94], that can be seen as a generalization of BT -trees. Litwin and
Neimat presented also a k-dimensional distributed data structure [LN96]. Nardelli,
Barillari, and Pepe [Nar95,Nar96,NBP97,NBP9§] introduced and discussed dis-
tributed k-dimensional trees, an order-preserving structure suitable for the manage-
ment of k-dimensional points, that can be used, via the mapping technique, to
manage also extended objects defined in a lower dimension.

In the above-described proposals based on binary search trees no explicit action is
taken to maintain the structure balanced. Hence a theoretical worst-case bound of
Q(N) holds for the search of a given key out of a set of N keys. The theoretical study
of the characteristics of scalable distributed search trees conducted in [KW95]
showed that if all the hypotheses used to efficiently manage search structures in the
single-processor case are carried over to a distributed environment, then a lower
bound of Q(\/N) holds for the height of balanced binary search trees.

In this paper we relax some of these hypotheses (see Section 2 for more details)
and show that binary search trees can be maintained balanced in a distributed
environment so that search can be executed with O(Ig*> N) messages. We also prove
that this bound is optimal for the introduced structure.

Also, while previous proposals explicitly considered only the semi-dynamic case,
that is, the case where keys are only inserted and never deleted, we discuss deletion of
keys and prove that it can be managed within the O(lg” N) bound. Hence this paper
presents the first efficient distributed search structure to be fully dynamic and order-
preserving.

The paper is organized as follows. In Section 2, distributed search trees and
existing results are discussed. In Section 3, we describe the balanced and relaxed
binary search tree, the data structure we have introduced to obtain the main result.
Section 4 describes algorithms for insertion and deletion and Section 5 contains
conclusions.

2. Scalable search structures in a distributed environment

The framework of this paper is the same for all schemes proposed in the literature
for scalable search structures in a message-passing environment. A more detailed
description can be found in [KW94, KW95,L.NS97, NBP98]. We have a given set of
sites (processor or nodes) connected by a network. Every site in the network is either
a server, which manages data, or a client, which requests access to data. Each server

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628 1619

manages data items belonging to some part of the data domain. Sites communicate
by sending and receiving point-to-point messages. We assume network communica-
tion is free of errors. Every server can store a single block of at most b data items, for
a fixed constant . We do not care whether a server stores keys in main or secondary
memory, since our only concern is the number of messages exchanged. The case of a
server storing more than one block of data items to improve overall performances is
introduced and discussed in [VBW94].

The overall data organization scheme we focus on is a distributed binary search
tree: the overall indexing structure is a binary search tree whose management is
shared among all servers. Clients have partial copies of the index to guide the search
process and to avoid starting all searches from the server managing the root. This
means that:

® servers manage both nodes containing data items (leaf nodes) and nodes
guiding the search process (internal nodes);

® clients are not, in general, up-to-date with the evolution of the structure, in the
sense they have a local indexing structure, but do not know, in general, the
overall status of the data structure;

® a server sends an update to a client index by communicating to the client, when
answering a query, what the server itself knows about the overall structure:
different clients may therefore have different and incomplete views of the data
structure.

A client uses its index to send requests to servers according to its needs. Therefore
the server managing the root of the overall tree is not a bottleneck since each client,
after its first query, has some partial knowledge of the whole index. When a server
receives a message from a client, it either directly serves the request or forwards it to
some other server managing a more proper interval of the search space. Updates to
client index are sent back to clients together with answers. As a consequence of these
actions the distributed structure evolves and adapts itself to data, and clients adjust
their views. For more details on the execution of operations in distributed search
structures see [LNS93,LNS94, K W94 Nar96].

From an abstract point of view we can view the network as a complete graph with
bi-directional links. The measure of the efficiency of an operation is the number of
messages exchanged between sites [Gra88], that is, the number of times arcs in the
graph are visited to execute the given operation. Every message is processed from a
server in a finite time after its arrival. The data distribution and management policy
determines how data are distributed among the servers; there are no preconditions as
to where the data can be stored.

In the centralized case a search tree is a binary tree such that every node represents
an interval of the data domain. Moreover, the overall data organization satisfies the
invariant that the interval managed by a child node lies inside the parent node’s
interval. Hence the search process visits a child node only if the searched key is inside
the parent node’s interval. Kroll and Widmayer call this behavior the straight guiding
property [KWI3].

In the above-described proposals for a distributed search structure based on
binary search trees, no explicit action is taken to maintain the distributed structure
balanced. Hence a theoretical worst case bound of Q(N) messages holds for the
search of a given key out of a set of N keys.

Kroll and Widmayer observed [KW95] that it is not possible, in the distributed
case, to directly make use of rotations for balancing a distributed search tree while
guaranteeing the straight guiding property. They proved that a lower bound of
Q(\/N) holds for the height of distributed balanced search trees if the straight

1620 F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

T vo vo Tn
vt v2
V2 Rotation vi
—
Ts T:
T‘ T2 T2 TJ
Fig. 1.

guiding property has to be satisfied. The importance of the straight guidance
property lies in the fact that it guarantees the search process has an upper bound in
terms of messages which is given by the height of the tree.

To understand why the straight guiding property is not automatically true in
distributed search structures when rotations are used, consider Fig. 1. Assume that in
the search tree T the server sy manages internal node vy, the server 5| #s) manages vy,
and the server s; #s1, 52 # 59, manages v,. Assume now that a rotation is needed at v;
to rebalance the tree.

Ty is the tree after the rotation, where we assume the assignment of internal nodes
to servers has not changed. Note that the set of keys visiting v; in the search tree T
(i.e., before the rotation) is a superset of the set of keys visiting v; in the search tree
Ty (i.e., after the rotation). As clients knew that an interval of the data domain
containing keys in, e.g., T, was associated, to server s, it may happen that after the
rotation s; receives the request for a key whose search path ends in 7). Such a
request from a client would therefore visit node v;. But this is not correct since, after
the rotation, server s; should not manage any search path for keys in 7';. The same
problem would exist if we exchanged the assignment of nodes to servers between v;
and v,, beyond the fact that we would waste time to move keys between servers. In
fact, in this case it is server s, that may receive the request for a key whose search
path ends in 7. Hence whether we maintain the assignment of servers s; and s, to
nodes v; and v, in Ty or we exchange such an assignment, we fail in any case to
guarantee the straight guiding property.

This example shows that it is not possible to directly make use of rotations
for balancing a distributed search tree while guaranteeing the straight guiding
property. In [KW95] Kroll and Widmayer proved that a lower bound of Q(\/N)
holds for the height of balanced search trees if the straight guiding property has to be
satisfied. This result of Kroll and Widmayer therefore shows that the straight guiding
property is too weak to obtain an efficient processing of queries in a distributed
environment.

To obtain efficiency in processing search requests in distributed search trees
we therefore renounce satisfying the straight guidance property. We can then
apply balancing to the overall structure, to keep its height bounded by O(lg N),
and by means of a slightly different data organization we are able to prove
that searches and updates can be managed in O(lg> N). In the following we introduce
a data structure called relaxed binary search tree by relaxing the requirement
of the straight guiding property. We show that a relaxed binary search tree
can be kept balanced in a distributed framework during insertions and deletions in
O(Igi N) worst-case time and that the cost of the search process is upper bounded by
O(lg” N).

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628 1621
3. How to balance distributed search trees
To prove the main results we need some preliminary definitions.

Definition 1 (Binary Search Tree). A tree T is a binary search tree if:

1. it is a node r, called root of T, together with two possibly empty substructures. If
both substructures are empty, then r is called leaf. A nonempty substructure is a
binary search tree and is called left (right) subtree of r. The root of the left (right)
subtree of r is called the left (right) child of r. Node r is called the parent node of
the root of the left (right) subtree;

2. all keys in the left (resp., right) subtree of the root are smaller (resp., greater) than
the key in the root.

Definition 2 (Relaxed Binary Search Tree). A binary search tree T is relaxed if:

1. each node but the root of T has a pointer (parent pointer) to its parent node;

2. each node that is not a leaf has a pointer (left pointer) to a node in the left subtree
and one (right pointer) to a node in the right subtree. If the subtree is empty, the
pointer is nil.

From now on we use the term RBST to denote a relaxed binary search tree.

Definition 3 (Height of a RBST). Let 7 be an RBST. We define the height of T as
the length of the longest path along parent pointers from a leaf to the root of 7.

Definition 4 (Balanced RBST). Let 7' be an RBST. We say T is balanced if for each
node x in T the difference between the height of the right and the left subtrees of x is
not greater than one.

From the above definitions and the standard properties of balanced binary search
trees [Knu73] the following result can be easily derived.

Lemma 1. The height of a balanced RBST with N nodes is upper bounded by O(lg N).

Searching in a balanced RBST is characterized by the following two theorems.
With the term “worst-case time” we mean the worst-case number of messages
exchanged in the distributed structure.

Theorem 1. Searching for a key in a balanced RBST with N nodes requires in the
worst-case O(Ig> N) time.

Proof. Let 7T be a balanced RBST and let x be a node of 7. We first prove that it is
possible to reach a child of x in O(lg N) time. In fact, assume without loss of
generality that we want to reach the right child y of x. From x we can reach a node,
say z, in the subtree rooted at y in O(1) (by property 2 in Definition 2). Now, two
cases are possible: (i) the parent of z is x, that is, z = y, and we are done; (ii) we reach
in O(1) from z its parent z’# x. We now follow from z’ the chain of parent pointers
until the parent of the current node is x; that is, we have reached y: from Lemma 1 in
O(lg N) time we are done. Since we have used O(lg N) time to go from a node to one
of its children, using again Lemma 1 we have that the overall search process in a
balanced RBST costs O(lg* N) time. [

1622 F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

IgN

Fig. 2.

Theorem 2. Searching for a key in a balanced RBST with N nodes requires in the
worst-case Q(lg2 N) time.

Proof. We show in Fig. 2 a tree where the search from the root to a given leaf node
(painted in black) costs Q(Ig” N) time. In the tree shown both the left and the right
pointers of a node point to the rightmost node in the corresponding subtree. Hence
to search until to the black node requires: (i) one step, using the right pointer, from
the root to the rightmost leaf; (ii) a chain of upward steps along parent pointers from
the leaf to the right child of the root. Now the right child of the root is the current
node and steps (iii) and (iv) below have to be repeated until the black node is
reached. Step (iii) goes, using the left pointer, from the current node to the rightmost
leaf in its left subtree. In step (iv) a chain of upward steps along parent pointers goes
from the leaf to the left child of the current node.

The cost is 1 for step (i), Ig N for step (ii), always 1 for all executions of step (iii),
Ig N — 1 for the first execution of (iv), lg N — 2 for the second one, and so on. We
repeat steps (iii) and (iv) for lg N — 1 times. Then the overall cost is

M+dgN)]+[1+dgN-=D]+[1+1gN =2)]+ -
+[1+dgN —IgN+ D]+1

Ig N
=1+1gN+) i=QIgN). O
i=0

From Theorems 1 and 2, the following corollary directly follows.

Corollary 1. Searching for a key in a balanced RBST with N nodes requires in the
worst-case O(1g*> N) time.

Note that a balanced RBST is not violating the lower bound of Kréll and
Widmayer, but overcomes it, since a balanced RBST assumes the search process is
guided by hypotheses different from those holding for the lower bound.

4. Insertion and deletion in a balanced RBST

We now describe how to perform insertion and deletion in a balanced RBST.

Please note that when a balanced RBST is used in a distributed environment the
cases of insertion and deletion that are meaningful to consider refer, respectively, to
the creation of new server that receives part of the keys previously managed by an
existing server that is now in overflow and to the release of an existing server that is
now in underflow and sends all its keys to an existing server. By overflow we mean

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628 1623

that a server, with bucket capacity b, receives a request to insert one more key in its
bucket while it is currently managing exactly b keys. By underflow we mean that a
server, with bucket capacity b, receives a request to delete one of the % keys it is
currently managing in its bucket. Insertion and deletion of data items that do not
cause, respectively, overflow and underflow do not require any rebalancing action
and are treated in the standard way of searching for the server managing the bucket
where the item has to be inserted or deleted and executing the needed actions.

Assume the creation of a new server ¢ is triggered by the overflow of leaf node x,
managed by server s. In the overall index x is then substituted by an internal node v,
with two leaf nodes w and z. Keys in the bucket associated to x are split between
buckets associated to w and z. New server ¢ will manage the new internal node v and
one of the two leaves, while old server s will manage the remaining leaf.

When the bucket associated to the leaf node x, managed by server s, goes in
underflow and no redistribution of keys can recover the underflow, leaf x is deleted
from the overall index and server s and the bucket are released. Keys that are in the
bucket at this time are transferred to another bucket, but what is important from the
point of view of the overall index is that also the internal node v managed by s is
deleted.

Note that many different policies can be defined to improve the average server
load and to decrease the overhead work associated with the transfer of data items
deriving from overflows and underflows, as is done for B-trees and its variants or for
distributed linear hashing [VBW94]. In this paper we do not consider these issues but
only analyze how to update the index structure.

As a consequence of the creation of a new server or the release of an existing one,
nodes are inserted into or deleted from the overall index, which can therefore become
unbalanced. Our approach to balancing RBST closely follows the technique used for
AVL-trees [Knu73]. We assume, as for AVL-trees, that each node x of a balanced
RBST records the value of balance factor, that is, the difference between the heights
of the left and the right subtrees of x. The execution of algorithms for insertion and
deletion of nodes in the overall index in the message-passing distributed environment
is not a big issue, since most of the actions are executed within a single server. The
only delicate point is rebalancing, since it involves more servers at once. In such a
case a lock mechanism is needed to ensure a correct synchronization of the
operations. Then any mechanism devised for relaxed balance (i.e., uncoupling
update and balance) ecither for concurrent AVL-trees [NSW87,LSW97] or for
concurrent Red-Black-trees [NS96,BL94] can be used.

4.1. Algorithm for insertion

Step 1: Insert. We search for the place where the new key has to be inserted and
insert it.

Step 2: Adjust balance factors. We move upward from the leaf just added until we
reach the first node s with a balance factor different from 0. Node s is the node that
may possibly need a rebalancing action. While climbing up the tree we update the
balance factors of encountered nodes as it is routinely done in AVL-trees [Knu73].

Step 3: Balance subtree. Let k be the key just inserted, let B(s) be the balance factor
of node s, and let Key(s) be the key in the node s. The proper rebalancing action is
implemented by executing the following algorithm:

if k< Key(s) then
temp « — 1
r<left_child(s)

1624 F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

else

temp « + 1
r<right_child(s)

if B(s) =0 or B(s) = —temp then no balance is needed
if B(s) = temp then

if B(r) = +temp then execute step 4 {single rotation}
if B(r) = —temp then execute step 5 {double rotation}

Step 4: Single rotation. Without loss of generality consider the tree in Fig. 3, where

B(s) =1, B(r) = 1, k > Key(s), temp = +1, and the insertion is done to the subtree 7.

[V SO I S R

6.

The single rotation is executed by means of the following operations:

. right_pointer(s) < left_pointer(r)

. left_pointer(r)«<s

. parent(r) < parent(s)

. parent(s)«r

. Find the root of f by following upward parent pointers starting at the node

pointed by right_pointer(s) and stopping when the current node y is such that

parent(y) =r.
Update to s the parent pointer of the root of f.

Note that nodes in the balanced RBST pointing to s need not be updated, given in
property 2 of Definition 2.

Step 5: Double rotation. Without loss of generality consider the tree in Fig. 4,

where B(s) = 1, B(r) = —1, k > Key(s), temp = +1, and the insertion is done to the
subtree 7.

DR W N =

The double rotation is executed by means of the following operations:

. right_pointer(s) < left_pointer(x); left_pointer(r) < right_pointer(x)

. left_pointer(x) < s; right_pointer(x) «r

. parent(x) < parent(s)

. parent(s) <« parent(r) < x

. Find the root of f (resp. of y) by following upward parent pointers starting at the

node pointed by right_pointer(s) (resp. by left_pointer(r)) and stopping when the
current node y is such that parent(y) = x.

. Update to s (resp. to r) the parent pointer of the root of § (resp. of 7).

Once again, note that nodes in the balanced RBST pointing to s and to r need not

be updated.

h+1

Fig. 3.

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628 1625

Rotation
é

Fig. 4.

Theorem 3. Insertion in a balanced RBST with N nodes costs in the worst-case
O(Ig> N) time.

Proof. From the algorithm above we have the following costs for the various steps:

Step 1: From Theorem 1 this costs O(lg> N) time in the worst case.

Steps 2 and 3: Given Property 1 of Definition 2 and Lemma 1, this costs O(lg N)
time in the worst case.

Steps 4 and 5: We can execute every assignment operation (1-4) in O(1), we can
find the root of the subtree (operation 5) in O(lg> N) time, and we can update its
parent pointer (operation 6) in O(1).

An overall O(Ig> N) time is therefore required in the worst case. [

4.2. Algorithm for deletion

Let us assume that the ordering of nodes in the RBST is such that for each given
node any node in its right subtree has a larger key value and any node in its left
subtree a smaller one. If the node to be deleted is a leaf or an internal node whose
either left subtree or right subtree is empty, then deletion is easy. The node is simply
deleted and its parent is possibly rebalanced. But if the node to be deleted, say S, has
both children, then, as it is done with standard AVL trees, we find the next larger
node to S, say T, and since certainly the left subtree of 7 is empty we first substitute
the key value of S with the one of 7 and afterward delete 7. This preserves the
ordering of keys.

Let then Q be a variable which points to the node of a balanced RBST that has to
be deleted. We assume R points to the root of the balanced RBST and P points to
the parent of Q. If Q is the root, then P is nil. We denote with next(Q) the next larger
node to Q.

The algorithm has therefore three cases:

Case 1: Is the node to be deleted the largest in its subtree?
if right_pointer(Q) = nil then
{Q is the largest node in its subtree}
if Q = R then R« left_pointer(Q) {delete the root}
else if Q = left_pointer(P) then left_pointer(P) <« left_pointer(Q)
rebalance(P) if B(P) = +1
else right_pointer(P) « left_pointer(Q)

rebalance(P) if B(P) = —1

1626 F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

Case 2: Is the node to be deleted the smallest in its subtree?
if left_pointer(Q) = nil then
0 is the smallest node in its subtree
if O = R then R« right_pointer(Q) delete the root
else if Q = left_pointer(P) then left_pointer(P) <« right_pointer(Q)
rebalance(P) if B(P) = +1
else right_pointer(P) « right_pointer(Q)

rebalance(P) if B(P) = —1

Case 3: The node to be deleted has both children: find the next largest node and
delete it.

T < Q save the original value of T in Q and find next(T)

P Q; Q< right_pointer(Q); find_next(Q, P);

{this returns in Q the pointer to next(T) and in P the father of Q}

if Q = left_pointer(P)

then left_pointer(P) < right_pointer(Q); key(T) < key(Q)
rebalance(P) if B(P) = +1
else right_pointer(P) < right_pointer(Q); key(T) < key(Q)

rebalance(P) if B(P) = —1

It is well known that after a deletion of an element in an AVL-tree
O(lg N) rebalancing actions may be required [Knu73]. For this purpose one has to
maintain, e.g., in a stack, the sequence of pointers specifying the path to the node
that was finally deleted. Rebalancing actions are similar to those described in steps 4
and 5 for insertion and details can be easily filled in by the reader on the basis also of
[Knu73].

Algorithm find_next(Q, P) is simply:

find_next(Q, P) {returns in Q the pointer to next(T) and in P the father of Q}
if left_pointer(Q) = nil
then {Q is the smallest node in the subtree rooted at Q: we are done}
return
else P« Q;

Q « left_pointer(Q);
find_next(Q, P)

Theorem 4. Deletion in a balanced RBST with N nodes requires in the worst case
O(Ig> N) time.

Proof. Searching for the node to be deleted costs O(Ig> N) by Theorem 1. Each of
the O(lg N) rebalancing actions that may be required can be executed in O(lg N)
time, according to the description in steps 4 and 5 for the proof of Theorem 1; hence
we have the claimed bound. O

5. Conclusions

We have shown in this paper that a fully dynamic and order-preserving distributed
search structure, that is, a structure that maintains the relative order of data items
and is able to grow and shrink as long as data items are inserted and deleted, can be
implemented in a message-passing distributed environment almost as efficiently,
namely with a @(lg> N) worst-case bound, as in the single-processor case.

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628 1627

We have obtained this result by defining and analyzing in this paper a relaxed
version of binary search trees, named RBST for relaxed binary search tree, that is
suitable for an efficient management of both insertion and deletion of data items in a
message-passing distributed environment. In fact, RBSTs can be kept balanced
during insertion and deletion of elements almost as efficiently as standard binary
search trees. Moreover, since an RBST is an order-preserving search structure, it can
also support queries referring to an interval of the linear order of keys, such as range
queries.

Acknowledgments

Enrico Nardelli thanks Witold Litwin, Marie-Anne Neimat, and Donovan
Schneider for having introduced him to the field of scalable distributed data
structures. Discussions with Brigitte Kroll and Peter Widmayer on various issues
regarding the efficient management of scalable distributed data structures were very
useful and provided many valuable insights. Comments from the referees were
helpful. Many detailed and careful observations from one of them greatly helped in
improving the quality of presentation.

References

[BL94] J. Boyar, K.S. Larsen, Efficient rebalancing of chromatic search trees, J. Comput. System Sci.
49 (1994) 667-682.

[Dev93] R. Devine, Design and implementation of DDH: a distributed dynamic hashing algorithm, in:
Proceedings of the Fourth International Conference on Foundations of Data Organization and
Algorithms (FODO), Chicago, 1993.

[Gra88] J. Gray, The cost of messages, in: Proceedings of the Seventh ACM Symposium on Principles of
Distributed Systems, Toronto, Ontario, Canada, 1988, pp. 1-7.

[JK93] T.Johnson, P. Krishna, Lazy updates for distributed search structures, in: ACM SIGMOD Inter-
national Conference on Management of Data, Washington, DC, 1993, pp. 337-346.

[Knu73] D. Knuth, in: Sorting and Searching, The Art of Computer Programming, vol. 3, Addison—-Wesley,
Reading, MA, 1973.

[KW94] B. Kroll, P. Widmayer, Distributing a search tree among a growing number of processors, in:
ACM SIGMOD International Conference on Management of Data, Minneapolis, MN, 1994,
pp. 265-276.

[KW95] B. Kroll, P. Widmayer, Balanced distributed search trees do not exist, in: Proceedings of the
Fourth International Workshop on Algorithms and Data Structures (WADS’95), S. Akl et al.,
(Eds.), Kingston, Canada, 50-61, Lecture Notes in Computer Science, Vol. 955, Springer-
Verlag, Berlin, August 1995.

[LSW97] K. Larsen, E. Soisalon-Soininen, P. Widmayer, Relaxed balance through standard rotations, in:
Workshop on Algorithms and Data Structures (WADS’97), Halifax, Nova Scotia, Canada,
August 1997.

[LN96] W. Litwin, M.-A. Neimat, k&-RP"s: a high performance multi-attribute scalable data structure,
in: Proceedings of the Fourth International Conference on Parallel and Distributed Information
System, Miami Beach, FL, USA, December 1996, pp. 120-131.

[LNS93] W. Litwin, M.-A. Neimat, D.A. Schneider, LH —linear hasing for distributed files, in: ACM
SIGMOD International Conference on Management of Data, Washington, DC, 1993.

[LNS94] W. Litwin, M.-A. Neimat, D.A. Schneider, RP"—a family of order-preserving scalable distri-
buted data structures, in: Proceedings of the 20th Conference on Very Large Data Bases,
Santiago, Chile, 1994.

[LNS97] W. Litwin, M.-A. Neimat, D.A. Schneider, LH"—a scalable distributed data structure, ACM
Trans. Database System 21 (4) (1996) 480-525.

[MS91] G. Matsliach, O. Shmueli, An efficient method for distributing search structures, in: Proceed-
ings of the First International Conference on Parallel and Distributed Information Systems
(PDIS’91), Miami Beach, 1991.

1628

[Nar95]

[Nar96]

[NBP97]

[NBP9S]
[NS96]

[NSW87]

[SPW90]

[VBW94]

F. Barillari et al. | J. Parallel Distrib. Comput. 62 (2002) 1617-1628

E. Nardelli, Some issues on the management of k-d trees in a distributed framework, Technical
Report No. 76, Dipartimento di Matematica Pura ed Applicata, Universita’ di L’Aquila,
January 1995.

E. Nardelli, Distributed k-d trees, in: XVI International Conference of the Chilean Computer
Science Society (SCCC’96), Valdivia, Chile, November 1996.

E. Nardelli, F. Barillari, M. Pepe, Design issues in distributed searching of multidimensional data,
in: Proceedings of the Third International Symposium on Programming and Systems (ISPS’97),
Algiers, Algeria, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, April 1997.

E. Nardelli, F. Barillari, M. Pepe, Distributed searching of multi-dimensional data: a perfor-
mance evaluation study, J. Parallel and Distrib. Comput. 49 (1998) 111-134.

O. Nurmi, E. Soisalon-Soininen, A structure for concurrent rebalancing, Acta Inform. 33 (1996)
547-557.

O. Nurmi, E. Soisalon-Soininen, D. Wood, Concurrency control in database structures with re-
laxed balance, in: ACM Conference on Principles of Database Systems, San Diego, CA, 1987,
pp. 170-176.

C. Severance, S. Pramanik, P. Wolberg, Distributed linear hashing and parallel projection in main
memory databases, in: VLDB Conference, Barcelona, 1991.

R. Vingralek, Y. Breitbart, G. Weikum, Distributed file organization with scalable cost/perfor-
mance, in: ACM SIGMOD International Conference on Management of Data, Minneapolis,
MN, 1994.

	Fully dynamic distributed search trees can be balanced in O(lg2N) time
	Introduction
	Scalable search structures in a distributed environment
	How to balance distributed search trees
	Binary Search Tree
	Relaxed Binary Search Tree
	Height of a RBST
	Balanced RBST
	Insertion and deletion in a balanced RBST
	Algorithm for insertion
	Algorithm for deletion

	Conclusions
	Acknowledgements
	References

