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Abstract 

In this paper we discuss some design issues concerning a semi-dynamic data structure for searching in multi-

dimensional point sets in distributed environments. The data structure is based on an extension of k-d trees and 

supports exact, partial, and range search queries. We assume multicast is available in our distributed environment, 

but discuss how to use it only when needed and investigate, through a cost-model, the best strategy to deal with 

range queries. 

1. Introduction 

Many of the newest applications deal with very large amounts of complex (i.e. multi-attribute) data, that can be 

represented as k-dimensional points. An efficient searching of a k-dimensional space is thus a key issue. The 

fundamental queries for a data structure for k-d points are: exact match, partial match, range. It is also important 

that the structure is able to scale up to adapt itself to a growing number of points. 

Under certain technological conditions, to be discussed later, efficiency can be obtained by distributing the data 

structure among many machines over a network. Machines which manage the data structure and answer to queries 

are called servers. Machines which need to access or manipulate the k-d points for their application needs are called 

clients. In a network environment one cannot assume clients are always connected to the network to be kept up-to-

date with the state of the data structure. 

In this context it is usually available the multicast protocol. In this protocol with a single message 1 source reaches 

N destinations. This is to be intended in the sense that a multicast message has a communication cost which is the 

same of a point-to-point message. In other words the time used by a multicast message to reach all its destination is 

the same used by a point-to-point message to reach its unique destination. 
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This is possible since each site has a machine attached to the network by means of a controller. The task of the 

controller is to recognize messages that are of interest to the associated site. In the point-to-point protocol each 

message which is put on the network will reach only the site which is its destination. Other controllers will discard 

it without dispatching it to the associated site. In the multicast protocol messages which are put on the network may 

be recognized by a (possibly large) set of controllers. Each of these controllers will fetch the message and deliver it 

to the machine in the associated site. 

Note that an uncontrolled use of multicast may somehow degrade performances of end-user applications, by forcing 

a machine to anyhow process the message delivered to it by its associated controller, even if it is useless for the 

application itself. Hence unrestricted use of multicast is not beneficial to the overall application. Due to its impact 

on overall performances multicast should be used wisely and not in an uncontrolled manner. 

Litwin, Neimat and Schneider were the first to present and discuss the paradigm of scalable distributed data 

structures, by proposing a distributed linear hashing, namely LH* [LNS93, LNS94a], and a distributed 1-

dimensional order-preserving data structure, namely RP* [LNS94b]. Extension of RP* to the k-dimensional case is, 

to the best of authors knowledge, a work still in progress [LNS94c, LN95]. 

When a multicast protocol is not available, then everything needs to be done with point-to-point messages. In this 

case previous work was done by Kröll and Widmayer [KR94, KR95], who developed Distributed Random Trees 

(DRT). 

In [Nar95, Nar96a] we introduced a data structure, named lazy k-d tree, that is the basis for multi-dimensional 

distributed searching [Nar96b]. Here we discuss one important design issue for the version of lazy k-d trees where 

an index is built at client sites to decrease the use of multicast. 

The paper is organized as follows. In section 2 the basic version of the data structure is presented and basic 

algorithms for its management are discussed. In section 3 we describe a version of the data structure using an index 

at client sites to reduce the use of multicast. In section 4 we present the cost model used in experimental evaluation 

of design issues for our data structure. Experiments we performed and the obtained results are discussed in section 

5, also in relation to previous work. Section 6 contains a final discussion and conclusions. 

2. Basic structure and basic algorithms 

In this section and in the following we recall basic information about lazy k-d trees, so that the discussion about 

design issues can be put in the right context. For more details the reader is referred to [Nar95, Nar96a, Nar96b].  

From a conceptual point of view a lazy k-d tree can be considered as a unique k-d tree where each server is 

managing a different leaf. Hence each server manages a single bucket of data. We assume all buckets have the same 

size. 

An exact match query looks for a point whose k coordinates are specified. A partial match query looks for a (set of) 

point(s) for whom only h<k coordinates are specified. A range query looks for all points such that their k 

coordinates are all internal to the (usually closed) k-dimensional interval specified by the query. 



Clients may add k-d points, which go in the pertinent bucket. A bucket b is pertinent with respect to point p if b is 

associated to the leaf node managing the portion of the k-d space containing p. In a similar way it may be defined 

when a bucket b is pertinent with respect to any query. 

When a bucket overflows its point set is split in two (usually equally sized) parts. The split is done with a (k-1)-

dimensional plane and various strategies can be used to select which dimension to use. A largely used strategy is 

the round-robin one, where at each level a different dimension is selected and after k levels the same order is used 

again and again. 

2.1. Definitions 

A k-d tree [Ben75] is a binary tree where each internal node v is associated to a (bounded or not) k-d interval (or k-

range) I(v), a dimension index D(v) and a value V(v). The interval associated to the left (resp. right) son of v is 

made up by every point in I(v) whose coordinate in dimension D(v) has a value less than (resp. not less than) V(v). 

D(v) is called the split-dimension for node v. V(v) is the split-point for node v. Leaves of the k-d tree are associated 

only to a k-d interval. 

To each leaf w of a k-d tree one bucket exactly corresponds, denoted with the same name. Bucket w contains all 

points within I(w). The k-d interval I(v) of an internal node v is the initial k-range of the bucket which was 

associated to node v when v was inserted as a leaf into the k-d tree. When bucket v is split two leaves, say v′ and y, 

are created and inserted in the k-d tree as sons of node v. Bucket v, with a new, reduced, k-range is associated to leaf 

v′, and leaf y takes care of the new bucket y, so that I(v)=I(v′)∪I(y) and I(v′)∩I(y)=∅. Therefore, for each leaf w but 

one it exists a unique internal node z whose bucket's splitting created the k-range of bucket associated to w. Such a 

node z is called the source node of leaf w (and of bucket w) and is denoted as α(w). The leaf without source node, 

for which we let for completeness α(⋅)=∅ is the leaf managing the initial bucket of the k-d tree. 

2.2. Algorithms for distributed k-d tree data structure without indexes 

We now describe a version of the data structure where every operation is performed through the use of multicast. 

For more details see [Nar96a, Nar96b]. 

Insertion algorithm is straightforward, since a client wanting to insert point p simply multicasts its request by 

putting the point coordinates in the message. The pertinent server, and there is exactly one, manages the insertion. If 

it overflows then it splits. Various algorithms have been proposed for split, by Kröll and Widmayer [KL94], and by 

Litwin, Neimat, and Schneider [LNS94b]. 

The approach for exact match query is also very easy. A client wanting to access point p simply multicasts its 

request and puts the point coordinates in the message. The pertinent server, and there is exactly one, manages the 

query. If it finds the point in its bucket it answers with the required information. Otherwise it answers negatively. 

When the clients receive an answer it knows the query is terminated. 



The approach is somewhat more complex for partial match and range queries. In this case it is not true, in general, 

that there is exactly one pertinent server. Hence the client has the problem of checking that all pertinent servers 

have answered. 

Two approaches have been proposed for termination test. One based on combining adjacent ranges in the set of k-d 

ranges returned by buckets which answered [LNS94c]. One based on the computation of the logical volume of the 

range query and on its comparison with the logical volume of k-d ranges returned by buckets which answered the 

query [Nar95]. 

3. Data structure with index at client sites 

In this section we show how to reduce the use of multicast. To obtain this we have to set-up indexes which help 

clients in identifying server(s) which can answer their requests. 

3.1. Having an index at client sites 

If clients have an index the use of multicast can be reduced. In fact, a client can search in its index to individuate 

the server(s) which should answer to its query and can then issue a (set of) point-to-point query. 

The key observation is that the client index needs not to cover the whole data space, since a lazy approach can be 

taken. Namely, if a client has the pertinent part of the data space covered by its index then search queries can be 

managed by issuing a (set of) point-to-point query. Otherwise the query is multicasted. The same holds for 

insertions. 

Given the assumption we have on clients behaviour it may happen that a client has an out-of-date index. This has 

two consequences. First, the server which receives the point-to-point query may not be anymore the server 

managing the whole set of keys involved by the query itself (in this case we say the client has done an addressing 

error). Second, the client index has to be adjusted to avoid repeating the same addressing error again and again. 

3.2. Index adjustment 

The adjustment of a client index is done by means of Index Correction Messages (ICMs) from the pertinent servers. 

Adjustment is required when server s that a client considers as the one that is managing a certain set S of keys has 

split an unknown number of times. Therefore s cannot any more, in general, manage all queries regarding S. But s 

has some knowledge about the subtree generated by its split. This knowledge is given back to the client in the ICM 

so that it can avoid repeating the same error. This means that, in general, an ICM contains a part of the overall k-d 

tree that has to be added to the client index or to substitute a part of it. 

A client index is therefore a loose collection of generally unrelated subsets of a k-d tree. We call such a collection a 

lazy k-d tree (lkd-tree for short). This means that the client knows only some nodes and some paths of the overall k-

d tree and has the problem of efficiently managing such a collection. 



In the following subsections we give algorithms for insertion and querying when a client has an index. For more 

details on how to build an lkd-tree and how to efficiently adjust it using ICMs see [Nar95, Nar96a, Nar96b]. 

3.3. Algorithm for insertions with index at client sites 

The basic approach is to issue a point-to-point message towards the pertinent server if this is found in the index. 

Otherwise a multicast request is issued. 

If an addressing error is made, the server which has received the message issues a multicast request. In this request 

it includes the address of the client, so that the pertinent server will answer directly to the client itself. It also adds 

its current bucket parameters, to be included in the ICM. 

Algorithms executed at client and at server sites are described in figure 1. 

 [at client site] 
 IF in the client index a server s exists whose range contains the k-d point p 
  THEN point-to-point(p,s) 
  ELSE multicast(p) 
 WHEN answer arrives 
  THEN possibly update the index using received information 

 [at site of server s] 
 IF the received k-d point p is in the range covered by server s 
  THEN insert(p) and possibly split 
     IF the query was received through a multicast from server s′ 
      THEN answer to client with ack, current bucket parameters of s 
              and received bucket parameters of s′ 
      ELSE answer to client with ack and current bucket parameters of s 
  ELSE IF the query was received through a point-to-point message 
      THEN multicast(p) with current bucket parameters of s  

Figure 1: algorithms for insertions with index at client sites. 

3.4. Algorithm for exact queries with index at client sites 

Exact queries are easier, since the algorithm is similar to the insertion one. If the client knows which is the pertinent 

server, it issues a point-to-point query, otherwise it multicasts its request. Servers always answer directly to the 

client. In the case of addressing error, the server receiving the query reissues it as a multicast query. In this case it 

also adds its current bucket parameters, to be included in the ICM. 

Algorithms executed at client and at server sites are described in figure 2. 



 [at client site] 
 IF in the client index a server s exists whose range contains the k-d point p 
  THEN point-to-point(p,s) 
  ELSE multicast(p) 
 WHEN answer arrives 
  THEN possibly update the index using received information 

 [at site of server s] 
 IF the received k-d point p is in the range covered by server s 
  THEN retrieve(p)  
    IF the query was received through a multicast from server s′ 
      THEN answer to client with ack, info on p, current bucket parameters of s 
              and received bucket parameters of s′ 
      ELSE answer to client with ack, info on p, and current bucket parameters of s 
  ELSE IF the query was received through a point-to-point message 
      THEN multicast(p) with current bucket parameter of s 

Figure 2: algorithms for exact queries with index at client sites. 

3.5. Algorithm for range queries with index at client sites 

For range queries the basic approach depends on how many servers are involved by the query. It might be the case 

that, even if the client knows exactly which are the pertinent servers, it is more convenient to issue a single 

multicast query than many point-to-point queries (some of which might anyway become a multicast one). This of 

course depends from a cost function whose parameters are the current overall number of servers, the degree of 

activity of the client, the number of pertinent servers, some physical parameters depending on the network itself, 

and statistical parameters relative to the expected number of addressing errors. 

In the following sections we define and discuss a cost function to decide on the best strategy to manage range 

queries. 

If point-to-point messages are used, possible addressing errors are managed like for the insertion query. If a client 

decides to issue a multicast, or a multicast is generated by a server due to an addressing error, then a termination 

test algorithm has to be executed to know when all pertinent servers have answered. Note that a server, before re-

issuing a point-to-point query as a multicast one, has to check in its queue of pending queries that some other server 

has not already re-issued the same query as a multicast one. Answers from each server includes also the current 

bucket parameters, that is the current range of the k-d space covered by the server. 

Algorithms executed at client and at server sites are described in figure 3 below. 



 [at client site] 
 IF in the client index a set S of servers exists containing the whole k-d range q 
  THEN IF the cost parameter is lower than or equal to a threshold value 
      THEN point-to-point(q,q′,s) for each s in S  
      { q′ is the intersection between q and range of s in the client index } 
      ELSE multicast(q) 
  ELSE multicast(q) 
 IF client used multicast to issue the query 
  THEN execute the termination test 
  ELSE wait for all acks { if a server re-issues the query as multicast while client } 
         { is waiting then client switches to execute the termination test } 
 possibly update the index using received information 

 [at site of server s] 
 IF the query was received through a point-to-point message 
  THEN find the set P of k-d points covered by q′ 
     answer to client with ack, P and current bucket parameters of s 
     IF the received server k-d range q′ strictly contains the range covered by server s 
      THEN multicast(q) unless another server has already re-issued this query as a multicast 
  ELSE IF the received k-d query range q intersects the range covered by server s 
    THEN find the set P of k-d points covered by q 
       answer to client with P and current bucket parameters of s 

Figure 3: algorithms for range queries with index at client sites 

4. A cost model for analyzing processing strategies for range queries 

In the algorithm for processing range queries in the version of the data structure with index only at client sites (sub-

section 3.5) there is an important design decision. This regards how to decide when to issue a set of point-to-point 

requests and when to issue a single multicast (see figure 3). We defined a simple but realistic criterium to be used 

for this decision and introduced a cost model to evaluate the effects of such a decision. 

The criterium we used in range queries to decide when to issue a point-to-point and when to multicast is based on 

the following assumptions. First of all, note that an alternative exists only if the range of the query is completely 

covered by the range of servers known to the client, otherwise multicast is forced. Let SI denote the number of 

servers that a client has in its index. Let SQ be the number of servers in the client index which are (partially or 

totally) covered by the range query. We took the ratio SQ/SI as the cost parameter to be used in the decision. In this 

way the decision can be taken in a pure local manner without any communication overhead. The rationale is to 

consider the index in the client as a reasonable description of the overall index and to take a decision accordingly. 

Namely, if the value of the above ratio is close to 1 in the client (fat queries), since almost all the servers in the 

client index are affected by the query, then the estimate is that the specific range query is pertinent to almost all 

servers of the data structure. On the other side if such a number is close to 0 (punctual queries) then the estimate is 

that almost only the servers known to the client will be affected by the range query. The hypothesis to be tested is 

that for punctual queries it should always be better to issue a set of point-to-point requests while for fat queries it 

might be more cost effective, instead of directly addressing each server one by one, to issue just a single multicast 

request (which anyways goes to all servers). We then need to evaluate for fat and punctual queries which is the cost 

incurred if a set of point-to-point requests is issued and which is the cost in the case of a multicast. Hence we need a 

cost model to compute such a cost. 



We therefore defined the model described below, taking inspiration and numerical values from the discussion in 

[Gra88]. The parameters the cost model is based on are: 

- p2p_msg: the number of point-to-point messages; 

- mcast_msg: the number of multicast messages issued as such by the machines; 

- deriv_msg: the number of multicast messages resulting from the trasformation of point-to-point messages after 

an addressing error; 

- M: the number of machines which are in the multicast address domain; 

- S: the number of server managing the distributed data structure; 

- Co: the time required to the operating system of any machine in the multicast domain to process communication 

protocol when receiving a message; we assume it requires the processing of 2,500 instructions by the computer; 

- Cr: the time required to the network to deliver a message between two sites; we assume it is inversely 

proportional to the communication speed over the network; 

- Cs: the time required to a server to process the request regarding its part of the distributed data structure; we 

assume it requires the processing of 10,000 instructions by the computer; 

- MIPS: speed of computers in executing instructions (millions of instructions processed per second); 

- NET: communication speed over the network (bits transmitted per second). 

Our cost model has the four components below described. Note that we correctly assume that one multicast 

message travels over the net to reach all machines in the multicast domain in the same time a single point-to-point 

message travels between a client and a server. Of course, each machine receiving a multicast message will spend 

some time in executing system calls managing communication protocol. The cost components are: 

- network cost, that is the overall time required by all messages (both point-to-point and multicast ones) to travel 

on the net; the formula is: 

  net = (p2p_msg+mcast_msg+deriv_msg)⋅Cr 

- server direct cost, which represents the overall time required by all servers to execute the communication 

protocol required to receive all point-to-point messages and to process the message itself; in formula: 

  ser = p2p_msg⋅(Co+Cs) 

- machine overhead cost, that is the overall time all machines which receive a multicast message spend to execute 

the communication protocol to receive the message, due to the fact that machines are in a multicast domain: 

  ovh = (mcast_msg+deriv_msg)⋅Co⋅M 

- server multicast cost, which represents the overall time all servers spend to process all multicast requests: 



  mlt = (mcast_msg+deriv_msg)⋅Cs⋅S 

The total cost is hence C = net + ser + ovh + mlt. 

Surprisingly enough, it came out that, in most realistic cases, a set of point-to-point queries provides a lower overall 

cost. Hence it does not matter which is the value of SQ/SI: it will always be more efficient, in the overall sense 

defined by our cost model, to issue a set of point-to-point queries. In sub-section 5.3 we present a detailed 

experimental analysis to justify this claim. 

5. Experiments 

Here we report results of simulation of the behaviour of our distributed k-d trees data structure. We implemented it 

using the CSIM simulation software package [Sch92]. This approach was followed also by Litwin, Neimat and 

Schneider for LH* and RP*, and by Kröll and Widmayer for DRT.  

5.1. Cost analysis of the best for processing range queries 

Before  considering range queries, we must investigare the cost function used by clients to decide when to issue a 

multicast rather than a set of point-to-point requests. 

We performed range queries with three different ratios between query area and total area, namely 0.1%, 1% and 

10%. In the 2-dimensional case we tested range queries with two different shape ratio: square (that is 1:1) and 

rectangular (1:3). These experiments were done using two different frameworks: in the first (static), a sequence of 

10,000 searches was executed on a file with 10,000 keys, randomly generated by a different client; in the second 

(dynamic) the structure was first filled with only 1,000 points then 1 range query was done every 10 further 

insertions, until all the 10,000 points were inserted (so the queries was 900). Bucket capacity had in all cases the 

value of 40. Each experiment was repeated five times. 

We report only a part of the results of our simulation, that, nonetheless, are highly representative. So, for all the 

pictures in the following pages, the number of machines in the multicast address domain (parameter M of the cost 

model) is assumed to be equal to 2048, but we performed the same experiments also for other values (i.e. 512, 

1024, 4096 and 8192) with similar results. 

As anticipated, it turns out that is preferable, every time it is possible, to issue a set of point-to-point queries. 

The threshold value considered in figures in next pages has to be put in relation with the cost parameter SQ/SI and 

the algorithm at client sites for range query processing (figure 3). If SQ/SI is less than or equal to the threshold than 

a set of point-to-point queries is issued, otherwise the query is multicasted. Hence a threshold value of 100% means 

that point-to-point is always used. A threshold value of 1% means that multicast is (almost) always used. From the 

experiment results shown in figures below, where the value of the cost function is always lower for a threshold 

value of 100%, it can be seen that point-to-point is the case with a lower overall cost in all situations. 



In the table below values of the parameters of the cost model are given, for the various cases denoted A to J in 
figures below. Please note that NET and MIPS are the independent parameters of the model, while Cr depends on 

the value of NET and Co and Cs  depend on the value of MIPS. 

 

Table 1: value of cost model parameters for cases A to J of experiments. 

5.2. Performance results for range query 

Concerning range queries there are no experimental studies in the literature, since both LH* [LNS93, LNS94a], 

RP* [LNS94b] and DRT [KR94] only considered insertion and exact search.  

In Table 1 below you can see the results regarding the average number of messages required to answer each range 

query, in the dynamic framework, for the version without index. 

 
 No index 
 1 - dim 2 - dim 

%  square rectang. 

0.1 2.20667 3.02556 3.24822 
1.0 3.95867 6.23311 6.79333 

10.0 20.62422 21.70622 21.85333 

Table 2: average number of messages for each range query (no index). 

Case Cr Co Cs NET MIPS 
A 125 50 200 100 Mb/s 50 

B 125 25 100 100 Mb/s 100 

C 125 12.5 50 100 Mb/s 200 

D 125 6.25 25 100 Mb/s 400 

E 125 3.125 12.5 100 Mb/s 800 

F 25 50 200 1 Gb/s 50 

G 25 25 100 1 Gb/s 100 

H 25 12.5 50 1 Gb/s 200 

I 25 6.25 25 1 Gb/s 400 

J 25 3.125 12.5 1 Gb/s 800 
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In the version with index at client sites the choice, with respect to the multicast versus point-to-point query strategy, 

was, in light of what we obtained in the previous sub-section, to always issue a point-to-point query. For this 

version we also report the results in the static framework. 

 
 static dynamic 
 1 - dim 2 - dim 1 - dim 2 - dim 

%  square rectan.  square rectan. 

0.1 2.57067 4.69556 5.31667 2.48511 4.00133 4.42911 
1.0 8.54889 14.81156 16.43956 5.80244 10.10978 11.26111 

10.0 68.73733 68.65289 68.29511 39.06267 40.71044 40.76111 

Table 3: average number of messages for each range query (client index). 

6. Conclusions 

We have discussed in this paper design issues related to a scalable distributed data structure for k-dimensional point 

data introduced in [Nar95, Nar96a, Nar96b]. The issue at stake was how much to use multicast for range query 

when there was the possibility to issue a set of point-to-point queries. 

Experiments we have reported here prove that it is always best, that is it has a lower (as defined in our cost model) 

overall cost to process the query with a set of point-to-point queries. 

Work in progress is also dedicated to the extension to other multi-dimensional data structures and to extended 

objects [Bar96]. Candidates under considerations for this are R+  -trees, quad-trees, and grid-files. 
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