On Building the Transitive Reduction of
a Two-Dimensional Poset *

Enrico Nardelli'? Vincenzo Mastrobuoni'
Alesiano Santomo'

1. Dipartimento di Matematica Pura ed Applicata, Univ. of 1.’Aquila, Via
Vetoio, Coppito, 1-67010 1.’Aquila, Italia. FE-mail: nardelli@univaq.it

2. TIstituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle
Ricerche, Viale Manzoni 30, 1-00185 Roma, ltalia.

Printed on: May 5, 1997

Abstract

In this paper we provide an efficient algorithm for computing the graph
representing the transitive reduction of a two dimensional poset which is
given by means of the two linear extensions realizing it.

Keywords: partially ordered sets, algorithms, data structures.

1 Introduction

Tet P = (X,<p) be a partially ordered set (poset) defined on the ground set
X by means of the partial order relation <p. TLet £ = (X,<z) be a poset
defined on the same ground set but such that <, is a total order relation and
r<py==z<cy. Poset L issaid to be a linear extension of P.

A set {Lq, Lo, ..., L} of linear extensions of a poset P is said to be a
realizerof Pif 2 <py=x <, y,Vi=1,2,... kand z||y' = i, j with i £ j
such that z <, yand y <., =.

The minimum k such that a set {L1, L2, ..., Lr} of linear extensions of a
poset. P is a realizer of P is said to be the linear dimension of P.

Given a poset P = (X,<p), a directed graph Hp = (X, E) representing P
can be defined, such that (z,y) e F < (2 <p y) A—[(w € X)A (w # 2) A(w #

*Research partially supported by the Ttalian MURST 40% project “Algoritmi, Modelli di
Calcolo e Strutture Informative”.
12||ly means that neither z <p y nory <p =

Version 1.6.2 Last Revision: 5 May 1997 2

YA (z <p w)A(w <p y)]. Sometimes Hp is also called the transitive reduction
representation of P.

Tet poset P = (X, <p) of linear dimension d be given by means of d linear
extensions realizing it. An algorithmic problem posed by Spinrad [6] is how to
efficiently build the adjacency lists of the directed graph Hp = (X, F) which is
the transitive reduction representation of P.

Ma and Spinrad [4] give for two-dimensional posets an algorithm which runs
in worst-case O(n?) time and worst-case O(n) space, where n = |X|. This is
optimal only for posets whose transitive reduction representation is such that
F| = Q(n?). Whenever the poset is such that m = o(n?) there is the
possibility of an improvement.

m =

Guting, Nurmi, and Ottmann [1] use computational geometry techniques to
provide an O(m + nlogn) worst-case time and O(n) worst-case space algorithm
to compute all the m direct (i.e. non-redundant) dominances in a set of two-
dimensional points of the plane. Their approach therefore directly provides a
better algorithm than Ma and Spinrad’s for m = o(n?). But for sparser posets
such that m = o(nlogn) there is still some space for improvement.

nlogn)
. loglogn
at the price of a slightly higher space usage. Our algorithm, in fact, runs in
logn : : logn
O(mloglogn + nloglogn) \fvorstfcas.e time using ()(nlng]ngn) Worstfca,:.ie space.
From now on, when speaking of ‘time’ we always mean ‘worst-case time’ and

In this paper we provide a better algorithm for the case m = o

with ‘space’” we mean ‘worst-case space’.

The paper is organized as follows. In section 2 we give the basic definitions
and introduce the used techniques. Tn section 3 the data structure allowing us
to obtain the cited bounds is described. Finally, section 4 shows how to produce
the adjacency lists of the transitive reduction graph of the given poset.

2 Preliminaries

TLet £ and Lo be two linear extensions which are a realizer of poset P —
(X,<p). Let | X| = n. We want to efficiently build the adjacency lists of the
graph Hp = (X, E) which is the transitive reduction representation of P.

Each linear extension £;, 7 = 1,2, is represented by an array I;[1..n], where
Li[k], k = 1,...,n,is the name of the element which is in position k in the i-th
extension.

We also use an array T[1..n] such that I[k] gives the position where element
of name k occurs in 1.

Let us consider the poset elements as a set of 2-dimensional points in the
plane, with coordinates given from their position in the two linear extensions.

Version 1.6.2 Last Revision: 5 May 1997 3

Let us define a direct dominance relation between two points P = (P, P,) and
Q = (Q=,Qy) as follows. P directly dominates @, written Q@ < P, if (Q, <
P) A (Qy < Py) and no other point R # @ exists such that (Q < R)A(R < P).
Clearly, the direct dominance relation is exactly the set of edges of the transitive
reduction representation of the poset.

Following Giiting, Nurmi and Ottmann [1], we note that the zone of the
plane directly dominated by a point P is the whole rectangle having as corners
the origin and P, less the union of those rectangles having as corners the origin
and every point @ which is directly dominated by P.

Our approach to compute direct dominances is based on the line-sweep tech-
nique from computational geometry [6]. We move a horizontal line starting from
the highest point in the vertical direction towards the origin of the coordinate
axes. Each time a point is encountered some direct dominances between the
current, point and points previously considered are possibly produced. Hence
the basic approach is to cycle through the set of elements in descending order
of their second linear extension.

The critical point is the data structure used to find and report direct domi-
nances. In a traditional approach to direct dominance the line-sweep technique
can be combined with a data structure called interval tree [5] to obtain all direct
dominances in O((m + n)logn) time using O(n) space.

Guting, Nurmi, and Ottmann [1] combine the line-sweep technique with a
divide and conquer approach and the use of a stack instead of an interval tree
to improve the time bound to O(m + nlogn), while maintaining a O(n) space
usage.

We resort to the more traditional approach but couple it with our variation
of a data structure defined ad-hoc for finite domains, namely the interval trie of
Karlsson and Overmars [3]. This is a dynamic data structure used to solve the
1-dimensional stabbing problem [5] in a finite domain. That is, given a set of n
1-dimensional intervals whose endpoints are from the domain U = [0..u — 1], the
interval trie supports insertion and deletions of intervals and efficiently answers
stabbing queries, i.e. queries asking for all intervals containing the query point
pelU.

Tn [3] there is no space analysis for the interval trie, but an implementation
directly derived from the description in the paper produces a worst-case space
usage of O(u?) and an initialization time of O(uloglogu).

In fact, an interval trie is made up of O(; lolg“) substructures. The i-th
oglogu))

substructure stores only the intervals of length between (log” u)'~' and (log” u)*,
for some constant € > 0. The i-th substructure uses one global Johnson tree [2]
on the domain U = [0..u—1] and has O(—-%;—) parts. For each part. there are

(log*® u)

two Johnson trees on the domain U/, containing respectively those left and right
endpoints of intervals falling into the part, and one list containing the name

of intervals wholly covering that part. FEach interval wholly covers O(log" u)

Version 1.6.2 Last Revision: 5 May 1997 4

parts of the substructure it belongs to. For more details on the interval trie the
reader is referred to [3]. A Johnson tree on the domain U uses O(u) space and
is initialized in O(loglogu) time. This gives for the whole interval trie a space
usage of (big-oh is omitted in summation upper bounds to improve readability):

log u u log u
Togtog i (log®)11 Tog (g 7 "

i=1 =1 i=1

log u
Tog log u
1
= 0(u?) Z O(W) = 0(u?),

i=1)

and, analogously, an initialization time of:

log u 1
Tog log 1 (log® u)t—1

Z Z O(loglogu) = O(uloglogu).

i=1 =1

The following lemma is therefore a directly derivable corollary of results dis-
cussed in [3].

Lemma 2.1 Given a set of n 1-dimensional intervals whose endpoints are from
the domain [1..n] an interval trie exists solving the stabbing problem with a query

time of O(k + logﬁ)gn) (where k is the number of reported answers), insertion
and deletion times of O(loglogn), and an initialization time of O(nloglogn)

using O(n?) space.

3 The re-normalized interval trie

We improve on the space usage by defining a re-normalized interval trie that
introduces two changes in the Karlsson and Overmars’ structure.

The first modification derives from the observation that each part of the
i-th substructure of an interval trie only contains O((log” u)'~") different points
of the overall domain /. Hence in each part we can re-normalize the overall
domain of size O(u) to the O((log® u)*~") size of the domain considered in that
part.

From this observation it follows that the two Johnson trees used for each
part of the substructure i only have a O((log” u)*~') size and are initialized in
O(log(i — 1) + logloglog u) time.

A second change comes from observing that we can discard the global John-
logu

. . . . loglog u . .

tree is used during insertion and deletion of intervals to access and update in

O(loglogu) the list of all those parts that are covered by the considered in-

son tree used in each of the Of) substructures. The global Johnson

terval. But we can, during the insertion of an interval, thread together all

Version 1.6.2 Last Revision: 5 May 1997 5

the occurences of the interval that are inserted in these lists and connect the
occurence in the leftmost list to the left endpoint of the interval in the corre-
sponding Johnson tree. If we implement these lists as bi-directionally linked
lists, during the deletion of an interval we can start from the left endpoint of
the interval and delete all the inserted occurences within the same time bound.

With the modifications above described we maintain for all the operations
the same time bounds of the standard interval trie, but now the overall space
used by the re-normalized interval trieis

log u u
Inglngu (log® u)i—1

S S Olog wy Y =

i=1 7j=1
log u log u
ok log 1 X 108 log log u
= O(——r————(logu)' ") = O(u 1=0(u—>—
7,2_1: ((log‘ u)i-! (log" u)"™") () 72_1: (“logz;]ogu)7
and, analogously, the initialization time is:
log u _
Inglng u (log® u)’ 1
Z Z O(log(i — 1) + logloglogu) =
i=1 j=1
log u log u
Tog log u Tog log 1]()g i])
= uloglogl O(—+———— =
= ulogloglogu ; log “ 771 21 log “ 7,1)

= O(ulogloglogu).
From the above discussion and the results in [3] the following theorem derives.

Theorem 3.1 Given a set of n 1-dimensional intervals whose endpoints are
from the domain [1..n] a re-normalized interval trie erists solving the stabbing
problem with a query time of O(k + mzﬁ)gn
answers), insertion and deletion times of O(loglogn), and an initialization time

of O(nlogloglogn) using O(n

) (where k is the number of reported

loglngn) space.

4 Building adjacency lists

Algorithms are described in a Pascal-like form, omitting begin-end whenever
deducible from typografical layout.

Arrays T 1s initialized by the following procedure:

Version 1.6.2 Last Revision: 5 May 1997 6

procedure POSITION {initialize array I depending on array 71}
var k: integer;

for k:=1 to n do T[I1]k]]:=k;

Building of adjacency lists is done through the following algorithm:

algorithm ADJACENCES;

Let S be an empty and initialized re-normalized interval trie;
Let I be an empty list of integers;
Insert interval with name n and endpoints [0, /[I.5[n]]] into S,
for k:=n — 1 down to 1 do
pr= 11K
I:= the list of names of those intervals that contain p in S;
add to the adjacency list of element k all the elements in /;
insert interval with name k and endpoints [0, 7[7s[k]]] into S;
for each interval with name 7 in [do
delete 7 from S;
insert interval with name i and endpoints [p, I[1s[i]]] into S;

The algorithm above correctly reports all direct dominances, since each time
a new interval enters in the re-normalized interval trie the existing intervals
which directly dominate it are updated by subtracting from their extension the
span covered by the new interval.

The time complexity of the algorithm is given by the initialization time plus
the time needed to answer the n — 1 stabbing queries plus the time needed to
update intervals. Let m be the total number of reported answers to stabbing

logn)
loglogn

and for all updates is O(mloglogn). Tnitialization time is a lower order term,

queries. Then time complexity for all the stabbing queries is O(m + n

hence from lemma 2.1 and theorem 3.1 we have the claimed result.

References

[1] Ralf-Hartmut Giiting, Otto Nurmi, and Thomas Ottmann. Fast algorithms
for direct enclosures and direct dominances. Journal of Algorithms, 10:170

186, 1989.

Version 1.6.2 Last Revision: 5 May 1997 7

[2] Donald B. Johnson. A priority queue in which initialization and queue
operations take O(loglog D) time. Mathematical Systems Theory, 15:295
309, 1982.

[3] Rolf G. Karlsson and Mark H. Overmars. Scanline algorithms on a grid.
BIT, 28:227 241, 1988.

[4] T.-H. Ma and Jeremy Spinrad. Transitive closure for restricted classes of

partial orders. Order, 8:175 183, 1991.

[6] Franco P. Preparata and Michael 1. Shamos. Computational Geometry. Text,
and Monographs in Computer Science. Springer-Verlag, 1985.

[6] Jeremy Spinrad. Dimension and algorithms. Tn Vincent Bouchitté and
Michel Morvan, editors, International Workshop on Orders, Algorithms, and
Applications (ORDATL’94), pages 33 52, Lyon, France, July 1994. Lecture
Notes in Computer Science n.831, Springer-Verlag.

