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Abstract — In this paper we propose and analyze a new spatial access method, namely the S*-
tree, for the efficient secondary memory encoding and manipulation of images containing multiple
non-overlapping features (i.e., coloured images). The S*-tree is based on a non-straightforward and
space efficient extension to coloured images of its precursor, namely the S*t-tree, which was explicitly
designed for binary images. To assess experimentally the qualities of the S*-tree, we test it against
the HL-quadtree, a previous spatial access method for coloured images, which is known to be space
and time efficient. Our experiments show that the S*-tree reaches up to a 75% of space saving, and
performs constantly less I/O accesses than the HL-quadtree in solving classical window queries.
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1. INTRODUCTION

In this work we focus on secondary memory representations of images containing multiple non-
overlapping spatial features, like for instance agricultural maps, thematic maps, satellite views
and many others. This is a very hot research topic, especially with the increasing interest of the
database community towards the development of efficient spatial database management systems.
Therefore, we are implicitly assuming that the underlying images have all the peculiar aspects of
images containing region data, and specifically the most prominent one, that is the aggregation of
pixels of a given colour into patches. This induces a couple of observations: first, the number of
features (i.e., colours) in the representing picture is limited (generally, from 8 to 64), second, and
perhaps more important, it makes sense to apply hierarchical methods of representation of the
image to save space and time.

One of the most successful hierarchical strategy for representing images containing region data
is based on the decomposition of the image space into recursively nested subimages, until a ho-
mogeneous pattern is obtained. The most popular decomposition techniques are the binary de-
composition (which splits the image into two equal parts alternating a horizontal and a vertical
subdivision) and the quaternary decomposition (which splits the image into four equal quadrants).
The corresponding main memory representations of such split policies are the bintree [13] and the
region quadtree [10]. Both data structures are easy to implement in main memory. On the other
hand, when a secondary memory representation is needed (which is usually the case, given the
large amount of data to be stored), things become more complicated. The problem is that of
mapping a 2-dimensional set onto a 1-dimensional universe, while attempting to preserve as much
as possible spatial proximity properties.

For images containing multiple non-overlapping features (for the sake of brevity, coloured im-
ages in the following, even though this term could be misleading, since it does not convey the
concept that the underlying image is representative of region data, and therefore well-suited to
be managed by hierarchical spatial data structures), a number of different secondary memory
implementations have been proposed. These can be subdivided into two categories: leafcode rep-
resentations, obtained as a collection of the leaf nodes in the tree (such as, for example, the linear
quadtree [5]), and treecode representations, obtained by a preorder tree traversal of the nodes in the
tree (also called DF-expressions [6]). The latter approach is asymptotically more compact than
the former one, but it has suffered for a long time the lacking of a paged version able to support

33



34 ENRICO NARDELLI AND GUIDO PROIETTI

the access to a given element without being forced to scan, in the worst case, the entire database.
This difficulty have been overcome by de Jonge et al. [3], who developed the ST-tree, a spatial
access method combining the advantages of leafcode and treecode representations, essentially by
indexing through locational codes the space-compact DF-expression. However, as we shall see in
the rest of the paper, the ST-tree is tailored to binary images, and a straightforward extension of
it to coloured images has a severe space utilization drawback, which affects in its turn the time
efficiency in solving classical operations that can be posed on the stored data.

In this paper we present a new spatial access method, that we named S*-tree, which extends
in a non-trivial way the capabilities of the ST-tree to handle coloured images. We first show
that for practical cases, the S*-tree allows to save up to 25% of space with respect to a trivial
extension of the ST-tree, while performing asymptotically the same number of disk accesses to
retrieve any given subset of the represented image. Furthermore, to assess the practical usefulness
of our method, we compare it against the HL-quadtree [8], a space and time efficient spatial access
method for coloured images, which combines advantages of leafcode and treecode representations
by using locational codes to represent all the nodes of a region quadtree. Obtained results are
extremely encouraging, showing a superiority of our method both in terms of space occupancy
and time performances. More precisely, concerning the space occupancy, we show that the S*-tree
enjoys a 75% of space saving with respect to the HL-quadtree. Regarding the time complexity,
we performed experiments over an important class of queries, namely the window queries, which
constitute the basis of a number of operations that can be executed on coloured images. Since we
are comparing time performances of secondary memory oriented data structures, we will use as
efficiency measure the classical I/O complezity, by counting the number of accesses to the buckets
storing the data. We will show that the S*-tree performs constantly less I/O accesses than the
HL-quadtree in solving the queries, saving up to 80% of time.

The paper proceeds as follows. In Section 2 we briefly recall the various pixel tree (binary
and quaternary) structures that have been proposed in the past for managing coloured images,
along with a description of the ST-tree. In Section 3 we firstly present a straightforward extension
of the ST-tree to coloured images, and we then present our new spatial access method, namely
the S*-tree. In Section 4 we give experimental results assessing the space and time efficiency of
our approach, and finally, in Section 5 we present considerations for further work and concluding
remarks.

2. SURVEY

In this section we present a survey of the various pixel tree (binary and quaternary) structures
that have been proposed in the past for managing coloured images, along with a description of the
S*-tree. Table 1 contains main symbols used throughout the paper.

Symbol Definition

T Image space side

m Image space resolution
k Number of features
w

n

r

Query window
Query window side
BT -tree order

fi i-th feature

Table 1: Symbol table
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Fig. 1: Multiple non-overlapping features and their quadtree (left) and bintree (right).

2.1. The bintree and the quadtree

The region quadtree is a progressive refinement of an image that saves storage being based on
regularity of the feature distribution. Assume we are given an image space of T'x T' pixel elements,
where T is such that T = 2™, containing k non-overlapping features. We proceed in the following
way: at level 0 there is the whole image, of side length T'. The decomposition process carried out
by the quadtree recursively splits a quadrant into four equal size quadrants, until each quadrant
is covered by only one feature. In the extreme, the decomposition can go on up to the pixel level,
with squares of side length 1. The decomposition can be represented as a tree of outdegree 4, with
the root (at level 0) corresponding to the whole image and each node (at level d) corresponding to
a square (or block) of side length T/2%. The sons of a node are, in preorder, labelled NW, NE, SW
and SE. For a given image, nodes are then homogeneous (leaf nodes) or heterogeneous (non-leaf
nodes). Correspondingly, we speak of homogeneous and heterogeneous blocks. Note that there
exist several extensions of the region quadtree, even for representing set of overlapping images [15].

The bintree is the binary version of the region quadtree: the image is progressively refined
alternating horizontal and vertical splits, until a homogeneous pattern is reached. Notice that
in this case such a pattern is not necessarily a square. Figure 1 shows an example of an image
containing 4 non-overlapping features (note that the white background is treated as a feature)
along with its representing quadtree and bintree.

The bintree and the quadtree can be implemented either as a tree or as a list. In the former,
direct access to specific image elements is privileged, while the latter makes sequential access
easier and simplifies disk-based representations, absolutely needed for large amounts of spatial
data [11, 12, 14].

Y

2.2. Secondary memory implementations

It should be clear from the definition that bintrees and quadtrees share a lot of properties;
therefore, a secondary memory implementation defined for a bintree, can be easily adapted to
handle a quadtree, and vice versa. There exist substantially two categories of secondary memory
representation of a pixel tree: the collection of the leaf nodes (leafcode representation), and the
linear list resulting from a preorder traversal of the tree (treecode representation).

One of the most attractive approaches in the first category is the FL linear quadtree [5] (simply
linear quadtree in the following), introduced by Gargantini with reference to a binary image. A
linear quadtree contains the collection of black leaves in the corresponding quadtree, encoded by
means of a locational key (whose digits resemble the path in the tree from the root to the leaf) and
indexed through a BT-tree [1]. The locational key A(z) for a node x of level d in the quadtree is
recursively defined as follows: Let the locational key for the root be an all-zero string of length m,
and let ' be the parent of z in the quadtree. We have that A(z) = A(z') + s - 5™~ ¢, where s = 1,
2, 3 or 4 if x is the NW, NE, SW or SE child of #’, respectively. Then, the locational key is a base
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5 code of length m, and requires 3m bits to be stored?.

The extension to multiple non-overlapping features of a linear quadtree is straightforward. In
fact, also in this case the collection of leaf nodes can be stored as a sorted linear list, but each
node now consists of two fields: the locational key and the feature value, storing in [log k] bits the
feature associated with the node. Representing a pixel tree as an ordered list of the homogeneous
nodes is efficient since space occupancy is reduced and performances of sequential operations are
improved.

Concerning treecode representations, the DF-expression [6] is surely one of the most used
techniques. The DF-expression for multiple non-overlapping features can be viewed, treating the
background as a feature, as a string containing two symbols: ‘N’, denoting non-leaf (internal)
nodes, and ‘L;’, 1 < i < k, denoting a leaf nodes containing the i-th feature. The representing
tree is visited in preorder, and an ‘N’ is emitted whenever an internal node is encountered, while
an ‘L;’ is emitted whenever a leaf node containing the i-th feature is encountered. As an example,
suppose that the four features in Figure 1 have index 1 for the white, 2 for the light gray, 3 for
the dark gray and 4 for the black. The following string is the DF-expression for the bintree in
Figure 1:

NNNNNNL; L3L; LsNLyNN Ly Ly NL; Ly Ly NLoNNLy Ly Ly

Representing a pixel tree as a DF-expression is space efficient with respect to a leafcode rep-
resentation, but accessing specific blocks is time-consuming, since indexing is not provided, and
this is a serious drawback for window queries processing. Therefore, while an implementation
based on Bt-trees for a linear quadtree representation is straightforward, this is not the case for a
DF-expression.

2.3. The St-tree

A first step towards the integration of leafcode and treecode representations has been done by
de Jonge et al. [3], who defined a secondary memory implementation of binary images named
ST -tree. This was originally described by using the leafcodes generated by a bintree, though a
quadtree could similarly be used.

The S*-tree is obtained in two phases. In the first phase, we apply a preorder traversal on the
bintree, emitting a ‘0’ (‘1’) when an internal (leaf) node is encountered. The outcome will be a
bitstring, named linear (bin)tree. Concurrently, during this traversal we store the colours of the
leaves in an additional bitstring, called colour table, where a ’'0’ (’1’) represents a white (black)
leaf. The two bitstrings thus obtained are named S-tree. In the second phase, the ST-tree is built
by storing the original tree into a list of data pages containing a segmented and augmented S-tree
representation of the image. These data pages will be indexed by a B*-treef. This way, each data
page constitutes a self-contained local S-tree that can be searched independently.

More specifically, a data page consists of a portion of the linear tree (growing from the beginning
of the page) along with the corresponding portion of colour table (which grows from the tail of
the page). The two bitstrings fill the page as much as possible, under the constraint that the last
node stored in a page must always be a leaf (we will see later why this restriction is introduced).
Therefore, due to such constraint, some unused space might be left. Moreover, at the very beginning
of the page, there is a linear prefiz which can be regarded as the summary of all the data pages
preceding the actual one. This linear prefix is defined in the following way: when a data page
becomes full during the building process, a new page is created and a separator between the pages
is stored in the index. Such a separator is built by encoding the path from the root of the bintree
to the first node stored in the next page, emitting a ‘0’ when moving towards left, a ‘1’ otherwise.
Since it is imposed that the last node stored in a page must be a leaf, it follows from preorder visit

In a bintree, the root is an all-zero string of length 2m, and A(z) = A(z') + s - 32 ~%, where s = 1 or 2 if x is
the left or right child of z’, respectively. Then, the locational key is a base 3 code of length 2m, and requires 4m
bits to be stored.

tNotice that in their original paper [3], the authors use a prefix B-tree to index the data pages, but a Bt-tree
provides similar performances.
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bitstring

tree colour | dummy

linear prefix + linear tree ———= free space <<—— colour table pointer | pointer | count next

Fig. 2: The layout of a data page of the ST-tree.

properties that the last bit of a separator is always a 1: In fact, if the last stored node is a left leaf,
then the first node stored in the next page must be its right sibling, while if the last stored node
is a right leaf, then the first node in the next page must be a right son of some of its ancestors.
Such a property allows to store the separators using only 2m bits, without encoding the depth of
the node the separator refers to which.

Consequently, the linear prefix is built by encoding with a ‘0’ a 0 in the separator, and with
a ‘01’ a 1 in the separator. The 0 added before the 1 actually represents a dummy leaf, staying
for a left subtree (stored in a previous page) along the path to the node which caused the filling.
The linear prefix therefore provides the information needed to retrieve a node in a page, since it
resembles the whole bintree preceding the nodes in such a page, by condensing all the left subtrees
in leaves. We should mention here that, as in all treecode representations, all nodes must be
represented in the structure. The structure of an S*-tree node can be seen in Figure 2. The tree
pointer points to the next available position in the linear tree stack, the colour pointer points to the
next available position in the colour table stack, nezt is a pointer to the next page in the sequence
set, while dummy count indicates where the linear prefix ends and the linear tree starts.

Notice that building the ST-tree by using a quadtree decomposition instead of a bintree, leads
to a somewhat different creation of the separator. The path from the root of the quadtree to the
node that caused the filling of the page is encoded by emitting a ‘0’ when moving towards the first
child (NW), and a ‘1’, ‘2’ or ‘3’ when moving towards the second (NE), third (SW) or fourth (SE)
child, respectively. Consequently, the linear prefix is built by encoding with a ‘0’, a ‘01’, a ‘011’
and a ‘0111’ a 0, 1, 2 and 3 in the separator, respectively.

This structure and the characteristics of the St-tree, in particular the property that each
data page constitutes a self-contained local S-tree that can be searched independently, is its great
advantage when used for window queries. As we have already mentioned, it provides for a very
compact representation of the data and the index, while, concurrently, it behaves like BT -trees and
permits easy sequential and random access. As noted in [3], using the binary array representing
the image as input, we can construct the corresponding S*-tree in such a way that the pages of
the sequence set are generated from left to right, which allows for almost 100% storage utilization
of these data pages. Subsequent insertions and deletions will degrade the storage utilization, but
only down to 69%, which is the typical storage utilization of Bt-trees.

3. THE S*-TREE

In this section, we firstly present a straightforward extension of the S*-tree to coloured images,
and we then present our new spatial access method, namely the S*-tree.

3.1. A straightforward extension of the S*-tree

The natural extension of the ST-tree to coloured images is the following: concerning leaf nodes,
the bit color of the colour table is replaced by a feature value of [log k] bits, as for the corresponding
extension of the linear quadtree, while for internal nodes, we have to augment the colour table by
associating with each internal node a features string of k bits, one bit for each feature, in which
the i-th bit is set to 1 if and only if the node contains the ¢-th feature. In fact, associating a
features string with internal nodes greatly improves the performances in executing several spatial
operations [8].
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However, such a straighforward extension has a severe drawback in terms of space utilization.
In fact, as we described in the previous section, a tight constraint during the process of building
the ST-tree is that the last node stored in a page must be a leaf. There are several convincing
reasons to do that for binary images:

1. Since the last node is a leaf, by preorder visit properties it follows that the first node on
the next page is a right son, and therefore the separator between the pages will end with
a 1. This property is important, since it allows to store the separators using only 2m bits,
without encoding the depth of the node the separator refers to which.

2. Since for binary images no information is associated with internal nodes (they are simply
gray), we have at most 2m — 1 unused bits per page. Considering that a page size is generally
1 Kbyte, and that a reasonable upper bound on m is 16, it follows that we waste in the worst
case less than 1% of space.

However, the latter observation does not hold any more for coloured images. Therefore, a large
amount of information associated with internal nodes, that could potentially be stored in a page,
might be shifted to the next one as a consequence of the above constraint, thus determining a large
wasting in space. For instance, if the page size is 1 Kbyte, m = 16 and k = 64, the wasted space
could be as large as £ - (2m — 2) = 240 bytes (this is the case when the next leaf that should be
stored lies at the end of a path in the associated bintree of 2m — 2 internal nodes’ that have not
yet been visited), i.e., about a 25% of the page size!

To make things concrete, Figure 3 provides what we should obtain from the image in Figure 1 by
representing it using the trivial extension of the St-tree just described. For the sake of simplicity,
we set to 36 bits the size of the bitstring; moreover, to improve readability, the linear tree has
been underlined, and unused bits have been depicted with an ‘x’. The length of a separator (i.e., a
key in the BT-tree index) is exactly 2m = 6 bits. The features string of an internal node consists
of k = 4 bits, corresponding, from left to right, to white, light gray, dark gray and black colour,
respectively. On the other hand, with any external node, a feature value of [logk] = 2 bits is
associated: we encoded the white feature with ‘00’, the light gray with ‘01’, the dark grey with
‘10’ and the black with ‘11’. Notice that the third page had enough space to store an additional
internal node (i.e., the internal node corresponding to the rightmost nephew of the root), but due
to the above constraint, we have to shift it to the next page, thus wasting 5 bits.

3.2. A space efficient extension of the ST-tree: the S*-tree

From the above discussion, it is clear that for coloured images we have to abandon the constraint
that the last node stored in a page must be a leaf node. The question is: can this be done without
modifying the separators, i.e., without augmenting the space used for the index? The answer is
yes, on condition that a small overhead is paid in terms of the time spent when a search to a
given node is performed. In fact, a problem arises letting the last node stored inside a page to
be internal: It fails the statement that the last bit of a separator is always a 1. This is because
the node which caused the filling could be a left son, and iteratively its parent could be a left son,
and so on. Therefore, in the separator, after the rightmost 1, there could be some meaningful Os
(actually, as many as 2m — 2), i.e., Os that effectively lead to the node which caused the filling.
Does this affect the search of a given node through the structure? Only to a small extent, as the
following theorem states:

Theorem 1 Let £ = 2m be the length of the index keys in the BT -tree storing the S*-tree, and
let w(x) = {0,1}t with t < ¢, be the path from the root to a node x to be retrieved in the S*-tree.
Then, as soon as each page in the Bt -tree contains at least ¢ nodes of the bintree, it follows that
at most two contiguous pages in the BT -tree must be visited to retrieve .

tRemember that if the image resolution is m, then the height of the associated bintree is 2m, where it is assumed
that a single node is a tree of height 1.
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D 000010 001110 110000 J

TN R Py Ry

page 1 00000011 10 00 1010 1010 1010 1111 1111 1111 |9 (8 | O

page 2 000001 11010011 00 11 1001 1001 01 1101 10 00 | 15| 14| 6

page 3 00010101 011101 xxxxxx 01 1101 00 11 00 1001 |15|20| 8

page 4 0101 00111 xxxxxxxxxxxxx 00 00 11 1001 1001 10|22 4

Fig. 3: The B -tree storing the image in Figure 1, as obtained by the trivial extension of the ST-tree.

Proof. We start by noting that the assumption that each node in the BT-tree contains at least ¢
nodes of the bintree is not restrictive in applicative cases: for example, for m = 16 and k = 64, it
suffices to fix the page size of the BT-tree to 256 bytes.

Let m; € {0,1}, i < £ be the i-th bit of 7(z) and let 7, be the rightmost 1 of m(x). We can
therefore write w(z) = my ... 7 Wpg1 ... T, With w41 = ... = 7 = 0. To retrieve z, we will search
in the Bt-tree for the key k, = m ...... MpTpyq - .-, With w41 = ... =y = 0. Let k, be the key
in the B¥-tree reached by searching k., and let P, P, be the two pages separated by k,. Without
loss of generality, let us assume that k, < k,. We will show that x must be either in P, or in P.
Notice that k, represents a separator, i.e., a node in the associated bintree, say a, having a path
m(a) from the root. Of course, 7(a) < k,. Two cases are possible: k, < k; or ko = k.

The former case is trivial. In fact, if k, < k., then in a preorder visit, a precedes z (we write
it as a < ), from which it follows that z must be in Ps.

Let us now analyze the latter case, i.e., k, = k,. Remember that 7(a) is the path to the first
node stored in P5. To establish the thesis, we have to prove that x cannot be stored in any page
preceding P;. We start by noting that k, does not only represent the sequence 7(z), but also all
the sequences of the following set:

S={oe{0,1}’lo=m1 .. 70 Tp41...Ts,70p = Lipy1 =...=7s =0,r <5< L}

Notice that |S| = ¢ —r < £ and that w(a), 7(z) € S. If x is stored in a page preceding P;, then
for any node y stored in P, it will be < y < @, from which it follows that 7(y) € S. This means,
all the nodes in P, have a path belonging to S. But this is a contradiction, since P, contains at
least £ nodes and |S \ {z}] < ¢ - 1. O

The above result guarantees that the only critical case to be managed is when the key returned
from the searching in the B*-tree equals the key we are looking for. In this case, we will load in
main memory both the pages pointed by such a key, thus performing an extra access on secondary
memory. This scenario is quite unlikely to happen, and therefore we conclude that our approach
works well for all practical purposes.

We finally remark that we choose in our design of the S*-tree to eliminate the linear prefix from
the pages, since it can easily be recomputed from the separators in the B*-tree. This will add a
small overhead in terms of CPU time, but, on the other hand, will reduce the space occupancy
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bitstring

tree colour

linear tree —= free space << colour table pointer | pointer length | next

Fig. 4: Layout of a page of the S*-tree.

001110

page 1 00000011 00 01 1010 1010 1010 1111 1111 1111 |9 | 8 | O

page 2 110100110 x 1001 00 11 1001 1001 01 1101 1000| 10| 10| 5

page 3 1110100111 00 00 11 1001 1001 01 1101 00 11 00 [ 11| 10| 6

Fig. 5: The B -tree storing the S*-tree associated with the image in Figure 1.

and simplify the standard B*-tree merging operation: In fact, when two pages of the BT-tree are
merged together as a consequence of an underflow, the separator in the B*-tree must be changed,
and so for the linear prefix inside the page. This can produce a time expensive shifting of all the
bits inside the page. Eliminating the linear prefix will eliminate this problem. The actual layout
of a page of the S*-tree is given in Figure 4. Note that the free space will be at most k bits (i.e.,
the length of a features string). Notice that the space occupied by the field dummy count in the
S*-tree has been replaced by the field length, which stores the length of the separator associated
with the page.

Figure 5 provides the S*-tree representing the image in Figure 1, by maintaining the same
notation as for the trivial extension of the S*-tree of Figure 3. It is worth noting that the second
page is now completely filled, thanks to the fact that an internal node can be the last stored one (i.e.,
the internal node corresponding to the path ‘00111’). This allows us (along with the removal of the
linear prefix) to store the image by using only 3 pages, instead of the 4 pages previously needed.
Notice that the two separators of the resulting three pages are 00001 and 001110, respectively.
Thus, the second separator will be ambiguous, since its last digit is a 0. For example, looking for
the node 00111 will retrieve the key 001110 from the BT-tree. As proved above, in this case we
will visit not only the page following the retrieved key; instead, we will preliminarily visit the page
preceding the key: we compute the linear prefix by using the key 000010 and the length 5 stored
in the page (thus the separator will be 00001 and the linear prefix will be 000001, since we codify
a ‘0’ with a ‘0’ and a ‘1’ with a ‘01’). Using the linear prefix, we are then able to retrieve the node
00111 as the last one of the second page (see [3] for details on this latter operation).

4. EXPERIMENTAL RESULTS

In this section we present detailed experiments comparing the S*-tree with the hybrid linear
quadtree (shortly, HL-quadtree), which has been shown to be very efficient with respect to other

Y
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Fig. 6: A sample 512x512 meteorological image (North America) containing 64 features.

linear quadtree based representations of coloured images [8].

We recall that the main idea of the HL-quadtree is to represent both non-leaf and leaf nodes
of the quadtree (like in the DF-expression), by coding them using a locational key (like in the
linear quadtree). The result is a linear list containing all the nodes in the quadtree, which is then
indexed through a BT-tree. As for the S*-tree, in the HL-quadtree we distinguish between records
associated with non-leaf and leaf nodes. This is because a non-leaf node can contain more than
one feature, and then it needs to store several features indexes. Then, we associate with such a
record, along with the locational key defined as in the case of the linear quadtree, a features string
of size k. Concerning records associated with leaf nodes, they have the same structure as for the
linear quadtree, consisting of the two fields locational key and feature value. Finally, to distinguish
between records associated with non-leaf and with leaf nodes, an additional bitfield called leaf bit
is provided, whose value is 1 if and only if the associated node is a leaf.

We executed the window queries on a set of images containing multiple non-overlapping features,
ranging from satellite views to landuse maps. More specifically we experimented with 3 groups
of data. The first group of images, of size 256x256, was downloaded from the GRASS site, a
public domain geographical information system’, while the second and third group of images, of
size 512x512 and 1024 x1024, respectively, were meteorological satellite views of European, Asian
and North American regions. Specifically, the second group was from the Meteosat Imagery site?,
while the third was from the weather forecasts section of the CNN site!. Figure 6 shows a sample
image.

Both the structures were implemented in CT+ programming language under Windows NT, and
the experiments run on a Pentium II workstation.

4.1. Window Queries

We considered the following window queries, of primary importance for multiple non-overlapping
features [7]:

o exist(w, fiy, fiys -+, fin,): check whether or not at least one of the features fi,, firs-- - firs
1< <k,j=1,...,h, exists inside the window w.
e report(w): report all the features that are found inside the window w.

e select(w, fi,, fiy,- -, fi,): select all homogeneous blocks inside the window w containing the
features fi,, fiy,. ., fin, 1 <i4; <k,j=1,...,h.

t Available at http://moon.cecer.army.mil.
fAvailable at http://www.nottingham.ac.uk/~cczsteve/graphif.shtml.
§ Available at http://cnn.com/WEATHER/images.html.
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The basic approach for answering the queries is that of decomposing the window query into
a sequence of smaller queries, where each smaller query comprises a mazimal block of the image
space inside the window [2]. Without loss of generality, let us assume that the window w is a
square of side n. We solve the query by initially decomposing in optimal time the window into
its constituting maximal blocks [9], with respect to both a bintree and a quadtree decomposition
process, and we associate with each maximal block z its respective node path m(z) and locational
key A(z), for the bintree and the quadtree decomposition, respectively. The list of node paths
(locational keys) thus obtained is then used for searching in the S*-tree (HL-quadtree) to solve
the queries. In the following, it is explained how these queries proceed according to the proposed
methods.

Exist Query:

Consider a query over a specified window, where a search for existence of features f;,, fi,, ..., fi,
has to be performed. For each maximal block z in w, corresponding to a node path 7(z) (locational
key A(z)) in the representing S*-tree (HL-quadtree), searching starts from the root of the associated
BT -trees, and stops only when the leaf level is reached.

Concerning the HL-quadtree, it is certain that either x or a homogeneous ancestor of it will be
located, since all quadrants are stored. Hence, we can process the maximal block by simply looking
to the content of the corresponding feature field, with at most an additional access on the previous
page to locate the ancestor, if needed. Regarding the S*-tree, the situation is similar. In this case,
reaching the leaf level means that we reached one of the S*-tree pages, namely we reached part of

the corresponding bintree. Three situations might arise for the searched maximal block:

1. it is a leaf in the corresponding bintree, and therefore we can immediately find its colour
from the colour table;

2. it is contained in a leaf, and therefore we can find its colour by looking to its ancestor, with
at most an additional access on the previous page;

3. it is an internal (i.e., non-homogeneous) node, and therefore we can immediately find all the
contained features from the colour table.

Notice that in both the cases, the query ends either as soon as one of the queried features is
found in w, in which case the answer is positive, or when all the maximal blocks in w have been
examined and none of the queried features appeared, in which case the answer is negative. Since
the number of maximal blocks inside w is O(n) [4], it follows that by applying the above procedures,
the exist query can be answered, both for the S*-tree and the HL-quadtree, in O(nlog, T') I/0O
time, where r is the order of the B*-tree [8].

Report Query:

In a report query, the user asks for all the features comprised by the queried window. The
query is answered similarly to the exist query in both the methods, but now the query ends only
after all the maximal blocks in w have been examined, and the answer is a (possibly empty) set
of features. Therefore, the report query can be answered in O(nlog, T') I/O time as well [8], both
for the S*-tree and the HL-quadtree.

Select Query:

The last window query is the select query, where the user asks for the blocks of the map inside
the queried window which are homogeneous with respect to the queried features. As in the case of
the exist query, for each maximal block, searching starts by examining the entries at the B*-tree
root, and proceeds similarly in the S*-tree and in the HL-quadtree. Once the leaf level is reached,
we search for the current maximal block. As described for the exist query, if this searching is
not successful, then we try to see if a homogeneous ancestor exists in the BT-tree (in such a case
we output the searched maximal block if the ancestor is homogeneous with respect to one of the
queried features). On the contrary, if the search is successful, two cases are possible:
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1. the maximal block is a leaf: in this case, if it is homogeneous with respect to one of the
queried features, we return it;

2. the maximal block is an internal node: in this case we look to all its descendants, returning
those that are homogeneous with respect to one of the queried features.

Notice that the query ends only after all the maximal blocks in w have been examined. It can be
shown that by applying the above procedure, the select query can be answered in O(n log, T+n?/r)
I/0O time [8], both for the S*-tree and the HL-quadtree.

4.2. Space occupancy

In the first set of experiments we measured the space usage that was involved in the two
methods. More precisely, for each class of images (i.e., for each image size), we averaged the
number of pages used. Figure 7 shows the results. From the drawing, it emerges that the S*-tree
uses about 1/4 of the space used by the HL-quadtree. Therefore, the improving is substantial.
This will positively influence time performances for solving the queries, as we shall see in the next

section.

Space occupancy
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Fig. 7: Space occupancy comparison between the two methods.

4.3. Time performances

To analyze the time performances of the HL-quadtree and the S*-tree, we used the classical
measure of I/O complexity, that is, the number of disk accesses on secondary memory. The CPU
time is indeed negligible with respect to the time spent in retrieving a page on secondary memory.
In the following, we make the standard assumption that each secondary memory access transmits
one page of data (a bucket), and we count this as one operation. The window queries were performed
on images of size 256x256, 512x512 and 1024 x 1024, containing 8, 16 and 64 features. The query
windows sides were 1, 5, 10 and 25% of the image width. We randomly generated the anchor of
the query windows, “wrapping around” the image space whenever a window extended beyond the
borders of the image. The page size used was 1K for smaller images and 2K for larger ones, leading
to a fanout of 84 and 169 entries, respectively. For each image, 50 queries were performed for the
four different window sizes and the results were averaged. To eliminate the repeated traversal of
BT -tree nodes, we kept in main memory the root of the Bt-tree and we made use of buffering
techniques. Due to space limitations, we only show the results for the 1024 x 1024 images containing
64 features, since the results are similar for all cases.

The selection of the queried features for the exist and the select query was based on their
frequencies. Suppose that h features are to be selected out of k ones. First, we sort the features
according to decreasing frequency and, then, we select the first, the L%J—th, the L%J-th, ..., and

the [@J-th feature. For instance, if h=4 and k=64, then we select the first, the 16th, the

32nd and the 48th feature.
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Fig. 8: Exist query where 2 features were queried, image size 1024x1024, 64 features: (left) averaged results, (right)
normalized results.
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Fig. 9: Exist query where 5 features were queried, image size 1024x1024, 64 features: (left) averaged results, (right)
normalized results.

4.8.1. Ezist Query

In the experiments performed, we searched for the existence of a varying number of features.
More specifically, we initially queried for 2, 5 and 10 features, and results can be seen in Figures
8, 9 and 10. The left side of each figure provides the obtained values, while the right side depicts
the normalized results with respect to the worst method. From these figures it is easy to realize
that the S*-tree outperforms the HL-quadtree, showing almost a constant behavior independent
of the number of features searched, while on the contrary the HL-quadtree degrades as soon as
this number decreases. Our interpretation of these results is that the S*-tree, apart from possibly
creating a shallower B*-tree, also takes advantage from the buffering techniques we have used,
since each page contains much more blocks than a page of the HL-quadtree, and then it can be
used several times during the query processing, without additional accesses on secondary memory.
Notice that, despite of the worst case theoretical analysis, both methods do not suffer of the window
enlargement, since the response to the query is generally positive, and the searched features are
found rapidly in the window.

Afterwards, we experimented by fixing the window side (i.e., 100), while increasing the number
of queried features. The results depicted in Figure 11 show that in this case the methods exhibit
roughly the same performances, and both of them tend to answer the query in a single descent of
the BT-tree, as soon as the number of queried features increases.
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Fig. 11: Exist query for a varying number of queried features, image
100x100: (left) averaged results, (right) normalized results.
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Fig. 10: Exist query where 10 features were queried, image size 1024x1024, 64 features: (left) averaged results,
(right) normalized results.
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Fig. 12: Report query on images of 1024 x 1024 size containing 64 features:
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Fig. 13: Select query where 2 features were queried, image size
(right) normalized results.

1024x1024, 64 features: (left) averaged results,

4.3.2. Report Query

Concerning the report query, results can be seen in Figure 12, where the left side reports in a
log-linear diagram the obtained disk accesses for the two methods, while the right side contains
results after normalization. From this figure it is easy to realize that the S*-tree outperforms the
HL-quadtree. Notice that for both methods, the number of accesses is proportional to the window
side, as expected from the theoretical analysis, but once again the S*-tree takes advantage of its
space compactness.

4.8.3. Select Query

Regarding the select query, in the first set of experiments, as for the exist query, we queried
with 2, 5 and 10 features. This time, however, the number of accesses almost does not change
when the number of features increases: in fact, since all the blocks homogeneous with respect to the
queried features must be returned, it follows that the overall number of accesses will be dominated
by the number of accesses performed for selecting with respect to the most frequent feature. This
phenomena can be observed in Figures 13, 14 and 15. Again, on the right side of the graphs the
normalized results with respect to the worst method are depicted. Notice that once again, the
S*-tree shows constantly the best behavior.

Finally, we experimented by fixing the window side (i.e., 100), while increasing the number
of queried features. Notice that the number of accesses does not change when the number of



Disk accesses

Disk accesses

1000

100

10

An efficient spatial access method for spatial images containing multiple non-overlapping features 47

1/0 complexity select query (5 features)

Sttree —x—

HL-quadtree ----

0 20 40 60

80 100 120 140 160 180 200
Window side

Disk accesses (normalized)

14

1.2

0.8

0.6

0.4

0.2
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Fig. 15: Select query where 10 features were queried, image size 1024x1024, 64 features: (left) averaged results,



Disk Accesses

48 ENRICO NARDELLI AND GUIDO PROIETTI
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Fig. 16: Select query for a varying number of queried features, image size 1024 x1024, window size 100x100: (left)
averaged results, (right) normalized results.

queried features increases, as explained above. Moreover, the S*-tree performs roughly a fifth of
the accesses made by the HL-quadtree. The results are shown in Figure 16.

5. CONCLUSIONS

In this paper we have proposed and analyzed the S*-tree, a new time and space efficient disk-
based representation of images containing multiple non-overlapping features. We used as time
performance measure the number of secondary storage accesses for solving the classical window
queries, and our experiments showed that the new approach outperforms a previous efficient spatial
access method proposed in literature, namely the HL-quadtree [8]. More precisely, saving in time
and space can reach up to 80%.

Future work will be in the direction of an extension of this new encoding technique to the more
general case of images containing multiple overlapping features. We also plan to test the S*-tree
in performing other spatial operations, like for instance the classical spatial join.
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