Computing a Poset from its Realizer *

Enrico Nardelli'? Vincenzo Mastrobuoni'
Alesiano Santomo'

1. Dipartimento di Matematica Pura ed Applicata, Univ. of 1.’Aquila, Via
Vetoio, Coppito, 1-67010 1.’Aquila, Ttalia. E-mail: nardelli@univaq.it

2. TIstituto di Analisi der Sistemi ed Informatica, Consiglio Nazionale delle
Ricerche, Viale Manzoni 30, 1-00185 Roma, ltalia.

Printed on: July 7, 1997

Abstract

In this paper we provide an efficient algorithm for computing the graph
representing a d-dimensional poset which is given by means of the d linear
extensions realizing it.

Keywords: partially ordered sets, algorithms, data structures.

1 Introduction

Let P = (X,<p) be a partially ordered set (poset) defined on the ground set
X by means of the partial order relation <p. TLet £ = (X,<z) be a poset
defined on the same ground set but such that <, is a total order relation and
r<py=ur<gy. Poset L issaid to be a linear extension of P.

A set {Lq, Lo, ..., L} of linear extensions of a poset P is said to be a
realizerof Pif 2 <py =2 <g, y,¥Vi=1,2,.. kand z||y' = Fi,j with i # j
such that = < yand y <., =.

The minimum k such that a set {L£q, L2, ..., Lx} of linear extensions of a
poset P 1s a realizer of P 1s said to be the linear dimension of P.

Tet poset P = (X, <p) of linear dimension d be given by means of d linear
extensions realizing it. An algorithmic problem posed by Spinrad [9] is how to

*Research partially supported by the “Algoritmi, Modelli di Calcolo e Strutture Tnfor-
mative” 40%-Project of the italian Ministry for University and Scientific & Technological
Research (MURST)

12||y means that neither 2 <p y nory <p =

Version 2.4.2 Last Revision: 7 July 1997 2

efficiently build the adjacency lists of the directed graph Gp = (X, F) repre-
senting P, i.e. such that (z,y) € F & 2 <p y. Sometimes Gp is also called the
transitive closure representation of P.

When d = 2 McConnell and Spinrad [4], as part. of a recognition algorithm
for 2-dimensional partial orders, give an optimal algorithm which runs in worst-
F.
From now on, when speaking of ‘time’ we always mean ‘worst-case time’ and

case O(m + n) time, using worst-case O(n) space, where n = | X| and m =

with ‘space’” we mean ‘worst-case space’.

For the special cases d = 3 and d = 4, using ad-hoc techniques developed for
the rectangle enclosure problem [2], the transitive closure representation of the
poset. can be built, respectively, in O(m + nlogn) time using O(n) space and in
O(m + nlog” n) time? using O(n) space.

When d > 3 Spinrad, using the bridged range tree of Willard [10] and Tueker
[3], provides in [9] an algorithm which runs in O(m + nlog? ' n) time using
()(n]ogd*1 n) space.

Spinrad’s approach can be improved using the range trees with slack param-
eter, introduced by Mehlhorn [5] and analyzed in detail by Smid [8]. This varia-

. . loglog n
tion of the range tree, when used with the slack parameter f(n) = 558" al-
. logt n
lows to insert and delete d-dimensional points with a query time of()(%—k
k), where k is the number of reported answers, an amortized update time of
logd n : logd71 n : :
(7]0[%]0%(171 n), using O(niloglngd’1 n)space. This allows to compute the transi
. logd— 1+ o, .\
tive closure representation of a d-dimensional poset in O(m + n%) time
: log472 n
using O(niloglngd’zn) space.

Also, note that Overmars ([7]:theorems 6.1 and 7.1) proves that a range
query on a set of n points in the d-dimensional n x n grid can be answered in
()(k—|—logd72 n loglogn) time using ()(71]0{!,(172 n) space, where k is the number
of reported answers. This technique can be used to build the transitive closure
graph of a d-dimensional poset from its realizer but only provides an O(m +

d—2 . . . d—2
nlog” " n loglogn) time algorithm and requires O(nlog” ~ n) space.

Tn this paper we provide a better general algorithm using O(m +n]()gd*2 n)
time and ()(nlogd*3 n) space, which is almost always better than previous so-
lutions. Tndeed, only for the special case d = 4 our general algorithm has a
slightly worse space complexity. But for all other values of d our solution is
equivalent (when d = 3) or better (when d > 4) than the others known in the
literature.

We first, give the solution for d = 3 and then discuss its generalization.

The paper is organized as it follows. In section 2 we give the basic definitions
and show how data structures we use are initialized. In section 3 we show how to

2We use logF n for (logn)* and loglog® n for (loglogn)*

Version 2.4.2 Last Revision: 7 July 1997 3

produce the adjacency lists of the graph representing the given poset. Section 4
containsg correctness proofs, the generalization technique and some final remarks.

2 Preliminaries

2.1 Basic definitions

TLet Ly, Lo, and L3 be three linear extensions which are a realizer of poset
P=(X,<p). Let | X
the graph Gp = (X, F) which is the transitive closure representation of P. We

= n. We want to efficiently build the adjacency lists of

assume, for the sake of simplicity in algorithm description, n = 2" for some h.
The extension to all values of n is straightforward and left to the reader.

Each linear extension £;, ¢ = 1,2, 3, is represented by an array L;[1..n],
where L;[k], k = 1,...,n, is the name of the element which is in position k in
the i-th extension.

We make use of the following additional data structures:

e Two arrays I1[1..n] and I5[1..n] such that I1[k] — 1 (resp. Iy[k] — 1) gives
the number of elements following the element. of name k in Ly (resp. Lj);

e A tree T, similar to the x-fast trie of Willard [11], that is suitably initial-
ized with information from £ and Lo;

e An array N|[1..n] used in building T}

e Two lists Pp and Pg, used during the phase of construction of adjacency
lists of Gp to contain additional information related to the position in T'
of the current element.

The algorithm receives in input the three arrays Iy, .5 and Lz and produces
in output the array A[l..n] of pointers, such that A[k] points to the list of
elements adjacent to element of name k in the graph representing the given
poset.

The algorithm has three phases. In the first phase the additional data struc-
tures are initialized. Tn the second phase tree T 1s adjusted. In the third phase
the array A of adjacency lists for Gp = (X, F) is produced.

Description is given by means of pseudo-code: for more details see [6].

2.2 Initialization

Arrays Iy and Iy are initialized as above described using, respectively, arrays
fq and LQ.

Nodes in tree T are records with an elem field (representing the name of the
element) and two pointers to the left son and to the right son.

Version 2.4.2 Last Revision: 7 July 1997 4

A record is created for each element in Li[k]. Array N is then initialized by
assigning in position n — k 4+ 1 a pointer to the node representing the element
of name I [k].

Tree T is finally built by creating a balanced structure where all the internal
nodes have the value zero in their elem field, and the leaves are the records
pointed by array N. This is done so that the left-to-right order of the leaves
corresponds to the order of elements in N, that is to the reverse order of the
elements in L. The height of T is O(logn), due to the balanced way it is built.

Array A of adjacency lists is initialized by inserting the loop edge corre-
sponding to x <p z relations.

The time complexity of the first phase is O(n) for initializing arrays Iy, I,
N, and A plus the time for building 7. This can be easily built in time O(n), for
example using a recursive approach that builds the tree from the leaves upwards.
Hence the first phase runs in linear time. The space used is ©(n).

3 Computing the poset

3.1 Tree adjustment

In this phase elements in T are moved upwards so that the more an element, is
in front in L4 the highest it is moved in T. Moreover all useless (i.e. with the
elem field equal to zero) nodes are pruned from 7.

Hence after the adjustment phase T has the heap property with respect to
Ls, and the search tree property of 7" with respect to £; has been weakened in
a controlled way (specified by invariant 3.2 below).

Tree adjustment 1s done by means of a recursive visit. of 7', until a node with
at least one son having a non-zero value is reached. At this point the son of the
current node more in front in £y is exchanged with the current node, that is
sifted down in the tree.

This process 1s specified in more detail by the following high level description:

if the current element is not a leaf
then
ADJUST the left subtree; ADJUST the right subtree;
EXCHANGFE the current node with the son more in front in L;
if the exchanged son is a leaf
then prune it from the tree
else ADJUST the subtree rooted at the exchanged node;

Version 2.4.2 Last Revision: 7 .July 1997 5

The running time for the adjustment phase is given by the recurrence P(k) =
QP(g)—i—O(log n), since the only effect of the further ADJUST after the EXCHANGR
is to make the zero value in the elem field of the current node sift down in the
tree until to the leaf level. Since it is, for any constant ¢ < 1, logn = O(n')
the above recurrence has solution P(k) = O(n).

Hence the second phase runs in O(n) time and uses O(n) space.

At the end of the adjustment phase tree T satisfies the following two in-
variants. Let 7(k) be the path (i.e. sequence of nodes) in T from the root to
element k. Let 7’'(k) be m(k) minus the node representing element k.

Invariant 3.1 Along w(k) elements are encountered according to their order
relation in L.

Invariant 3.2 Fach element j belonging to a subtree rooted al a node z ¢ n(k)
such that x is a left (resp. right) son of a node in ' (k) satisfies j >, k (resp.
7 §£1 k)

3.2 Building adjacency lists

This phase is accomplished one element at a time, starting from the last element,
in Lz. The process is done in three steps, according to the following high level
algorithm.

algorithm ADJACENCES;

for k:= n down to 1 do begin
STEP-1: search in T element of name I3[k] using value I1[].3[k]] and storing
in Pp pointers to nodes in 7(L3[k]) and in Pg pointers to those right
sons of nodes in m(3[k]) which are not in 7(L3[k]) themselves;
STEP-2: delete I3[k] from T’
STEP-3: check nodes in Pr and Pg for dominance with respect to k;

In sTEP-1 the search for elements in T uses as search key the values in T;.
Given the way T has been initialized, the value I1[k] uniquely determines the
search path in T for the element of name k. This digital search tree [1] property
is maintained during the adjustment phase. Hence, element k& will be found
along such a path at a height which depends on the value Is[k]: the larger is
such a value the closer k is found to the root of T

We denote with p(7') the pointer to the root node of T. Searching for the
element of name k is done by starting at p(7') and following, like in digital search
trees, the path given by the binary value of I1[k]. During the search, lists Pr
and Pg are created as above described.

Version 2.4.2 Last Revision: 7 .July 1997 6

Clearly, the search for each element is executed in O(logn) time. Lists
Pr and Pg are emptied before each of such a call. When the current search
terminates lists Pr and Pg have a O(logn) length.

Once the current search has returned the pointer to the desired node, such a
node has to be deleted from T and the tree has to be adjusted. Deletion is done
in STEP-2 by substituting the value in the elem field of the found element with
the value of one of its sons, suitably chosen to maintain the tree invariants. This
process is similar to that described in the adjustment phase. Clearly, deletion
does not increase the height of 7. Each deletion step runs in O(logn) time.

Elements which dominate k are now found in sTEP-3 with the help of lists Pr
and Pg, according to the following high level description (note that dominance
testing for elements in Pp can be done using only £):

for each element j in Pp
if j dominates the current element &
then adjacency with j is inserted in A[k];

for each element j in Pg
if j dominates the current element %
then
adjacency with j is inserted in A[k];
the dominance test is recursively repeated on both sons of j

The processing of nodes in Pp has a O(logn) running time. Let my denote
the number of edges in the adjacency list of node k. Concerning the processing
of nodes in Pg, it is easy to check that it has a O(max(my,logn)) running time
since each time recursion is invoked exactly one edge is added to the adjacency
list of node k. The space used in the third step is ©(n).

The running time for the third phase is thus O(nlogn+3_,_, max(mg, logn)),
that is O(m + nlogn). The space used is O(n).

Since both the first two phases run in linear time and space, the total running
time for the poset computation is O(m + nlogn) using ©(n) space.

4 Correctness and generalization

4.1 Correctness

Correctness of the presented algorithms derives from the following theorems.

Theorem 4.1 Fach directed edge (x,y) in Gp corresponds to a couple (z,y)
such that ¢ <p y.

Version 2.4.2 Last Revision: 7 July 1997 7

Proof. To prove the statement we prove that when the directed edge (z,y) is
added to the adjacency list of 2 it is (2 <z, y) A (2 <z, y) A (2 <g, y). But
x <g, y derives from the test on ; and = <., y derives for nodes in Pp from
invariant 3.1 and for nodes in Pgr from the test on Ls. Concerning the third
linear extension, since nodes in 3 are processed in reverse order and they are
deleted from T after their processing, whichever node = is still in 7" when y 1s
being processed clearly satisfies z <., y. a

To discuss the second theorem we need some notation. Let F, be the set
{z]x <, y} and let Sy be the set {z | 2 <., y}. Let 7(Pr) denote the set of
nodes in those subtrees whose roots are pointed by pointers in Pg. Similarly let
7(y) denote the set of nodes in the subtree whose root is element y.

We give a preliminary lemma.

Lemma 4.2 When the search process in STEP-1 has found node y it 1s Fy;NS, C
P'r U T(PR).

Proof. Assume, by way of contradiction, that z € F, NS, but z ¢ Pp Ut(Pr).
The latter might happen in two ways: (i) 2 € 7(y) or (1) z € 7(w), where w
is the left son of a node in #'(y) and w ¢ w(y). But (i) is absurd since, by
invariant 3.1, if € 7(y) then y precedes z in the first linear extension. Also
(i1) is absurd since, by invariant 3.2, if 22 € 7(w) then y precedes z in the second
linear extension. a

Theorem 4.3 For each couple (z,y) such that 2 <p y a directed edge (z,y) is
present in Gp.

Proof. From the previous lemma and the way algorithms above work, each
time it is # <p y element z is found during the processing of element y either
in Pp orin 7(Pg) and y is added to list A[z]. O

From the above discussion we have therefore proved the following theorem:

Theorem 4.4 Given a 3-dimensional poset P = (X,<p) on n elements by
means of three linear extensions realizing it, the graph Gp = (X, E) which is
the transitive closure representation of P can be produced in O(m + n logn)
E

worst-case running time, where m = , using ©(n) worst-case space.

4.2 Generalization

We now discuss how to extend the result of theorem 4.4 to a dimension d > 4.
Following Overmars [7] we use a method of Willard and Lueker [12]. Let T,_,

Version 2.4.2 Last Revision: 7 July 1997 8

be the data structure used to solve the problem for dimension d. For d > 4 the
last linear extension is set aside and the remaining d — 1 are considered to build
structure T;_1 by the following recursive process.

Let Ty, & > 2, be the structure to be built with the remaining k& linear
extension. A balanced binary tree (primary structure) is built on the n elements
according to their order in the last of the remaining k linear extensions, and the
elements are stored in the leaves. Each internal node z contains in a (k — 1)-
dimensional version of the structure (secondary structure) all the elements in
the leaves which are descendants of node z, taking into account the remaining
(k — 1) linear extensions. Tf k — 1 = 2 then T is the tree T discussed in the
previous sections and the recursion terminates.

Let R(d,n) denote the time needed to initialize the structure Ty_; for n

elements. From the previous discussion and the analysis for d = 3 follows
R(4,n) = O(n) + 2R(4, 5) whose solution is R(4,n) = O(nlogn). The general

case is given by the solution to the recurrence R(d,n) = R(d —1,n)+2R(d, 7)),
that is R(d,n) = O(nlogd*3 n).

We now consider elements in the inverse order as they appear in the d-th
linear extension. Assume the element currently considered is y.

To find elements 2 such that 2 <p y asearch is done in the primary structure
for element y. Tet 7(y) be the path, in the primary structure, from the root
to the leaf containing y. Tet o(y) denote the set of nodes which are left sons
of a node in m(y) but do not belong to m(y). Nodes in o(y) identify O(logn)
secondary structures which are (recursively) queried with y.

Remember that element y is deleted from trees of type Ty after the query
has been answered. Hence, each element 2 returned from (recursive) queries to
secondary structures cleary satisfies z <p y.

Let P(d) and S(d) denote, respectively, the worst-case running time and the
worst-case space used by structure T;_; to build k edges of the graph repre-
senting a d-dimensional poset on n elements. Tt is easy to check that P(d) and
S(d) are expressed by the solution to the following recurrences:

P(d) = O(k) +Q(d)
Q(d) = O(logn)Q(d—1)
Q4) = O(logn)O(nlogn)
and
{ S(d) = O(logn)S(d —1)
S(4) = O(logn)©(n)

We can therefore conclude with the following theorem:

Theorem 4.5 Given a d-dimensional poset P = (X,<p) on n elements by
means of d linear extensions realizing it, the graph Gp = (X, E) which is the

Version 2.4.2 Last Revision: 7 July 1997 9

transitive closure representation of P can be produced in O(m + n lo_qd72 n)

E|, using O(n log ™ n) worst-case space.

worst-case running time, where m =

)

m]

Acknowledgments. We thank both referees for their valuable comments that
greatly helped in improving the presentation. Thanks also to one of the referees
for suggesting the use of range trees with slack parameter to improve Spinrad’s
approach.

References

[1] Daniel E. Knuth. The Art of Computer Programming: Sorting and Search-
mng, volume 3. Addison-Wesley, Reading, MA, 1975.

[2] D.T. Lee and Franco P. Preparata. An improved algorithm for the rectangle
enclosure problem. Journal of Algorithms, 3(3):218 224, 1982.

[3] George S. Lueker. A data structure for orthogonal range queries. Tn 19th
Annual Symposium on Foundations of Computer Science (FOCS’78), pages
28 34, Ann Arbor, Mich., October 1978. TEEE.

[4] R. McConnell and Jeremy Spinrad. Linear-time modular decomposition
and efficient transitive orientation of comparability graphs. In 5th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pages 536
545, 1994.

[6] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-Dimensional
Searching and Computational Geometry, volume 3 of FATCS Monographs
on Theoretical Computer Science. Springer-Verlag, Berlin, 1984.

[6] Enrico Nardelli, Vincenzo Mastrobuoni, and Alesiano Santomo. Tmplement-
ing the computation of a poset from its realizer. Technical Report n.128,
Dipartimento di Matematica Pura ed Applicata, Universita di I.’Aquila,
I.’Aquila, January 1997.

[7] Mark H. Overmars. Efficient data structures for range searching on a grid.

Journal of Algorithms, 9:254 275, 1988.

[8] Michiel H. Smid. Range trees with slack parameter. ALCOM: Algorithms
Rewiew, 2:77 87, 1991.

[9] Jeremy Spinrad. Dimension and algorithms. Tn Vincent Bouchitté and
Michel Morvan, editors, International Workshop on Orders, Algorithms,
and Applications (ORDAL’9}), pages 33 52, Lyon, France, July 1994. Lec-
ture Notes in Computer Science n.831, Springer-Verlag.

Version 2.4.2 Last Revision: 7 July 1997 10

[10] Dan E. Willard. Predicate-oriented database search algorithms. Ph. D. Dis-
sertation, Harvard University, Cambridge, Mass., September 1978. Avail-
able as Tech.Rep TR-20-78, Center for Research in Computing Technology.

[11] Dan E. Willard. TLog-logarithmic worst-case range queries are possible in
space 8(N). Information Processing Letters, 17:81 84, 1983.

[12] Dan E. Willard and George S. Lueker. Adding range restriction capability
to dynamic data structures. Journal of the Association for Computing

Machinery, 32(3):597 617, July 1985.

