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Abstract—In this paper we propose a logical data model for complex data. Our proposal extends the
relational model by using abstract data types for domains specification and an extended relational algebra
is also introduced, The introduction of the parameterized typs Geometry(S), where S is a ground set of
elements, allows the representation of complex aggregated data. As an example, we discuss how our modal
supports the definition of geographical DBMSs. Moreover, to show the generality of our approach, we
sketch how the model can be used in the framework of statistical applications.
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1. INTRODUCTION

In these latter two decades, many application areas, for example office automation, interactive
computer-aided design, geographic data processing, health data processing etc., characterized by
more complex and varied data with respect to the traditional commercial and business applications,
have been explored. This has stimulated the interest in employing the database technology to
favor development and to increase the number of applications in such areas. It straightforwardly
foliows that such a technology, born and developed mainly to satisfy commercial and business
data processing applications, has to be refined to adapt to the needs of the new application areas.

These new domains are generally dealing with the contemporary treatment of traditional alpha-
numeric data (i.e. numerals and strings) and spatial/geometric data. Yet, the peculiar requirements,
whose analysis heavily determines the database design and the set of the functionalities available,
are usually varying from one given application to another. This has promoted the development of
special-purpose systems, i.e. environments furnishing a specialized technology for the efficient
treatment of a well-defined and restricted set of applications.

The actual trends point towards the definition of systems for the integrated manipulation and
representation of complex information. To pursue such an integration goal by exploiting the
available technologies, a widely used approach rests on the coupling of traditional DBMSs and
specialized systems that offer ad hoc technologics. The advantage of coupling different specialized
technologies is that, with somewhat little effort, one can build a system managing traditional data
by suitably setting up a communication channel between a DBMS (usually relational) and a
specialized system for complex data. Furthermore, most of these systems guarantee on average
good performances whenever they are designed for specific applications.

Geographical information systems are an important example of the attempt of extending data-
base capabilities to deal with complex data by such integration policy and reflect, in paradigmatical
way, the advantages and the drawbacks that this policy implies. Geographical information systems
are concerned with the representation and manipulation of both alphanumeric and spatial/
geometric data. In geographical applications the coupling policy relies both on the wide availability
and reliability of the current DBMSs and on the powerful capabilities of specialized systems for
the spatiai/geometrical data processing. Nevertheless, available geographical information systems
usually do not offer the advantages that database technology provides in traditional contexts. This
happens mainly because integration issues rely directly on the physical implementation, without
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reference 1o a well-defined logical architecture design, though much effort has been done in this
regard [1--6].

In this paper we define a logical mode! that allows the modeling of complex information. We
also show that by suitably Instantiating some parameters of our modei it supports the integrated
modeling of spatial/geometric data in geographical databases and statistical applications.

The mode! rests on the relational model which we have suitably extended allowing abstract data
types (ADTs) as domains. We have chosen the relational mode! to provide a formal and weli-
defined logical frame and we have extended it to provide a suitable representation and manipulation
of complex information. Though the relational model defined by Codd [7] is a powerful tool
for logical modeling of traditional applications thanks to its validated theoretical basis, it does
not support an effective representation and an efficient manipulation of complex information
(2,4, 811}

The extension we propose rests on the definition of an ADT, namety Geometry(S), for dealing
with data of a complex nature. It: (i) furnishes an expressive and powerful means for integrated
modeling of complex data; (i) provides primitives that directly model the kind of manipulation
that the end-user performs on such data; and (i) constitutes a basis for the formal and correct
definition of algebraic high-level data manipulation and definition languages. As an example we
show that Geometry(S) supports the representation and the manipulation of the spatial extension
of spatial/geometric data. A system which implements the model and the primitives of the language
is described in [12].

Our model provides advantages both to the designer and fo the user. From the designer point
of view, the model: (i) offers a formal frame for the correct specification of complex information
at the logical level; and (i1) supports the separation of the abstraction levels in the database (physical
independence of the data). From the user point of view, it guarantees an expressive and uniform
view of the database content, while furnishing a means for a high-level problem oriented data
manipulation language.

The paper can be logically divided into two parts. In the first one the logical data model and the
extended relationat algebra are introduced. In the second one, how our model applies to the case
of geographical databases is illustrated. More specifically, in Section 2 the ADT Geometry(.S), the
extended relational model and the extended relational algebra are defined. In Section 3 the
motivations pushing for the introduction of geographical DBMSs are discussed. In Section 4, how
our model supports the definition of geographical databases is analyzed. In Section 5, query
languages based on the manipulation primitives of the introduced model are presented., Finally,
in Section 6 an example of the application of our model in the field of statistical databases is

sketched.

2. THE EXTENDED RELATIONAL MODEL AND THE GEOMETRY
ABSTRACT DATA TYPE

In this section we present and extensively discuss our logical data model, which extends the
retational model and aliows the use of ADTs to deal with complex data and their representation.
This approach allows us to define attributes of this type and therefore to model complex aggregated
data, on a well-founded theoretical basis. It also permits exploitation of the theoretical and
practical knowledge acquired in the relational field by the database community. Moreover, the use
of abstract data types Jeads to the definition of a richer and more powerful logical modeling tool.

ADTs in fact provide an effective technique for impiementing and managing the separation
between the physical structure of the objects of interest and their logical representation [12, 13).
ADTs have been considered extensively in semantic data modeling and are a widely used technique
for database systems implementation [14],

An ADT describes a class of objects through their external properties instead of their physical
representation. This allows the end-user to manipulate the objects at the abstraction level at
which he looks at the reality, i.e. his conceptual view of the reality of interest. This makes it
possible to define different physical representations according to the specific application needs. The
introduction of ADTs also permits us to have different kinds of primitives according to the different
requirements of the applications, thus contributing to support multiple views of the database,
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Argumtents also exist on the desirability to introduce user-defined types to tailor the database
system to the needs of a specific user application [11a, 15, 16]. Non-traditional applications can be
better handled if database systems with more flexible data typing are available. In this way some
attributes can be of standard built-in types, while others can be non-standard types defined from
the user for its specific modeling needs.

We think that the use of ADTs supports this user-oriented approach, but a crucial problem is
maintaining the system performances at a reasonable level, A good solution that ensures both good
flexibility and reasonable performances is to assure a minimal but powerful set of built-in types
to have a flexible system without heavily affecting its performances. To be complete we also recall
that the use of ADTs provides an excellent support during the phases of design and implementation
of the relational database system [8, 17]. For example, a suitablie use of ADTs permits to limit
the access to a relation in predefined ways, guaranteeing a higher level of data security and data
Integrity T17].

Different techniques have been considered in the literature for the definition of ADTs 18, 19].
We consider here the algebraic approach to types, ie. a type is a set of individual elements
upon which some operations are defined. Since the set must be closed under these operations, the
type is an algebraic structure. Thus, given an element 1 of type L the set of operations allowed
on 1 is automatically and implicitly defined by I..

In the following sections we define our logical data model and then formally define the
manipulation operators of the introduced algebra.

In the last section we introduce an algebraic structure, SHAPES, defined on a set of atomic
elements and next we show how it corresponds to an ADT dealing with geometrical data, namely

Geometry,

2.1. The logical data model

In this section our logical data model is presented. The model supports the representation of
attributes whose domain is specified using ADTs.

Let U be a given set of names and let 7 be a finite set of type symbols 7" = {7, .. T,}.
The etements of U are called “attributes”. A function type: U-+T 1s defined that associates to
each attribute 4 € U 2 unique symbol ¢ = type(A}e I To any attribute 4 € U a finite domain,
called the domain of 4, of values of type 1 = type{d)e Tis associated and it is denoted by dom(A4).
If the elements of dom(A) are sets then A is called a set -valued attribute. Two attributes A, A, such
that dom(4,) = dom(A,) are called type consistent if type (A;) = type(A,).

We shall assume that for each attribute 4, type(A;) and hence dom(A;) have been formally
specified by means of an ADT definition. This implies that 7} = type(4,) denotes the ADT whose
domain is dom(A,) on which manipulations have to be carried on, only using the operation defined
in the ADT specification.

A relation schema R, = (4,,.., A4,) (where n is called the degree of the relation schema R)) is
a subset of U. We briefly write R, to denote  relation schema R, with attributes 4,,..., 4,, or
simply R when no ambiguity is possible. An instance of a relation schema R,isaset {v,. . ,u}
where each v, called “tuple”, belongs to {dom(4,) x - - - x dom (A,)}. An instance of R, is denoted
by R (I).

Let X be an atiribute. We denote with £, ap associative and commutative binary function
that takes as source data two values of type fype(X) and returns a unigue computed value of
type type(X). Thanks to the associative property that allows the iterative application of the
function it is possible to extend it to take as source data a subset of values of type 1ype(X) and
to return a unique computed value of type(X). Therefore we write Sil4, B, C, ...} instead of
((Af.B)f. C). .., and we call it a fusion Junction on (dom(X)).

Notice that the domain dom(X) of a fusion function is individualized through the
ADT T,=type(X) associated to X. The ADT T, in fact uniquely identifies the domain of
elements dom(X) and the set of the operations allowed on such a set, Consequently, f, is a
typed function, ie. it takes a subsct of elements of a given type I, and returns a single
element of the same type. Fusion functions are employed when computations on sets of
attributes values are needed to answer extended relational queries {see [7} of the following section

and Section 5),
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2.2. The extended relational algebra

In this section the set E of the expressions of the extended relational algebra is formally defined
and the syntax and the semantics of cach clement of E are given.t Borrowing the approach and
the notation from [20], let us consider a database schema D = (R,, .. ., R,,), where R, is a relation
schema:

(1) Literals. For any ¢ e “aeydom(A), {c} € E, it has degree 1 and {e}D)={c}.

(2) Relations, For each R in D, R.¢F and R(I)=r,.

(3) Projection. Let g E, and let X be a subset of attributes of a. Then a[X] e E, and its degree
is equal to card(X), where card{X) is the function that returns the number of elements
in X, and a[X)(7) = {1[X]{t e a(l);. We assume that card(@) = 0 and al@(I) = 9 denotes
the empty relation.

(4) Cross Product. Tet 4,, b, cE. Then (a, x by)eE its degree is # -+ m and (a, x b,)(I)
=thel|hea,(DAateb, (), where o denotes concatenation.

(5) Restriction. Let o € E and Jet ¥ and ¥ be two type consistent attributes of a If ® is the
set of binary relation operators common to both type(X) and type{Y) then a[X8Y]eE,
where 8 € ® and alXO¥)(I) = {t{teca(h)a t[X10¢[ Y]},

(6) Unien, difference. Let 4, b,eE, and such that their corresponding attributes are type
consistent. Then a,ub, and a, — b, belong to E and both have degree . They are defined

as foliows:
(a,ub (1) ={t{a,([)vie b, (1)},
(@ —b) D ={tlteal)nr ¢£b,(N}.
(7) G-Compose. Let R,eE, let Yand ¥ = Y, ..., Y} be two non-intersecting subsets of
attributes of R, and let Fo=(fan ... Juds & < n, be a collection of & fusion functions

defined respectively on dbm(Y, hodom(Ys), .. ., dom(Y,). Then G-Compose x(Fs YR
€ E and it has degree equal to card{X) -+ card(¥). Semantically, for each tuple p e R, (1),
let v, be the tuple defined as followsy:

S =f iVt e RAD AL = pIXT), =1, k.

Then§
G-Compose, (F,; Y)(R,) (1) = {y, | p  R,(I)}.

(8) G-Decompose. Let R,€E, X and ¥ be two subsets of attributes of R,, ¥n¥ =§, and

card(¥)=1. Then G-Decompose, (YH(R,)eE and it has degree card(X) 4 card(Y).
Semantically, for each tuple p e R (), let tbe a tuple variable and let U, be the set defined

as follows:
U = {t1 W)y ep(YIniy] :{y}/\t[X}:p{X]}, if Y is a set-vatued attribute,
7 p) otherwise,
Thend

G—DecomposeX(Y)(R,,)([) = Woern Uy

As a syntactical choice, if any of the X or ¥ attributes coincides with the empty collection it will
be omitted in the notation of G -Compose and G -Decompose operators.

tFor exampies regarding operators here introduced see Sections 5 and 6, illustrating the application of the extended
relational algebra in the case of a geographical survey database and statistical manipulations.

1We shall assume that P8} is defined as the identity element with respect to concatenation hetween tuples.

§The effect of G-Composey (F,; ¥} is that al] tuples of B, (projected on ¥) are “fuged” in 2 single one whose ¥-vaiue is
generated by the appiication of the fusion functien. The effect of the G-Compose, (F.; ¥), when & = I, is analogous
of the operasor “Aggregate Formation” of [20]. '

TThe effect of G -Decompose,(¥) is that al) tuples of R, (projected on Y} are “decomposed”’.
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2.3. The SHAPES algebra and the abstract data type “Geometry(S)”

Given a not empty finite set S, we denote by H. the set Hs = P(P(S)) where P(S) is the powerset
of § (hence Hy is the set of all sets of sets of elements of ). The elements of S are cailed aioms.

Definition It

Given a not empty finite set S, we call SHAPES on § the 6-tuple W= (Hg, U, N, n*,
geo, compl}, where n*, gep and compl are three operators defined on Hy, for all 4, Be H,, as
follows:

An*B={ceP(S):(Fa)Fr)ac A nbeB rc =anb},
geo(d)={X}, where X = (xeSiaednx €al,
compl(A, B) = {Y}, where ¥ ={yeSiacduBryd¢a)

and v« and ~ respectively denote the union and the intersection operations in the way they are
used in set theory, ie.:

AuB={ceHscedvceB),

AnB={ceHs:ced nceB)

Proposition |

¥sis an algebraic structure (briefly an algebra).
Proof ¥ is clearly closed under the operations w, n, n*, compl and geg.

Anp element 4 of ¥ is called a Shape. If 4 contains exactly one element (i.e. a single set of atoms)
it is called simple. Otherwise, each of its elements (1.e. each one of the set of atoms it is made up by)
is called 4-component. Informally speaking, when the ~* operator is applied to two Shapes 4 and
B it returns a Shape C whose components are the result of the intersection of every 4 -component
with every B-component. When the geo operator is applied to a Shape 4 containing more than
one component it returns a simple Shape whose single component is the union of all the
A-components. If geo is applied to a simple Shape A it returns Shape A itself. Figures la—f show
in an informal way the operators of the algebra ¥, introduced in this section. The shaded part
of the drawings represents the result of the indicated operation,

The introduction of an algebra corresponds to the definition of an ADT whose syntactical part
is concerned with the signature of the algebra (operational syntax) and whose semantical part with
its interpretation (operational semantics) [19].

To define the ADT Geometry(S), which to be concise, we borrow the notation from [18] using
the technique based on the declaration of pre-condition and post-condition on the operations of
the ADT. Some brief comments appear enclosed in square brackets.

NAME
[name of the introduced ADT]
Geometry (S: set)
SETS
[sets used for the formal definition of the introduced ADT]

A set of atoms
G set of elements of type Geometry(S)
Bool  set of Boolean values consisting of true and false

TThe symbol r is used both on the right and left side of the formulas to derate the usual operator of intersection. Though
on the left side the elements are belonging to P{P(5)) and on the right one to P(S) we hope the differsnce is clear
from the context.
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Fig. 1b

geo{A U B)

[ Fig. le @

‘&.
Fig. 1
SYNTAX
[declaration of the set of the operations available for the introduced ADT]
createdatumG ot
[creates a datum of type Geometry]
empty G Bool
lgiven a datum of type Geometry says if it is empty or not]
U GxGoG
e GxG-G
n* GxG-G
Compl G X Goaly
geo G—G
SEMANTICS
[Range a, b,...= K means that the variables g, b, .. . denote elements of the
set K|

{since all the preconditions are true (i.e. no condition is required to be able to
apply any operation) they are omitted]

range A, B, C = G,

range a, b, b', ¢, ¢’ = P(S),
range e/ = §,

range x = Bool,

post-createdatumG( ;A) i=ge d <> g =0={},

post-empty(4; x) 1= (4 =@ A x = true) V(T (A =0) A x = fulse),
post-0 (A, B;Cyii=ceCeoceAd vV ER,

post-n (A, B; C)ii=ceCesced Ac € B,

post-r* (A, B: Cyu:=ce( < {a)(Ab)acArbeBrc = (anmb),
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post-compld, B; C) = ceCwelccn(acAuR =elda)
rMe,c'eC =0 =c’),
post-geo(A Byt n={ageAd elcqa = {db)be B relch)
AbeBeleb=(TayacAdnelca)n(b b’ cB = b =b").

The ADT Geometry can be huilt on any ground set of atomic elements since the nature of the atoms
does not affect its definition. In other words, ADT Geometry Is parametric with respect to the set
of the atoms. Furthermore, since ADTs are definable in an incremental way, it is also possible to
start from a generic set of elements on which an algebra is defined (i.c. in § some operations are
defined and S is closed under these operations) and to build on top of this latter algebra the
Geometry algebraic structure. To be concise, in the following we will denote Geometry(S) by Gs.

3. RATIONALE FOR GEOGRAPHICAL DBMSs

Geographical databases deal with 2 huge quantity of both descriptive and, usually bidimensional,
spatial/geometric data. A descriptive data refers to conventional information about a given
geographical entity (c.g. the flow of a river, the density of population of a given region, the average
of some scalar quantities). The spatial/geometric data generally refers to any geometrical
modification of the spatial extension of a given geographical entity (e.g. the shape and location of
a geographical region or a river).

The rationale for the definition of geographical database management systems is that of
obtaining a treatment of geographical data with the advantages of the well-developed technology
of traditional DBMSs.

From the user community point of view it is widely acknowledged [2, 4, 5, 36] that an integrated
geographical database must satisfy user requirements of:

-—supporting non-atomic domains for the representation of spatial data, so to consider that
the user looks at the spatial extension of & geographical entity as an atomic concept. This
aliows manipulation at the logical level, the spatial/geometric extension of geographical
objects according to this conceptual view;

—syminetrical management descriptive and spatial/geometric characteristics of geographical
entities so as to make it possible to identify an entity specifying any of the two aspects;

——-supporting direct spatial selection, i.e. searching for geographical entities on the basis of
their spatial/geometrical properties, This allows location of the set of any spatial data
contained in a given area. For example we can ask for the “the set of all lakes and rivers
contained in region A" where region A4 is given making reference only to its spatial/
geometrical extension and not to its internal encoding as it is instead done in {21];

—supporting direct spatial computation that allows answering of queries like “Return the area
of region A” or “Return the length of the river I am pointing at’;

------ supporting indirect spatial selection, i.e. searching for geographical entities on the basis of
their descriptive characteristics and processing their spatial/geometric aspects. This permits
to answer queries like “Display a map of Italy with all cities where the average annual
income of citizens is greater than 10,000 dollars” or “Show shape and location of all lakes
with an area greater than 100 square km’™;

—supporting multiple logical representation of the data. Different applications can have
different logical views of the same kind of data. For example a given application can see
a geographical region represented by the subsct of the points of the plane occupied by the
region itself and, by another application, as the minimum convex polygon covering the
region, and so on;

—-supporting the usual traditional operations on conventional data.

To satisfy such requirements, efficiency is a very crucial problem in geographical databases because
the representation of a simple piece of geographical information may nced a huge quantity of

#The right side of this condition has not been written in the maost synthetic way, but in a form which allows to better evidence
propertics of the geo operation.
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storage memory. Many research efforts have been done Lo try to solve this problem by investigating
new physical data structures and algorithms for the efficient representation, manipulation and
querying of geometrical data and many successes have been obtained [4, 11,17, 22-27, 34, 33],

Though putting the foundations for the specification of geographical DBMSs is an objective not
yet reached, there is a general agreement, founded on the above-mentioned requirements, in stating
a reasonable set of characteristics that a geographical DBMS should own. Among these, some
directly derive from those of the traditional DRMSs (e.g. the design of a friendly user-interface,
physical independence, . . ) and they assume a particular relevance in geographical databases. Some
others (e.g. multiple physical representation) are peculiar to geographical applications and are
generally not needed in traditional applications.

The most relevant characteristics that a geographical DBMS should own are briefly discussed
in the following:

——Triendly user-interface. This allows guarantee of a high-ievel interaction between the user
community and the database hiding low-level representation details. This is a desirable
characteristic in geographical applications more than in the traditional ones where the
graphical support needed is of little significance and the design of sophisticated interfaces
is less important. Appropriate pointing devices to formulate query and update data by
directly pointing to images on the screen greatly support a friendly interaction between the
end-user and the geographical database.

~—Muitiple views. This allows different views of the data contained in the database to be made
available and users to to support information sharing among different applications.

—Physical independence. It guarantees the independence of the application from the physical
representation of the data. Database technology mainlty rests on the separation of the
abstraction levels in the database [28]. A consequence of physical independence is that
it allows support of the optimization of the physical level without affecting the user. Thus
the separation among the logical and physical representation of the data is a desirable
characteristic above all in geographical DBMSs where efficiency issues must be carefully
considered.

—Multiple physical representation. This guarantees the possibility of representing, at the
internal level, the objects of interest by using different representation schema, according
to the needs of the applications. For example, geographical applications generally require
both continuous and discrete representation of objects to support complex geometrical
algorithms in an efficient way [2, 23].

—Data definition language. In geographical applications, like in other non-traditiona}
application fields, it should be desirable to have at disposal a data definition language that
permits the definition of typed domains. This allows automatic association to the data of
iterest the set of the operations that we would like to perform on such data. In this way
the database capability to support the modular management of very specific applications
is also improved. It is obvious that the tradeoff between the expressiveness of the language
and the overall efficiency of the system should be balanced.

~—Data manipulation lamguage. As it aiso follows from the previous point, the data
manipulation language should furnish a high-level query language and a problem-oriented
manipulation language able to support the use of suitable hardware devices like mice and
graphic tablets.

It 1s therefore desirable that a logical model:

—guarantees to the user a uniform and expressive visw of geographical entities, stilt allowing
him to refer to them through both descriptive and/or geometrical/spatial characteristics;

—supports the definition of high-level data manipulation languages and the design of physical
structures for the efficient answering mixed queries;

—provides to the designer a formal methodology for the correct specification of the
geographical information at the logical level.

Our proposal is based on the definition of a suitable logical data model that supports the
representation, the manipulation and querying of geographical information. This model, which
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integrates descriptive and spatial/geometric data, defines a reference schema for the integration
among different subsystems while providing the user with a high-level data manipulation language
29].

The model guarantees to the user a uniform view of geographical entities, while allowing him
to refer to them through both descriptive and/or geometrical/spatial characteristics. Since the query
language, by means of the logical model, does not rest on the physical level, the independence
between integrated physical systems and query language can be guaranteed and a more flexible
overall system resuits,

The mtroduction in our model, first sketched in an architectural framework in [29], of the
ADT Geometry(:S) supports: (i) the definition of high-level maniputation and definition primitives;
and (ii) the separation of the levels of abstraction and, as a consequence, the model satisfies the
requirements expressed by the points considered above.

4. HOW THE MODEL SUPPORTS THE REPRESENTATION OF
GEOGRAPHICAL OBJECTS

A geographical entity is an element of the reality of interest that can be seen under any one of
its two aspects: the descriptive one and the spatial/geometric one [6, 30]. The former provides
descriptive characteristics and properties of the object, while the latter furnishes its shape and
its spatial location. For exampie, the descriptive nature of the entity “Mississippl river” can be
expressed by a collection of values as its name, length, flow etc. while the geometric one can be
its shape, its location in some reference system, etc. From the point of view of the logical data
modeling, the choice of a relational model leads to represent the logical structure of data in tables.
In such a context, the descriptive nature of a geographical entity (e.g. the flow of a river) can
straightforwardly correspond to a single-valued attribute whose underlying domain is traditional
(c.g. alphanumeric). On the other side, atiributes defined on traditional atomic domains cannot
adequately represent the geometrical nature of geographical objects. In fact, using traditional
domains naturaily leads to represent an object distributing its spatial/geometrical characteristics
on several relations as in [21, 31, 32). In this way one obtains a fragmented logical data
representation, far from the way the user looks at the reality of interest.

In order that the logical structure of data reflects the way the user looks at data themselves,
the logical model must therefore support non-atomic domains, able to represent in a complete way
the spatial/geometrical component of an object. Our model allows the integrated representation
of geographical entities thanks to the introduction of the ADT Geometry(S) that supports
SHAPES-valued attributes. Since a single element of SHAPES, that is an instance of ADT
Geometry(S), uniquely defines the shape and location of an object, the spatial/geometrical
nature of a geographical entity can be fully represented at the logical ievel by a single-valued
attribute. The logical view of the database thus can straightforwardly support the user view
of the geographical reality of interest, because the logical model explicitly takes into account
that the user considers the spatial/geometrical nature of a geographical entity as an atomic
coneept.

To be concrete we must specify what is the set of atomic elements . we use as a basis of our
ADT Geometry(S). In this section we focus on the case in which the spatial/geometrical nature of
a geographical entity is described by sets of points belonging to a raster decomposition of the plane.
Thus, S is a finite subset of the points of the plane that have integer coordinates (raster plane),
Consequently, our model allows representation of geometrical extensions of geographical entities
even when such extensions correspond to non-connected sets. To be concise in the following we
call 4; a descriptive attribute if type(A,) = T, and we call 4; a geometrical artribute if type{d;) = G,
where S, = dom(4,).

Let us now formally define what we mean by raster plane. Let I denote the set of integers.

Definition 2
Given two closed intervals /,, [, of I, we call a raster plane, denoted by 4, the Cartesian product
of Iy and 7, ie. =1, % I,.
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Foilowing the notation of Section 2.1, H, will denote the set P(P(R). Given a raster plane,
we can define the SHAPES algebra ¥, = (Hy, U, m, 0¥, compl, geo) in the same way as the
previous paragraph. We can now use the algebra ¥, to model the spatial/geometrical nature of
a geographical reality of interest. The way geographical information is thus modeled and can be
manipulated will be introduced in the next paragraph where we shall define primitives for querying
and updating.

To clarify better how our mode supports the integrated representation of geographical
information let us consider an example of a geographical survey database. The database has the
following relation schema, where each underlined attribute is a candidate key for the relation it
belongs to (therefore each geometric attribute can be, or can belong to, a candidate key):

RIVERS(Nare, Crossed-region, Length, Rivewshagg)

LAKES(Name, Crossed-region, Area, Lake-shape)

REGIONS(Narme, Area, Density, Region -shape)

In this example we have:

U = {Name, Crossed-region, Length, River-shape, Lake-shape, Region-shape,
Area, Density},
T = {string, char, float, Ga} where Z is the raster plane defined above.

We focus on the relation RIVERS shown in Fig. 2. Analogous considerations hold for the relation
schema LAKES and REGIONS. We shall denote with R the domain of real numbers. We have;

type(Name) = string dom(Name) = {Strings}
type(Crossed-region) = char dom(Crossed-region) = {Char}
type{Length) = float dom(Length) =R
type(River-shape) = G, dom (River-shape) = Hy

A tuple of relation RIVERS represents information about a single segment of a river. In particular,
for each river, the name of the crossed region, the part of its spatial extension, called segment,
individualized by its intersection with the crossed region and the length of such a segment are given,
Clearly the intersection may result in more than one segment, in which case more than one tuple
is generated. Since River-shape is of type G each value of this attribute is a list of couples like
{Oo, ) (0, 200, -1 (s Yn)}} because the geometrical/spatial nature of rivers is modeled by a
set of pairs of integers (set of points of the raster plane). For the sake of shortness, we have denoted
such values by “riv_j" detoting by this expression the list of points that compose the Jth segment
of the river “river_i"", The crossed reglon is represented and accessed by its name. If we have interest
in it, we can choose to represent the crossed region by its shape as the relation RIVERS.? shows
in Fig. 3 (where obviously type{Crossed-region) = Gy and one element of Crossed-region has been
denoted by “reg X analogously to “riv_ij™).

This example also shows that in the model it is possible to represent maps by relations in which
every tuple corresponds to a region defined by a set of descriptive attributes and by one single
geometric attribute as in {3, 6]. Since in our model there are no restrictions on the number of
geometric attributes in a relation scherna, a relation with two (or more) geometric attributes does
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RIVERS-2

Fig. 3. Relation RIVERS-2

not require to be interpreted as a relation with only a single geometric attribute as in [3, 6] but can
be interpreted only on the basjs of the constraints expressed by the chosen database design criteria,

5. QUERY AND MANIPULATION PRIMITIVES

In this section we show that the algebra we have mtroduced through our mode] constitutes the
basis for a high-level query language, which can be directly employed by the user 1o manipulate
geographical information, We first explain in detail how the algebra manipulates relations defined
In our model. Successively we present the query language.

5.1 Fundamental primitives

r-Decompose, formally defined in Section 2.

511 G-C‘omposeX(Fy; Y)(R,). Referring to relation RIVERS (Fig. 2) let us suppose that
We want to group the river segments of those rivers that cross the same region. This example
illustrates the use of the ¢ -Compose operator when Y = Crossed-region, ¥ = River-shape and
F,o=( SRiversnape) = . In this case the operator groups the values of the atiribute River-shape
applying to the grouped values the fusion function U and discards the remaining attributes.
The grouping is done on the basis of the equality of the values of the attribute Crossed-region.

The following expression can be issued:
G —Composecfossﬁd_mg;On (w; River-shape) (RIVERS).

What is obtained can be represented in a relation RIVERS—BY-REGION, presented in Fig, 4.

The value of the geometric attribute River-shape in each tuple of the relation RIVERS-
BY-REGION is thus the set of the river segments belonging to the same region,

Let us now illustrate an example of the G-Compose operator, applied to the relation RIVERS,
where X = Name, ¥ = River-shape and Fo=( Sriversnape) = geo. In this case the operator groups the
values of the attribute River-shape applying to the grouped values the fusion function geo and
discards the remaining attributes, The grouping is done on the basis of the equality of the values

of the attribute Name. When the fusion function geo is used in this way, the G-Compose operator

RIVERS-BY-REGION

Crossed-region

River-shapc

“ { [rv_11), {elv.31} ]

8 T owon (riv.2), [Av.S) | (v 33)) |
{[riv 4] ﬂ

——— e

Fig. 4, An example of 4 G-Compose operator.
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E RIVERS-REGION
River-shape

Crossed-region

[ irv_11] )

[ (riv_31) | RIVERS-3 ]
[ {riv_12) ) Name J River-shape

[ (riv_2) ) river_1 I { (riv_ 11, riv_12) }
river_2 | { (riv.2) ;
river_3 { lriv_31, riv_32, riv_33} }
river_4 [ lriv_ 4} )
river § Lj [riv_5] }
Fig. 5. G-Decompose operator. Fig. 6. An example of a G-Compose

operation.

simply “merges” the values of a specified (set of) attribute(s) {e.g. Y = River-shape in relation
RIVERS) on the basis of the equality of the values of another {set of) attribute(s) (e.g. X = Name
in relation RIVERS). Relation RIVERS-3 in Fig. 6 is obtained by applying the following
expression:

G-Composey,m (ge0 ; River-shape) (RIVERS),

to relation RIVERS of Fig. 2.

By {{riv_11, riv_12}} we indicate the simple shape containing the union between the set of the
points denoting the spatial extension of the river segment riv_i1 and that denoting the spatial
extension of the river segment riv_12. The same notation is adopted for all tuples in the above
relation and in the following ones.

Since the use of the fusion function geo in the G-Compose operator also allows to obtain a new
spatial/geometric entity by merging entities values stored in the database, it is also reasonable to
calculate some new values related to the new entity obtained from the values associated 1o the
merge entities. Let us illustrate this possibility by an example.

Let us assume that, for the attribute Length of relation RIVERS of Fig. 2, type(Length) denotes
the ADT “Integer” whose formal specification allows the use of the operation “+” in the sense
it is used for performing addition among integer numbers. Using this operation as a fusion function
while applying the G-Compose operator permits us to compute the total length of the rivers in
the relation RIVERS. In this relation only the length of the segments of each river 1s represented.
We can merge the values of the River-shape attribute on the basis of the values equality of the
Name attribute. For each river. i.c. for each value of the Name attribute, we can also sum the length
of its segments by applying the fusion function “+7. In such a way the total length and the
corresponding shape of each river is obtained. This information was not explicitly represented in
the original relation RIVERS, but it is now derived by aggregating information (length values) from
that relation.

Relation RIVERS-4 in Fig. 7 i1s obtained by applying the following expression:

G -Composey,m. (+, geo; Length, River-shape) (RIVERS),

to the relation RIVERS of Fig. 2, where (-, geo; Length, River-shape) denotes that the fusion
function *“+°" has been applied to the attribute Length and the fusion function geo has been applied
to the attribute River-shape.

RIVERS-4

Total-length I River-shape
6 | ( (riv_iL rv._12} )

{

{ 25 D vy

river_3 15.7 U {riv_31, riv_32, riv_33} }
river_4 1 [ {riv.4) }

|_river_s 19 {

Fig. 7. ¢-Compose operation with two fusion Functions.

[riv.35] ]
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The value of the geometrical attribute in RIVERS-4 is a simple Shape since it results from the
application of the fusion function geo. If follows that the resulting relation cannot be disaggregated
in the original components.

Notice that a safe use of the fusion functions in the G -Compose operator is assured because,
due to our ADT approach, the manipulation functions allowed on a set of values of an attribute
A; are the only operation defined in the ADT specification of type (A,

3.1.2. G-Decompose. Referring 1o the relation RIVERS-BY-REGION of Fig. 4, Jet us suppose
that we want to derjve (he segments of the represented rivers, with respect to the region they cross.
The following expression can be issued:

G~Decomposetmssed,mmn (River-shape) (RIVERS-BY-REGION).

The result can be represented in a refation RIVERS-REGION shown in Fig. 5. Notice that
the resulting relation is the projection of the relation RIVERS on attributes Crossed-region and
River-shape (recall that the application of the &-Compose operator has discarded the remaining
attributes). In general, this operator disaggregates the values of a specified atiribute (e.g.
River-shape) with respect fo a specified (set of) attribute(s) (e.g. Crossed-region).

The operator has decomposed each Shape into its constituent components, and therefore
now each value of the geometric attribute River-shapes is the simple Shape (i.e. a Shape having
only one component) of a river segment that crosses a given region. Notice that it can be
said that the relation RIVERS-BY-REGION has been normalized by the application of the

3.2 A4 high-level guery language

In this section we show that the introduced extended relational algebra constitutes the basis of
a high-level geographical database query and manipulation language. In other words, our approach
allows us to define a query language for manipulating both geometrical and descriptive attributes
in a homogeneous way. At the same time, due to the use of ADTs, we are able (o cfficiently
implement its primitives using data structures suited to the characteristics of the data. The
description of a system implementing the language sketched in this section can be found in 2]

The examples of this section have the purpose of explaining the semantics of the operators we
have introduced and giving an idea of the applicability of our algebra as a data manipulation and
querying language. We give some examples to show how general geographical queries (Le. queries
involving predicates on both geometric and descriptive properties of geographical data) can be
formulated by suitable expressions of the algebra. We still use the geographical survey database
presented before, with some added relations. Examples which are a straightforward extension of
the classical relational approach have been omjtied.

o Geometrical selection, Having at disposal the relation CULTIVATIONS (Fig. 8
representing culitivations and chemical treatment of pieces of lands, the user can ask the
database to “return the hames of the rivers whose river segments cross some tobacco
cultivated lands”.

CULTIVATIONS

Chem-quantity

Fig. 8. Relation CULTIVATIONS.
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In this query the information can be directly extracted from the database issuing the expression
(the arguments of the operator have been put on different lines to increase readability);

ProjeCtName (SEICthuuivalinn =‘tobacco®
(FOINiee shuse e snepe (RTVERS, CULTIVATIONS)))

where n* has been used as Joint operator.
A possible formulation in an SQL-like language is:

SELECT Name
FROM
- SELECT Name, Cultivation
FROM RIVERS, CULTIVATIONS
WHERE RIVERS. River-shape INTERSECTS CULTIVATIONS.Shape
E@E Cultivation = “tobacco™.
Note that the use of an operafor able to manipulate SHAPES-valued attributes as the join operator
has the effect of performing what can be cailed a “spatial/geometric join” on the geographical
entities involved. In fact, its effects are similar, from a logical point of view, to those of the

“classical” join when applied to descriptive attributes.

o Checking spatial differences. The user can ask the database to calculate the difference in
spatial-geometrical terms of the specified geographical entities (c.g. for eliminating slivers
following a map overlay) by issuing a query like “return the parts of tobacco cultivated
lands, which are not in region R17,

We can consider the ~* operator as a fusion function on the domain SHAPES, since ~* is an
operator defined in the formal specification of ADT Geometry(#). If we assume to have extracted
from relation REGIONS of previous figure the relation:

REGION-1 = SeleCtyme = p (REGTIONS),
and from relation CULTIVATIONS of Fig. &1
CULT-1 = G-Compose(.; Shape) (Selectcumvam:.mbam-(CULTIVATIONS)),

then the query can be answered by issuing the foliowing expression (the arguments of the operator
have been put on different lines to Increase readability):;

G-Compose(m*; Shape)
(IG -Compose{ Compl; Shape) (REGION-I)}UCULT—I)

In the outer G-Compose operation we have ¥ =(), ¥ = Shape and F, = (fshape) = N*. In the inner
G-Compose X =0, ¥ = Shape and P = (f5pape ) = Compl. The result of the query is a relation
constituted by one (geometrical) attribute whose unigue value represents the requested difference.
A possible expression in a SQL-like language is:§

SELECT Shape FROM
MERGE APPL@Q ~* TO Shape

(MERGE APPLYING Comp! TO Shape
FROM REGION-)

¥9-Join. Let a,, 5, €E, and let X and ¥ be two type-consistent attributes belonging to a, and b, respectively. A 8-join
between a, and b, on attributes X and ¥ is defined as follows (see also point 5 in Section 2.2):

@ [XOY] = (g, x b Y[ XOY] = fiotlneaetab, n a,[X]65,[¥T}.
TRecall (see the end of Section 2.2) that the set X of attributes with respect to which it is legal to make the composition
can be empty: this permits to apply the fusion function to all tuples in a relation. For example this opticn is used in

the inner G-Composs to merge all shapes in a single one.
§We supposc to have an SQL-like operator “MERGE [C] [WRT Xx] {APPLYII\LG fto ¥JFROM R™ corresponding to

our G-Compose,(F,; Y}(R), where square brackets represent optionality.
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REGIONS
Name Area Shape

l

[ I 200 [ {rcg_RI} )

I [ { {rog_R2) ) MY-REGION |

LRB ] 150 ] { {reg R3] } _l Region-shape _f
R l [ fep R4} | | [ {rep_A) ) il

Fig. 9. Relation REGIONS. Fig. 10. An example of a
constant relation.

o Windowing. The user can ask the database the specified geographical entities that fall in a
given area by issuing a query like “return the names and the shapes of the river segments
that cross the region 4, defined on the screen”.

The region user depicts on the screen can be represented by a constant relation since this is a litera]
of the algebra expressions [see point (1) of Section 2.2). If MY-REGION is the relation shown in
Fig. 10, where {{reg..4}} denotes the spatial extension of the region A, the query can be expressed
by the following expression of the algebra:

ProjCCtName.Rivcr-shnpc (JOinRJvcr—shape ~* Region-shape (RIVERSsMY—RHGION))
where again ~* has been used as Join operator.
A possible expression in an SQT -like language is:

SELECT Name, River-shape
FROM RIVERS
WHERE RIVERS River-shape INTERSECTS MY-REGION Region-shape

o Clipping. The user can ask to “clip to the window region the rivers intersecting the window
defined on the screen”.

The query of the previous example extracts the tuples of relation RIVERS satisfying the given
property of intersection. The query of this example is asking for the intersection between the
window the user has defined on the screen and the rivers represented in the database. We are
therefore calculating something new by using both the information contained in the database and
that furnished from the user. Note that clipping also allows us to answer queries as “‘Return all
the cities within a range of 5 miles from Rome" issuing a constant relation where the value of its
(geometrical) attribute is the circle having center in Rome and radius 10 miles.

The clipping window can be represented as in the previous example. To obtain the piece of a
river that falls into the window we need o select the points common to both the river shape and
the window shape.

The following expression can be written (the arguments of the operator have been put on
different lines to increase readability):

G -Compose(n*; River-shape)
(IG-Compose(geo; River-shape){RIVERS)]u MY-REGION)

In the outer G-Compose operation we have X ={, ¥ = River-shape and FL = (frivershape = M.
In the inner G-Compose X =0, ¥ = River-shape and = (Frivershape ) = geo. The result of the
query is a relation constituted by one attribute whose unique value is the requested intersection
represented by a simple shape.

Note that a syntactically cleaner expression for this expression would have required in the inner
G-Compose a renaming of the geometrical attribute. For the sake of simplicity we have not
mtroduced renaming in our model, even if it can be added without changing the expressions of
the extended algebra, but with a few syntactical modifications.

If it is required to maintain the distinction among rivers after clipping then the query has to start
from relation RIVERS-3 (Fig. 6) where each tuple corresponds to a river. Issuing an expression

1S 16/6—B
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based on the use of the ¢-Compose operator with fusjon function F = (frivershupe ) = U WE can
preserve the identity of the rivers:

&-Compose (m*; River-shape)
{({G-Compose (v; River-shape) (RIVERS-3)JUMY-REGION)

In this case we in fact oblain a relation with one geometrical attribute whose value is not a simple
shape, but a shape where each component represents a single segment of river intersected with the
given window. Then the obtained shape can therefore be disaggregated in the original components.
The choice between the two formulations depends on the needs of the user.

An SQL-like expression for the former formulation of the query can be the following:

SELECT River-shape
FROM
MERGE APPLYING ~* TO River-shape
FROM =
((MERGE River-shape
FROM RIVERS)
UNION MY-REGION)

and for the latter formulation the following:

SELECT River-shape
oM
~ MERGE APPLYING n* TO River-shape
FROM o
~ (MERGE APPLYINGUTO River-shape
FROM RIVERS-3) o
UNION MY-REGION

To increase the expressiveness of the language we can also suppose to have an SQL-like operator
“COMPOSE Y [WRT X] FROM R” corresponding to our G-Composey(u; ¥)(R). Thus, an
analogous expression can be used for the latter formulation of the query using the “COMPOSE”
operator instead of “MERGE":

SELECT River-shape
FROM
MERGE APPLYING ~* TOQ River-shape
FROM o
(COMPOSE River-shape
FROM RIVERS-3)
UNION MY-REGION

6. A STATISTICAL APPLICATION

Let us consider the example of the survey database of Figs 11 and 12 and suppose that we
want to perform statistical manipulations on the represented data. We show that by suitably
changing the ground set § of the ADT Geometry(S), our model provides at least the same facilities
of representation and primitives of manipulation of other well-known approaches in the field of

WEEKEND-TV
TV-Program TV-Station Viewers Sponsors
[{RED}} 1 8 {{1}.(2]}
{{BLACK}} 2 14 ({a}}
H{{BLUE)} 2 10 (31
{{YELLOW]} 3 6 {1h{z})
[[PINK}} 3 5 {{41}

Fig. 11. A relation from a television survey database.
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WEEKDAY-TV

TV-Program TV-Station Viewers Sponsors
Py
{[RED}; 1 I (115.03))
[{RED]} 2 _‘ 12 (1).421}
BLUE}] I3 1 2 TINE

Fig. 12. A relation from 4 television survey database,

statistical database query languages. To be concrete we will refer to the running example in [20],
rewriting it here with the slight modifications needed to manipulate the represented data in our

approach.
Let Z be a suitable finite set of strings of characters and let Hs denote the set P{P(EZ). Given

Hy, we can define the SHAPES algebra ¥y = (H,, U, N, ¥, compl, geo) and Geometry(Z) in the
same way as Section 2.3. In an analogous way, given a finite subset / of the integer numbers, we
can define the SHAPE algebra on the set f,= P(P(I)), denoted by ¥,. We have:

WEEKIEND-TV(B[;PE)&—@}, B/;Sta_tiin_, Viewers, Sponsors)
WEEKDAY-TV@V Program, TV-Station, Viewers, Sponsors)
type(TV-Program) = G, dom (FV-Program) = H,
type(TV-Station) = Integer dom (TV-Station) = |
type(Viewers) = Integer dom (Viewers) = |

type(Sponsors) = G, dom (Sponsors) = H,

We now give some examples of statistical manipulations of this database using our extended
relational algebra:

I. “Give the total number of weekday viewers for each TV program” can be answered by
issuing the expression:
¢ —Composeq-\,_ngmm {+; Viewers) (WEEKDAY -TV)
that returns the relation of Fig. 13;
2. “Give the TV-Programs of weekend-day for each TV-Station calculating the total viewers
for each station” can be answered by issuing the expression (Fig. 14y

G-Composey g0, (+., w. Viewers, TV-Program) (WEEKEND-TV)

[ SUM-VIEWERS

TY-Program l Viewers ]

({RED)] | =0 ]
BLUE] | ! 20 1

Fig 13. Total number of weekday viewers
for each program.

| STATION-PROGRAMS.-VIEWERS ]
TV-Station TV-Programs [Viewers

t (IRED} B 7
2 {{BLACK},(BLUE) 24 ﬁl
3 | ({YELLOW ] (PINK}) 11

Fig. 14, The programs and total number of weekend viewers
for each station.
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J()!NT-SPONSORSE-IIP

Suppose now that alf the sponsors of weekend programs are joined for a given period during which
they cannot separately finance TV-stations. By applying a G-Compose operator with fusion
function geo we can represent these new entities, For example issuing the expression:

G ~Composf}-,-\,_ngram (geo; Sponsors)( WEEKEND-TV)

we obtain the relation shown in Fig. 15,

-Notice that in this relation the sponsors cannot be separated but by updating the database.
Thus using the fusion functions geo or U it is possible to manage in different ways the concepts
of a binded group and of simple collection of elements.

7. CONCLUSIONS

data at the logical level, Also, the extended relational algebra constitutes a high-level procedural
language that makes it possible to the user to dea] with complex entities as if they were atomic
elements.

As an example, we have shown that g suitable choice of the ground set S supports the
representation and the manipulation of spatial--geometrical information, As far as geographical
databases are conecerned, our model seems applicable to any physical representation schema based
on a discrete decomposition of the plane, thus allowing the modeling of complex spatial entities

the model is an issue we are investigating.

As a further example, to show the generality of our approach, we have also sketched how,
choosing a different ground set S, it is possible to fepresent and manipulate information in
statistical applications.

A theme worthy of investigation s 4 fully-parametric definition of the ADT Geometry(S). Even
if the specification of the ADT Geometry(S) allows the parametric use of the ground domain
without affecting the mode] we have defined, nevertheless we need to understand the implications
of allowing a complex structure to the elements of the ground set .S to model arbitrary complex
entities.

Moreover, we are working on the theoretica] properties of our model: a first result about
completeness and soundness properties can be found in [33].
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