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t | In this paper we propose and analyze a new spatial a

ess method, namely the S�-tree, for the eÆ
ient se
ondary memory en
oding and manipulation of images 
ontaining multiplenon-overlapping features (i.e., 
oloured images). The S�-tree is based on a non-straightforward andspa
e eÆ
ient extension to 
oloured images of its pre
ursor, namely the S+-tree, whi
h was expli
itlydesigned for binary images. To assess experimentally the qualities of the S�-tree, we test it againstthe HL-quadtree, a previous spatial a

ess method for 
oloured images, whi
h is known to be spa
eand time eÆ
ient. Our experiments show that the S�-tree rea
hes up to a 75% of spa
e saving, andperforms 
onstantly less I/O a

esses than the HL-quadtree in solving 
lassi
al window queries.Key words: Spatial Data, Spatial A

ess Method, Bintree, Quadtree, Window Query.1. INTRODUCTIONIn this work we fo
us on se
ondary memory representations of images 
ontaining multiple non-overlapping spatial features, like for instan
e agri
ultural maps, themati
 maps, satellite viewsand many others. This is a very hot resear
h topi
, espe
ially with the in
reasing interest of thedatabase 
ommunity towards the development of eÆ
ient spatial database management systems.Therefore, we are impli
itly assuming that the underlying images have all the pe
uliar aspe
ts ofimages 
ontaining region data, and spe
i�
ally the most prominent one, that is the aggregation ofpixels of a given 
olour into pat
hes. This indu
es a 
ouple of observations: �rst, the number offeatures (i.e., 
olours) in the representing pi
ture is limited (generally, from 8 to 64), se
ond, andperhaps more important, it makes sense to apply hierar
hi
al methods of representation of theimage to save spa
e and time.One of the most su

essful hierar
hi
al strategy for representing images 
ontaining region datais based on the de
omposition of the image spa
e into re
ursively nested subimages, until a ho-mogeneous pattern is obtained. The most popular de
omposition te
hniques are the binary de-
omposition (whi
h splits the image into two equal parts alternating a horizontal and a verti
alsubdivision) and the quaternary de
omposition (whi
h splits the image into four equal quadrants).The 
orresponding main memory representations of su
h split poli
ies are the bintree [13℄ and theregion quadtree [10℄. Both data stru
tures are easy to implement in main memory. On the otherhand, when a se
ondary memory representation is needed (whi
h is usually the 
ase, given thelarge amount of data to be stored), things be
ome more 
ompli
ated. The problem is that ofmapping a 2-dimensional set onto a 1-dimensional universe, while attempting to preserve as mu
has possible spatial proximity properties.For images 
ontaining multiple non-overlapping features (for the sake of brevity, 
oloured im-ages in the following, even though this term 
ould be misleading, sin
e it does not 
onvey the
on
ept that the underlying image is representative of region data, and therefore well-suited tobe managed by hierar
hi
al spatial data stru
tures), a number of di�erent se
ondary memoryimplementations have been proposed. These 
an be subdivided into two 
ategories: leaf
ode rep-resentations, obtained as a 
olle
tion of the leaf nodes in the tree (su
h as, for example, the linearquadtree [5℄), and tree
ode representations, obtained by a preorder tree traversal of the nodes in thetree (also 
alled DF-expressions [6℄). The latter approa
h is asymptoti
ally more 
ompa
t thanthe former one, but it has su�ered for a long time the la
king of a paged version able to support33
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ess to a given element without being for
ed to s
an, in the worst 
ase, the entire database.This diÆ
ulty have been over
ome by de Jonge et al. [3℄, who developed the S+-tree, a spatiala

ess method 
ombining the advantages of leaf
ode and tree
ode representations, essentially byindexing through lo
ational 
odes the spa
e-
ompa
t DF-expression. However, as we shall see inthe rest of the paper, the S+-tree is tailored to binary images, and a straightforward extension ofit to 
oloured images has a severe spa
e utilization drawba
k, whi
h a�e
ts in its turn the timeeÆ
ien
y in solving 
lassi
al operations that 
an be posed on the stored data.In this paper we present a new spatial a

ess method, that we named S�-tree, whi
h extendsin a non-trivial way the 
apabilities of the S+-tree to handle 
oloured images. We �rst showthat for pra
ti
al 
ases, the S�-tree allows to save up to 25% of spa
e with respe
t to a trivialextension of the S+-tree, while performing asymptoti
ally the same number of disk a

esses toretrieve any given subset of the represented image. Furthermore, to assess the pra
ti
al usefulnessof our method, we 
ompare it against the HL-quadtree [8℄, a spa
e and time eÆ
ient spatial a

essmethod for 
oloured images, whi
h 
ombines advantages of leaf
ode and tree
ode representationsby using lo
ational 
odes to represent all the nodes of a region quadtree. Obtained results areextremely en
ouraging, showing a superiority of our method both in terms of spa
e o

upan
yand time performan
es. More pre
isely, 
on
erning the spa
e o

upan
y, we show that the S�-treeenjoys a 75% of spa
e saving with respe
t to the HL-quadtree. Regarding the time 
omplexity,we performed experiments over an important 
lass of queries, namely the window queries, whi
h
onstitute the basis of a number of operations that 
an be exe
uted on 
oloured images. Sin
e weare 
omparing time performan
es of se
ondary memory oriented data stru
tures, we will use aseÆ
ien
y measure the 
lassi
al I/O 
omplexity, by 
ounting the number of a

esses to the bu
ketsstoring the data. We will show that the S�-tree performs 
onstantly less I/O a

esses than theHL-quadtree in solving the queries, saving up to 80% of time.The paper pro
eeds as follows. In Se
tion 2 we brie
y re
all the various pixel tree (binaryand quaternary) stru
tures that have been proposed in the past for managing 
oloured images,along with a des
ription of the S+-tree. In Se
tion 3 we �rstly present a straightforward extensionof the S+-tree to 
oloured images, and we then present our new spatial a

ess method, namelythe S�-tree. In Se
tion 4 we give experimental results assessing the spa
e and time eÆ
ien
y ofour approa
h, and �nally, in Se
tion 5 we present 
onsiderations for further work and 
on
ludingremarks. 2. SURVEYIn this se
tion we present a survey of the various pixel tree (binary and quaternary) stru
turesthat have been proposed in the past for managing 
oloured images, along with a des
ription of theS+-tree. Table 1 
ontains main symbols used throughout the paper.Symbol De�nitionT Image spa
e sidem Image spa
e resolutionk Number of featuresw Query windown Query window sider B+-tree orderfi i-th featureTable 1: Symbol table
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Fig. 1: Multiple non-overlapping features and their quadtree (left) and bintree (right).2.1. The bintree and the quadtreeThe region quadtree is a progressive re�nement of an image that saves storage being based onregularity of the feature distribution. Assume we are given an image spa
e of T �T pixel elements,where T is su
h that T = 2m, 
ontaining k non-overlapping features. We pro
eed in the followingway: at level 0 there is the whole image, of side length T . The de
omposition pro
ess 
arried outby the quadtree re
ursively splits a quadrant into four equal size quadrants, until ea
h quadrantis 
overed by only one feature. In the extreme, the de
omposition 
an go on up to the pixel level,with squares of side length 1. The de
omposition 
an be represented as a tree of outdegree 4, withthe root (at level 0) 
orresponding to the whole image and ea
h node (at level d) 
orresponding toa square (or blo
k) of side length T=2d. The sons of a node are, in preorder, labelled NW, NE, SWand SE. For a given image, nodes are then homogeneous (leaf nodes) or heterogeneous (non-leafnodes). Correspondingly, we speak of homogeneous and heterogeneous blo
ks. Note that thereexist several extensions of the region quadtree, even for representing set of overlapping images [15℄.The bintree is the binary version of the region quadtree: the image is progressively re�nedalternating horizontal and verti
al splits, until a homogeneous pattern is rea
hed. Noti
e thatin this 
ase su
h a pattern is not ne
essarily a square. Figure 1 shows an example of an image
ontaining 4 non-overlapping features (note that the white ba
kground is treated as a feature),along with its representing quadtree and bintree.The bintree and the quadtree 
an be implemented either as a tree or as a list. In the former,dire
t a

ess to spe
i�
 image elements is privileged, while the latter makes sequential a

esseasier and simpli�es disk-based representations, absolutely needed for large amounts of spatialdata [11, 12, 14℄.2.2. Se
ondary memory implementationsIt should be 
lear from the de�nition that bintrees and quadtrees share a lot of properties;therefore, a se
ondary memory implementation de�ned for a bintree, 
an be easily adapted tohandle a quadtree, and vi
e versa. There exist substantially two 
ategories of se
ondary memoryrepresentation of a pixel tree: the 
olle
tion of the leaf nodes (leaf
ode representation), and thelinear list resulting from a preorder traversal of the tree (tree
ode representation).One of the most attra
tive approa
hes in the �rst 
ategory is the FL linear quadtree [5℄ (simplylinear quadtree in the following), introdu
ed by Gargantini with referen
e to a binary image. Alinear quadtree 
ontains the 
olle
tion of bla
k leaves in the 
orresponding quadtree, en
oded bymeans of a lo
ational key (whose digits resemble the path in the tree from the root to the leaf) andindexed through a B+-tree [1℄. The lo
ational key �(x) for a node x of level d in the quadtree isre
ursively de�ned as follows: Let the lo
ational key for the root be an all-zero string of length m,and let x0 be the parent of x in the quadtree. We have that �(x) = �(x0) + s � 5m�d, where s = 1,2, 3 or 4 if x is the NW, NE, SW or SE 
hild of x0, respe
tively. Then, the lo
ational key is a base
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ode of length m, and requires 3m bits to be storedy.The extension to multiple non-overlapping features of a linear quadtree is straightforward. Infa
t, also in this 
ase the 
olle
tion of leaf nodes 
an be stored as a sorted linear list, but ea
hnode now 
onsists of two �elds: the lo
ational key and the feature value, storing in dlog ke bits thefeature asso
iated with the node. Representing a pixel tree as an ordered list of the homogeneousnodes is eÆ
ient sin
e spa
e o

upan
y is redu
ed and performan
es of sequential operations areimproved.Con
erning tree
ode representations, the DF-expression [6℄ is surely one of the most usedte
hniques. The DF-expression for multiple non-overlapping features 
an be viewed, treating theba
kground as a feature, as a string 
ontaining two symbols: `N', denoting non-leaf (internal)nodes, and `Li', 1 � i � k, denoting a leaf nodes 
ontaining the i-th feature. The representingtree is visited in preorder, and an `N' is emitted whenever an internal node is en
ountered, whilean `Li' is emitted whenever a leaf node 
ontaining the i-th feature is en
ountered. As an example,suppose that the four features in Figure 1 have index 1 for the white, 2 for the light gray, 3 forthe dark gray and 4 for the bla
k. The following string is the DF-expression for the bintree inFigure 1: NNNNNNL1L3L1L3NL2NN L4L1NL1L4L1NL2NNL4L1L1.Representing a pixel tree as a DF-expression is spa
e eÆ
ient with respe
t to a leaf
ode rep-resentation, but a

essing spe
i�
 blo
ks is time-
onsuming, sin
e indexing is not provided, andthis is a serious drawba
k for window queries pro
essing. Therefore, while an implementationbased on B+-trees for a linear quadtree representation is straightforward, this is not the 
ase for aDF-expression.2.3. The S+-treeA �rst step towards the integration of leaf
ode and tree
ode representations has been done byde Jonge et al. [3℄, who de�ned a se
ondary memory implementation of binary images namedS+-tree. This was originally des
ribed by using the leaf
odes generated by a bintree, though aquadtree 
ould similarly be used.The S+-tree is obtained in two phases. In the �rst phase, we apply a preorder traversal on thebintree, emitting a `0' (`1') when an internal (leaf) node is en
ountered. The out
ome will be abitstring, named linear (bin)tree. Con
urrently, during this traversal we store the 
olours of theleaves in an additional bitstring, 
alled 
olour table, where a '0' ('1') represents a white (bla
k)leaf. The two bitstrings thus obtained are named S-tree. In the se
ond phase, the S+-tree is builtby storing the original tree into a list of data pages 
ontaining a segmented and augmented S-treerepresentation of the image. These data pages will be indexed by a B+-treey. This way, ea
h datapage 
onstitutes a self-
ontained lo
al S-tree that 
an be sear
hed independently.More spe
i�
ally, a data page 
onsists of a portion of the linear tree (growing from the beginningof the page) along with the 
orresponding portion of 
olour table (whi
h grows from the tail ofthe page). The two bitstrings �ll the page as mu
h as possible, under the 
onstraint that the lastnode stored in a page must always be a leaf (we will see later why this restri
tion is introdu
ed).Therefore, due to su
h 
onstraint, some unused spa
e might be left. Moreover, at the very beginningof the page, there is a linear pre�x whi
h 
an be regarded as the summary of all the data pagespre
eding the a
tual one. This linear pre�x is de�ned in the following way: when a data pagebe
omes full during the building pro
ess, a new page is 
reated and a separator between the pagesis stored in the index. Su
h a separator is built by en
oding the path from the root of the bintreeto the �rst node stored in the next page, emitting a `0' when moving towards left, a `1' otherwise.Sin
e it is imposed that the last node stored in a page must be a leaf, it follows from preorder visityIn a bintree, the root is an all-zero string of length 2m, and �(x) = �(x0) + s � 32m�d, where s = 1 or 2 if x isthe left or right 
hild of x0, respe
tively. Then, the lo
ational key is a base 3 
ode of length 2m, and requires 4mbits to be stored.yNoti
e that in their original paper [3℄, the authors use a pre�x B-tree to index the data pages, but a B+-treeprovides similar performan
es.



An eÆ
ient spatial a

ess method for spatial images 
ontaining multiple non-overlapping features 37pointer pointer dummytree 
olourlinear pre�x + linear tree bitstring 
olour tablefree spa
e next
ountFig. 2: The layout of a data page of the S+-tree.properties that the last bit of a separator is always a 1: In fa
t, if the last stored node is a left leaf,then the �rst node stored in the next page must be its right sibling, while if the last stored nodeis a right leaf, then the �rst node in the next page must be a right son of some of its an
estors.Su
h a property allows to store the separators using only 2m bits, without en
oding the depth ofthe node the separator refers to whi
h.Consequently, the linear pre�x is built by en
oding with a `0' a 0 in the separator, and witha `01' a 1 in the separator. The 0 added before the 1 a
tually represents a dummy leaf, stayingfor a left subtree (stored in a previous page) along the path to the node whi
h 
aused the �lling.The linear pre�x therefore provides the information needed to retrieve a node in a page, sin
e itresembles the whole bintree pre
eding the nodes in su
h a page, by 
ondensing all the left subtreesin leaves. We should mention here that, as in all tree
ode representations, all nodes must berepresented in the stru
ture. The stru
ture of an S+-tree node 
an be seen in Figure 2. The treepointer points to the next available position in the linear tree sta
k, the 
olour pointer points to thenext available position in the 
olour table sta
k, next is a pointer to the next page in the sequen
eset, while dummy 
ount indi
ates where the linear pre�x ends and the linear tree starts.Noti
e that building the S+-tree by using a quadtree de
omposition instead of a bintree, leadsto a somewhat di�erent 
reation of the separator. The path from the root of the quadtree to thenode that 
aused the �lling of the page is en
oded by emitting a `0' when moving towards the �rst
hild (NW), and a `1', `2', or `3' when moving towards the se
ond (NE), third (SW) or fourth (SE)
hild, respe
tively. Consequently, the linear pre�x is built by en
oding with a `0', a `01', a `011'and a `0111' a 0, 1, 2 and 3 in the separator, respe
tively.This stru
ture and the 
hara
teristi
s of the S+-tree, in parti
ular the property that ea
hdata page 
onstitutes a self-
ontained lo
al S-tree that 
an be sear
hed independently, is its greatadvantage when used for window queries. As we have already mentioned, it provides for a very
ompa
t representation of the data and the index, while, 
on
urrently, it behaves like B+-trees andpermits easy sequential and random a

ess. As noted in [3℄, using the binary array representingthe image as input, we 
an 
onstru
t the 
orresponding S+-tree in su
h a way that the pages ofthe sequen
e set are generated from left to right, whi
h allows for almost 100% storage utilizationof these data pages. Subsequent insertions and deletions will degrade the storage utilization, butonly down to 69%, whi
h is the typi
al storage utilization of B+-trees.3. THE S�-TREEIn this se
tion, we �rstly present a straightforward extension of the S+-tree to 
oloured images,and we then present our new spatial a

ess method, namely the S�-tree.3.1. A straightforward extension of the S+-treeThe natural extension of the S+-tree to 
oloured images is the following: 
on
erning leaf nodes,the bit 
olor of the 
olour table is repla
ed by a feature value of dlog ke bits, as for the 
orrespondingextension of the linear quadtree, while for internal nodes, we have to augment the 
olour table byasso
iating with ea
h internal node a features string of k bits, one bit for ea
h feature, in whi
hthe i-th bit is set to 1 if and only if the node 
ontains the i-th feature. In fa
t, asso
iating afeatures string with internal nodes greatly improves the performan
es in exe
uting several spatialoperations [8℄.
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h a straighforward extension has a severe drawba
k in terms of spa
e utilization.In fa
t, as we des
ribed in the previous se
tion, a tight 
onstraint during the pro
ess of buildingthe S+-tree is that the last node stored in a page must be a leaf. There are several 
onvin
ingreasons to do that for binary images:1. Sin
e the last node is a leaf, by preorder visit properties it follows that the �rst node onthe next page is a right son, and therefore the separator between the pages will end witha 1. This property is important, sin
e it allows to store the separators using only 2m bits,without en
oding the depth of the node the separator refers to whi
h.2. Sin
e for binary images no information is asso
iated with internal nodes (they are simplygray), we have at most 2m�1 unused bits per page. Considering that a page size is generally1 Kbyte, and that a reasonable upper bound on m is 16, it follows that we waste in the worst
ase less than 1% of spa
e.However, the latter observation does not hold any more for 
oloured images. Therefore, a largeamount of information asso
iated with internal nodes, that 
ould potentially be stored in a page,might be shifted to the next one as a 
onsequen
e of the above 
onstraint, thus determining a largewasting in spa
e. For instan
e, if the page size is 1 Kbyte, m = 16 and k = 64, the wasted spa
e
ould be as large as k8 � (2m � 2) = 240 bytes (this is the 
ase when the next leaf that should bestored lies at the end of a path in the asso
iated bintree of 2m� 2 internal nodesy that have notyet been visited), i.e., about a 25% of the page size!To make things 
on
rete, Figure 3 provides what we should obtain from the image in Figure 1 byrepresenting it using the trivial extension of the S+-tree just des
ribed. For the sake of simpli
ity,we set to 36 bits the size of the bitstring; moreover, to improve readability, the linear tree hasbeen underlined, and unused bits have been depi
ted with an `x'. The length of a separator (i.e., akey in the B+-tree index) is exa
tly 2m = 6 bits. The features string of an internal node 
onsistsof k = 4 bits, 
orresponding, from left to right, to white, light gray, dark gray and bla
k 
olour,respe
tively. On the other hand, with any external node, a feature value of dlog ke = 2 bits isasso
iated: we en
oded the white feature with `00', the light gray with `01', the dark grey with`10' and the bla
k with `11'. Noti
e that the third page had enough spa
e to store an additionalinternal node (i.e., the internal node 
orresponding to the rightmost nephew of the root), but dueto the above 
onstraint, we have to shift it to the next page, thus wasting 5 bits.3.2. A spa
e eÆ
ient extension of the S+-tree: the S�-treeFrom the above dis
ussion, it is 
lear that for 
oloured images we have to abandon the 
onstraintthat the last node stored in a page must be a leaf node. The question is: 
an this be done withoutmodifying the separators, i.e., without augmenting the spa
e used for the index? The answer isyes, on 
ondition that a small overhead is paid in terms of the time spent when a sear
h to agiven node is performed. In fa
t, a problem arises letting the last node stored inside a page tobe internal: It fails the statement that the last bit of a separator is always a 1. This is be
ausethe node whi
h 
aused the �lling 
ould be a left son, and iteratively its parent 
ould be a left son,and so on. Therefore, in the separator, after the rightmost 1, there 
ould be some meaningful 0s(a
tually, as many as 2m � 2), i.e., 0s that e�e
tively lead to the node whi
h 
aused the �lling.Does this a�e
t the sear
h of a given node through the stru
ture? Only to a small extent, as thefollowing theorem states:Theorem 1 Let ` = 2m be the length of the index keys in the B+-tree storing the S�-tree, andlet �(x) = f0; 1gt with t � `, be the path from the root to a node x to be retrieved in the S�-tree.Then, as soon as ea
h page in the B+-tree 
ontains at least ` nodes of the bintree, it follows thatat most two 
ontiguous pages in the B+-tree must be visited to retrieve x.yRemember that if the image resolution is m, then the height of the asso
iated bintree is 2m, where it is assumedthat a single node is a tree of height 1.
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page 2page 1 00000011 10 00 1010 1010 1010 1111 1111 1111000001 11010011 00 11 1001 1001 01 1101 10 00 69 8 0
10 22 40101 00111 xxxxxxxxxxxxx 00 00 11 1001 1001page 4page 3 00010101 011101 xxxxxx 01 1101 00 11 00 1001 15 20 8

000010 001110
15 14

page 1 page 2 page 3 page 4110000

Fig. 3: The B+-tree storing the image in Figure 1, as obtained by the trivial extension of the S+-tree.Proof. We start by noting that the assumption that ea
h node in the B+-tree 
ontains at least `nodes of the bintree is not restri
tive in appli
ative 
ases: for example, for m = 16 and k = 64, itsuÆ
es to �x the page size of the B+-tree to 256 bytes.Let �i 2 f0; 1g, i � ` be the i-th bit of �(x) and let �r be the rightmost 1 of �(x). We 
antherefore write �(x) = �1 : : : �r�r+1 : : : �t, with �r+1 = : : : = �t = 0. To retrieve x, we will sear
hin the B+-tree for the key kx = �1 : : : : : : �r�r+1 : : : �`, with �r+1 = : : : = �` = 0. Let ka be the keyin the B+-tree rea
hed by sear
hing kx, and let P1; P2 be the two pages separated by ka. Withoutloss of generality, let us assume that ka � kx. We will show that x must be either in P1 or in P2.Noti
e that ka represents a separator, i.e., a node in the asso
iated bintree, say a, having a path�(a) from the root. Of 
ourse, �(a) � ka. Two 
ases are possible: ka < kx or ka = kx.The former 
ase is trivial. In fa
t, if ka < kx, then in a preorder visit, a pre
edes x (we writeit as a � x), from whi
h it follows that x must be in P2.Let us now analyze the latter 
ase, i.e., ka = kx. Remember that �(a) is the path to the �rstnode stored in P2. To establish the thesis, we have to prove that x 
annot be stored in any pagepre
eding P1. We start by noting that kx does not only represent the sequen
e �(x), but also allthe sequen
es of the following set:S = f� 2 f0; 1gsj� = �1 : : : �r�r+1 : : : �s; �r = 1; �r+1 = : : : = �s = 0; r � s � `g:Noti
e that jSj = `� r � ` and that �(a); �(x) 2 S. If x is stored in a page pre
eding P1, thenfor any node y stored in P1, it will be x � y � a, from whi
h it follows that �(y) 2 S. This means,all the nodes in P1 have a path belonging to S. But this is a 
ontradi
tion, sin
e P1 
ontains atleast ` nodes and jS n fxgj � `� 1. 2The above result guarantees that the only 
riti
al 
ase to be managed is when the key returnedfrom the sear
hing in the B+-tree equals the key we are looking for. In this 
ase, we will load inmain memory both the pages pointed by su
h a key, thus performing an extra a

ess on se
ondarymemory. This s
enario is quite unlikely to happen, and therefore we 
on
lude that our approa
hworks well for all pra
ti
al purposes.We �nally remark that we 
hoose in our design of the S�-tree to eliminate the linear pre�x fromthe pages, sin
e it 
an easily be re
omputed from the separators in the B+-tree. This will add asmall overhead in terms of CPU time, but, on the other hand, will redu
e the spa
e o

upan
y
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olour length nextfree spa
e 
olour tableFig. 4: Layout of a page of the S�-tree.

page 3page 2page 1 00000011 00 01 1010 1010 1010 1111 1111 1111
1110100111 00 00 11 1001 1001 01 1101 00 11 00 11 10 610110100110 x 1001 00 11 1001 1001 01 1101 10 00 10 59 8 0page 1 page 2 page 3000010 001110

Fig. 5: The B+-tree storing the S�-tree asso
iated with the image in Figure 1.and simplify the standard B+-tree merging operation: In fa
t, when two pages of the B+-tree aremerged together as a 
onsequen
e of an under
ow, the separator in the B+-tree must be 
hanged,and so for the linear pre�x inside the page. This 
an produ
e a time expensive shifting of all thebits inside the page. Eliminating the linear pre�x will eliminate this problem. The a
tual layoutof a page of the S�-tree is given in Figure 4. Note that the free spa
e will be at most k bits (i.e.,the length of a features string). Noti
e that the spa
e o

upied by the �eld dummy 
ount in theS+-tree has been repla
ed by the �eld length, whi
h stores the length of the separator asso
iatedwith the page.Figure 5 provides the S�-tree representing the image in Figure 1, by maintaining the samenotation as for the trivial extension of the S+-tree of Figure 3. It is worth noting that the se
ondpage is now 
ompletely �lled, thanks to the fa
t that an internal node 
an be the last stored one (i.e.,the internal node 
orresponding to the path `00111'). This allows us (along with the removal of thelinear pre�x) to store the image by using only 3 pages, instead of the 4 pages previously needed.Noti
e that the two separators of the resulting three pages are 00001 and 001110, respe
tively.Thus, the se
ond separator will be ambiguous, sin
e its last digit is a 0. For example, looking forthe node 00111 will retrieve the key 001110 from the B+-tree. As proved above, in this 
ase wewill visit not only the page following the retrieved key; instead, we will preliminarily visit the pagepre
eding the key: we 
ompute the linear pre�x by using the key 000010 and the length 5 storedin the page (thus the separator will be 00001 and the linear pre�x will be 000001, sin
e we 
odifya `0' with a `0' and a `1' with a `01'). Using the linear pre�x, we are then able to retrieve the node00111 as the last one of the se
ond page (see [3℄ for details on this latter operation).4. EXPERIMENTAL RESULTSIn this se
tion we present detailed experiments 
omparing the S�-tree with the hybrid linearquadtree (shortly, HL-quadtree), whi
h has been shown to be very eÆ
ient with respe
t to other
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Fig. 6: A sample 512�512 meteorologi
al image (North Ameri
a) 
ontaining 64 features.linear quadtree based representations of 
oloured images [8℄.We re
all that the main idea of the HL-quadtree is to represent both non-leaf and leaf nodesof the quadtree (like in the DF-expression), by 
oding them using a lo
ational key (like in thelinear quadtree). The result is a linear list 
ontaining all the nodes in the quadtree, whi
h is thenindexed through a B+-tree. As for the S�-tree, in the HL-quadtree we distinguish between re
ordsasso
iated with non-leaf and leaf nodes. This is be
ause a non-leaf node 
an 
ontain more thanone feature, and then it needs to store several features indexes. Then, we asso
iate with su
h are
ord, along with the lo
ational key de�ned as in the 
ase of the linear quadtree, a features stringof size k. Con
erning re
ords asso
iated with leaf nodes, they have the same stru
ture as for thelinear quadtree, 
onsisting of the two �elds lo
ational key and feature value. Finally, to distinguishbetween re
ords asso
iated with non-leaf and with leaf nodes, an additional bit�eld 
alled leaf bitis provided, whose value is 1 if and only if the asso
iated node is a leaf.We exe
uted the window queries on a set of images 
ontaining multiple non-overlapping features,ranging from satellite views to landuse maps. More spe
i�
ally we experimented with 3 groupsof data. The �rst group of images, of size 256�256, was downloaded from the GRASS site, apubli
 domain geographi
al information systemy, while the se
ond and third group of images, ofsize 512�512 and 1024�1024, respe
tively, were meteorologi
al satellite views of European, Asianand North Ameri
an regions. Spe
i�
ally, the se
ond group was from the Meteosat Imagery sitez,while the third was from the weather fore
asts se
tion of the CNN sitex. Figure 6 shows a sampleimage.Both the stru
tures were implemented in C++ programming language under Windows NT, andthe experiments run on a Pentium II workstation.4.1. Window QueriesWe 
onsidered the following window queries, of primary importan
e for multiple non-overlappingfeatures [7℄:� exist(w; fi1 ; fi2 ; : : : ; fih): 
he
k whether or not at least one of the features fi1 ; fi2 ; : : : ; fih ,1 � ij � k; j = 1; : : : ; h, exists inside the window w.� report(w): report all the features that are found inside the window w.� sele
t(w; fi1 ; fi2 ; : : : ; fih): sele
t all homogeneous blo
ks inside the window w 
ontaining thefeatures fi1 ; fi2 ; : : : ; fih ; 1 � ij � k; j = 1; : : : ; h.yAvailable at http://moon.
e
er.army.mil.zAvailable at http://www.nottingham.a
.uk/�

zsteve/graphif.shtml.xAvailable at http://
nn.
om/WEATHER/images.html.
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o Nardelli and Guido ProiettiThe basi
 approa
h for answering the queries is that of de
omposing the window query intoa sequen
e of smaller queries, where ea
h smaller query 
omprises a maximal blo
k of the imagespa
e inside the window [2℄. Without loss of generality, let us assume that the window w is asquare of side n. We solve the query by initially de
omposing in optimal time the window intoits 
onstituting maximal blo
ks [9℄, with respe
t to both a bintree and a quadtree de
ompositionpro
ess, and we asso
iate with ea
h maximal blo
k x its respe
tive node path �(x) and lo
ationalkey �(x), for the bintree and the quadtree de
omposition, respe
tively. The list of node paths(lo
ational keys) thus obtained is then used for sear
hing in the S�-tree (HL-quadtree) to solvethe queries. In the following, it is explained how these queries pro
eed a

ording to the proposedmethods.Exist Query:Consider a query over a spe
i�ed window, where a sear
h for existen
e of features fi1 ; fi2 ; : : : ; fihhas to be performed. For ea
h maximal blo
k x in w, 
orresponding to a node path �(x) (lo
ationalkey �(x)) in the representing S�-tree (HL-quadtree), sear
hing starts from the root of the asso
iatedB+-trees, and stops only when the leaf level is rea
hed.Con
erning the HL-quadtree, it is 
ertain that either x or a homogeneous an
estor of it will belo
ated, sin
e all quadrants are stored. Hen
e, we 
an pro
ess the maximal blo
k by simply lookingto the 
ontent of the 
orresponding feature �eld, with at most an additional a

ess on the previouspage to lo
ate the an
estor, if needed. Regarding the S�-tree, the situation is similar. In this 
ase,rea
hing the leaf level means that we rea
hed one of the S�-tree pages, namely we rea
hed part ofthe 
orresponding bintree. Three situations might arise for the sear
hed maximal blo
k:1. it is a leaf in the 
orresponding bintree, and therefore we 
an immediately �nd its 
olourfrom the 
olour table;2. it is 
ontained in a leaf, and therefore we 
an �nd its 
olour by looking to its an
estor, withat most an additional a

ess on the previous page;3. it is an internal (i.e., non-homogeneous) node, and therefore we 
an immediately �nd all the
ontained features from the 
olour table.Noti
e that in both the 
ases, the query ends either as soon as one of the queried features isfound in w, in whi
h 
ase the answer is positive, or when all the maximal blo
ks in w have beenexamined and none of the queried features appeared, in whi
h 
ase the answer is negative. Sin
ethe number of maximal blo
ks inside w is O(n) [4℄, it follows that by applying the above pro
edures,the exist query 
an be answered, both for the S�-tree and the HL-quadtree, in O(n logr T ) I/Otime, where r is the order of the B+-tree [8℄.Report Query:In a report query, the user asks for all the features 
omprised by the queried window. Thequery is answered similarly to the exist query in both the methods, but now the query ends onlyafter all the maximal blo
ks in w have been examined, and the answer is a (possibly empty) setof features. Therefore, the report query 
an be answered in O(n logr T ) I/O time as well [8℄, bothfor the S�-tree and the HL-quadtree.Sele
t Query:The last window query is the sele
t query, where the user asks for the blo
ks of the map insidethe queried window whi
h are homogeneous with respe
t to the queried features. As in the 
ase ofthe exist query, for ea
h maximal blo
k, sear
hing starts by examining the entries at the B+-treeroot, and pro
eeds similarly in the S�-tree and in the HL-quadtree. On
e the leaf level is rea
hed,we sear
h for the 
urrent maximal blo
k. As des
ribed for the exist query, if this sear
hing isnot su

essful, then we try to see if a homogeneous an
estor exists in the B+-tree (in su
h a 
asewe output the sear
hed maximal blo
k if the an
estor is homogeneous with respe
t to one of thequeried features). On the 
ontrary, if the sear
h is su

essful, two 
ases are possible:
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k is a leaf: in this 
ase, if it is homogeneous with respe
t to one of thequeried features, we return it;2. the maximal blo
k is an internal node: in this 
ase we look to all its des
endants, returningthose that are homogeneous with respe
t to one of the queried features.Noti
e that the query ends only after all the maximal blo
ks in w have been examined. It 
an beshown that by applying the above pro
edure, the sele
t query 
an be answered in O(n logr T+n2=r)I/O time [8℄, both for the S�-tree and the HL-quadtree.4.2. Spa
e o

upan
yIn the �rst set of experiments we measured the spa
e usage that was involved in the twomethods. More pre
isely, for ea
h 
lass of images (i.e., for ea
h image size), we averaged thenumber of pages used. Figure 7 shows the results. From the drawing, it emerges that the S�-treeuses about 1/4 of the spa
e used by the HL-quadtree. Therefore, the improving is substantial.This will positively in
uen
e time performan
es for solving the queries, as we shall see in the nextse
tion.
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Fig. 7: Spa
e o

upan
y 
omparison between the two methods.4.3. Time performan
esTo analyze the time performan
es of the HL-quadtree and the S�-tree, we used the 
lassi
almeasure of I/O 
omplexity, that is, the number of disk a

esses on se
ondary memory. The CPUtime is indeed negligible with respe
t to the time spent in retrieving a page on se
ondary memory.In the following, we make the standard assumption that ea
h se
ondary memory a

ess transmitsone page of data (a bu
ket), and we 
ount this as one operation. The window queries were performedon images of size 256�256, 512�512 and 1024�1024, 
ontaining 8, 16 and 64 features. The querywindows sides were 1, 5, 10 and 25% of the image width. We randomly generated the an
hor ofthe query windows, \wrapping around" the image spa
e whenever a window extended beyond theborders of the image. The page size used was 1K for smaller images and 2K for larger ones, leadingto a fanout of 84 and 169 entries, respe
tively. For ea
h image, 50 queries were performed for thefour di�erent window sizes and the results were averaged. To eliminate the repeated traversal ofB+-tree nodes, we kept in main memory the root of the B+-tree and we made use of bu�eringte
hniques. Due to spa
e limitations, we only show the results for the 1024�1024 images 
ontaining64 features, sin
e the results are similar for all 
ases.The sele
tion of the queried features for the exist and the sele
t query was based on theirfrequen
ies. Suppose that h features are to be sele
ted out of k ones. First, we sort the featuresa

ording to de
reasing frequen
y and, then, we sele
t the �rst, the � kh�-th, the � 2kh �-th, : : :, andthe j (h�1)kh k-th feature. For instan
e, if h=4 and k=64, then we sele
t the �rst, the 16th, the32nd and the 48th feature.
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Fig. 8: Exist query where 2 features were queried, image size 1024�1024, 64 features: (left) averaged results, (right)normalized results.
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Fig. 9: Exist query where 5 features were queried, image size 1024�1024, 64 features: (left) averaged results, (right)normalized results.4.3.1. Exist QueryIn the experiments performed, we sear
hed for the existen
e of a varying number of features.More spe
i�
ally, we initially queried for 2, 5 and 10 features, and results 
an be seen in Figures8, 9 and 10. The left side of ea
h �gure provides the obtained values, while the right side depi
tsthe normalized results with respe
t to the worst method. From these �gures it is easy to realizethat the S�-tree outperforms the HL-quadtree, showing almost a 
onstant behavior independentof the number of features sear
hed, while on the 
ontrary the HL-quadtree degrades as soon asthis number de
reases. Our interpretation of these results is that the S�-tree, apart from possibly
reating a shallower B+-tree, also takes advantage from the bu�ering te
hniques we have used,sin
e ea
h page 
ontains mu
h more blo
ks than a page of the HL-quadtree, and then it 
an beused several times during the query pro
essing, without additional a

esses on se
ondary memory.Noti
e that, despite of the worst 
ase theoreti
al analysis, both methods do not su�er of the windowenlargement, sin
e the response to the query is generally positive, and the sear
hed features arefound rapidly in the window.Afterwards, we experimented by �xing the window side (i.e., 100), while in
reasing the numberof queried features. The results depi
ted in Figure 11 show that in this 
ase the methods exhibitroughly the same performan
es, and both of them tend to answer the query in a single des
ent ofthe B+-tree, as soon as the number of queried features in
reases.
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Fig. 10: Exist query where 10 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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Fig. 11: Exist query for a varying number of queried features, image size 1024�1024, 64 features, query window100�100: (left) averaged results, (right) normalized results.
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Fig. 12: Report query on images of 1024�1024 size 
ontaining 64 features: (left) averaged results, (right) normalizedaveraged results.
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Fig. 13: Sele
t query where 2 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.4.3.2. Report QueryCon
erning the report query, results 
an be seen in Figure 12, where the left side reports in alog-linear diagram the obtained disk a

esses for the two methods, while the right side 
ontainsresults after normalization. From this �gure it is easy to realize that the S�-tree outperforms theHL-quadtree. Noti
e that for both methods, the number of a

esses is proportional to the windowside, as expe
ted from the theoreti
al analysis, but on
e again the S�-tree takes advantage of itsspa
e 
ompa
tness.4.3.3. Sele
t QueryRegarding the sele
t query, in the �rst set of experiments, as for the exist query, we queriedwith 2, 5 and 10 features. This time, however, the number of a

esses almost does not 
hangewhen the number of features in
reases: in fa
t, sin
e all the blo
ks homogeneous with respe
t to thequeried features must be returned, it follows that the overall number of a

esses will be dominatedby the number of a

esses performed for sele
ting with respe
t to the most frequent feature. Thisphenomena 
an be observed in Figures 13, 14 and 15. Again, on the right side of the graphs thenormalized results with respe
t to the worst method are depi
ted. Noti
e that on
e again, theS�-tree shows 
onstantly the best behavior.Finally, we experimented by �xing the window side (i.e., 100), while in
reasing the numberof queried features. Noti
e that the number of a

esses does not 
hange when the number of
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Fig. 14: Sele
t query where 5 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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Fig. 15: Sele
t query where 10 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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Fig. 16: Sele
t query for a varying number of queried features, image size 1024�1024, window size 100�100: (left)averaged results, (right) normalized results.queried features in
reases, as explained above. Moreover, the S�-tree performs roughly a �fth ofthe a

esses made by the HL-quadtree. The results are shown in Figure 16.5. CONCLUSIONSIn this paper we have proposed and analyzed the S�-tree, a new time and spa
e eÆ
ient disk-based representation of images 
ontaining multiple non-overlapping features. We used as timeperforman
e measure the number of se
ondary storage a

esses for solving the 
lassi
al windowqueries, and our experiments showed that the new approa
h outperforms a previous eÆ
ient spatiala

ess method proposed in literature, namely the HL-quadtree [8℄. More pre
isely, saving in timeand spa
e 
an rea
h up to 80%.Future work will be in the dire
tion of an extension of this new en
oding te
hnique to the moregeneral 
ase of images 
ontaining multiple overlapping features. We also plan to test the S�-treein performing other spatial operations, like for instan
e the 
lassi
al spatial join.A
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