258

F;:l;zor?-&p frogx the optimal bucket set Bope by level-oriented recursive
of the optimization procedure. The s 3

: . re. The second strategy creates the di

@ n p he di-
tctory on th'e fly, Le. during the bucket optimization process. The best
strategy and its efficiency is still an open problem “)

References

}“ G - P A« . P
In?fft)ir;d;nx&(.ﬁ.&i—g&r;f&.gglynamlc index structure for spatial searching
7 oo 004 3 nt. Conf. on Management of Data, pp. 47—
0 . . .
aI‘Icosnr,lcht, A, S%A,. H‘—\TV,, and Widmayer, P.: The LSD-tree: spatial
I :es(f o multidimensional point- and non-point objects. In: 15th
;];? - Conf. on VLDB, pp. 45-53, Amsterdam, 1989. .
. Ca,rr;el, I. and Fal‘outsos, C.: On packing R-trees. In: Proc. 2nd Int
onf. on Information and Knowledge Management 490-499, W .
hington D.C., 1993. o o
4. Lawler, E.L.: Combinatori imizati
, E.L.: al Optimization: Net i
Holt, Rhinehart and Winston, 1976. eimorks s Mo,
2. II\D/Ieyelr,BB. Eiffel: The Language. Prentice Hall, 1991.
. Tag;la 3 .-U. and Six, .H.-W.: On optimal static spatial data structures
Pec ;ucgl report, University of Hagen, in preparation .
7. Pa - i , .
ufe{, . U:, SIX,'H.«W., 'ar.xd Toben, H.: The transformation techni-
;1 . Ior spatial ol?Jects revisited. In: Abel, D., Ooi, B.-C. (eds.): Proc
Sirngaxll)t. Sernpom;l;r; on Large Spatial Databases (SSD) pp. .73~88.
ore, June 3. Lecture Notes i Science N ,
Pt Ay es in Computer Science No. 692,
8. - 1
f:g:i, lB.'U., Six, H.-W., Toben, H., and Widmayer, P.: Towards
In.- P aysi(:)f range query performance in spatial data structures
(p.OI;gc. UM 12th Symposium on Principles of Database Systems
(F), pp. 214-221, Washington, D.C., May 1993.) I

A Hybrid Pointerless Representation of
Quadtrees for Efficient Processing of
Window Queries

Enrico Nardelli, Guide Proietti
Dipartimento di Matematica Pura ed Applicata, Universita di L’ Aquila, Via Vetoio, Localita
Coppito, 67100, L’ Aquila, Italy
and
Istituto di Analisi dei Sistemi ed Informatica, C.N.R., V.le Manzoni 30, 00185 Roma, Italy
E-Mail: nardelli@iasi.rm.cnr.it, guido@iasi.rm.cnr.it

Abstract: Efficient management of spatial data is becoming more and more
important and for very large sets of 2-dimensional data, secondary memory data
representations are required. An important class of queries for spatial data are those

he data: they are called window queries (also region or

that extract a subset of t
range queries). In this paper we propose and analyze the hybrid linear quadtree for
of three kinds of window queries,

the efficient secondary memory processing

namely the exisz, the report and the select query. In particular we show that it is
possible to answer to all the above queries for multiple non-overlapping features
with a number of accesses to secondary memory never greater than the number of
pixels inside the window. More precisely, we prove that for a window of size nxn
a feature space (e.g., an image) of size TXT (e.g., pixel elements) using the
nd report query can be answered with O(nlog,T)
while the select query can be answered with

in
hybrid linear quadtree the exist a
accesses to secondary storage,
O(nlong+n2/r) accesses to secondary storage. This is an improvement in worst-
case time complexity over previous results [Nar93] and shows that multiple non-
overlapping features (i.e., coloured images) can be treated with the same I/O
complexity as single features (i.e., black and white images).

1 Introduction
Systems able to manage efficiently spatial data have now become an important

research topic [Gun90], [Ege93]. Spatial access methods are therefore required to
provide efficient retrieval of information in these systems. But, more in general, it is
the whole field of efficient external processing of 2-dimensional data that is a hot
research topic in itself (see, for example, [Kan93] where one of the most important
issues in object oriented programming, namely indexing classes, and one of the most
important issues in constraint logic programming, namely indexing constraints, are
reduced to external 2-dimensional interval management).

Many different approaches can be used to represent spatial data: array representation
(raster-based), runlength codes, polygons (vector-based), bounding boxes, mapping to
higher or lower dimensional spaces and so on. Many data structures have been defined
for specific classes of spatial data (i.e., point, lines, rectangles. . .): quadtrees, R-trees,
cell-tree, grid-files and so on. See [Sam89] for a survey.

From the storage point of view, we can roughly classify data structures either as
suitable to main memory or as secondary storage oriented. Each approach has its pros
and cons, and the choice depends on the kind of application to be developed. Anyway,
very often the choice is forced by the size of the data, in the sense that if we process a
very large amount of data that cannot fit into core memory, we have to use a disk-

260

bgsed rf;prcsemmion_ In this work we focus on secondary memory representations of 2-
dimensional regions. Some data structures have been designed explicitly for this
purpose: R-trees [Gut84], R*-trees [Bec90] and R*-trees [Fal87] are for representation
of rectangles, cell-tree [Gun89] allows to represent arbitrary convex polygons by
decpmposing them in cells. Others, like grid-files [Nie84], have been originally
designed for secondary memory management of points but can be used for regions by
means of a transformation process. A third class of structures, like region quadtrees
[Sam84], have been designed for main memory processing but can be implemented for
'secondary memory by means of svitable techniques. We follow the third approach and
investigate efficient secondary memory implementations of quadtrees.

The term quadtree is generally used to denote a hierarchical data structure developed
by a regular decomposition of the space. The hierarchical decomposition is data-driven,
but always proceeds according to a regular scheme, going to a deeper level only where
rqpresemed features are irregularly distributed. In this way space is saved where the
d1§txibution is more regular. There exist two categories of quadtree representations
oriented to secondary memory: the collection of leaf nodes in the quadtree [Gar82] and
the string obtained by a preorder tree traversal of the nodes in the quadtree, also called
DF-expression [Kaw83]. Our hybrid approach is a blend of the two and allows us to
obtain an efficient processing of window queries.

In this paper we therefore consider the following class of spatial data: an item of
the class is a set of non-overlapping 2-dimensional features. Each feature, that is an
area homogeneous with respect to a certain value, is represented by a 2-dimensional
region (not necessarily connected). A special case is when only one feature is present.
In the latter case we can think to the item as a black and white image, while in the
former and more general case we can think to it as a coloured image.

) Spatial data can be queried in many possible ways. Window queries have a primary
importance to efficiently process spatial data, since they allow to extract from the
whole image only the parts of interest. Window-based queries we analyze are the
following:

exist(f,w): Determine whether or not the feature f exists inside window w;

report(w): Report the identity of all the features that exist inside window w;
select(f,w): Determine the locations of all occurrences of the feature finside window
w.

) A worst-case time efficient main memory implementation of these operations is
given in [Are90]: Aref and Samet proved that the exist and report queries can be
answered in O(nlogl()gT)=k worst-case time for 2 window of size nx» in a feature space
(e.g., an image) of size TxT (e.g., pixel elements), using always O(T2) space for
representing the image. Their computational model is a RAM with uniform costs,
therefore the number of features does not appear in asymptotic bounds. So, though the
window contains n? pixels, the worst case time complexity of their algorithins is
almost linearly proportional (and not quadratic) to the window diameter. These results
are achieved via the introduction of the incomplete pyramid data structure, a main
memory representation of the image derived by the pyramid data structure. The
incomplete pyramid representation, which nses (?)(7‘2) space in all cases, independently
from the amount of data really contained in it, becomes inadequate for Jarge amounts
of spatial data, when secondary memory needs to be used. Besides, when considering

* Al log are base 2 unless differently stated

261

secondary memory daia structures, the performance measure o be used is the number
of random access (o data, since main memory processing time is usually negligible
compared with laiency and seek times of disks. We make the standard assumption that
each secondary memory access transmits one page of 7 units of data, and we count this
as one I/O.

Aref and Samet [Are92] also gave a secondary memory approach for the efficient
processing of the window queries, using 2 particular technique (the active border
technique) requiring O(n) additional space. Assuming the underlying spatial database
stored in a disk-based structure, their algorithm executes all the above gueries with M
disk 1/O requests, where M is the number of quadtree blocks in the underlying spatial
database that overlap the window, and therefore is M’ =0(@n?); in this way, window
queries can be answered (in terms of /O complexity) in O(Mlog,T).

In this paper we refine the approach defined in [Nar93]. T his new approach allows
us to improve worst-case time complexity for exist and report queries from
O(nlog,T+n?/r) to O(nlog,T), maintaining the same O(T?) worst-case space
complexity in the RAM with uniform costs model. We show that for all the above
queries the number of accesses is never greater than the number of pixels inside the
window. In particular, we prove that for a window of size >z in a feature space (e.g.,
an image) of size Tx7 (e.g., pixel elements) the exist and report queries can be
answered with O(nlog,T) accesses on secondary storage, while the select query can be
answered with O(nlog, T+n?/r) accesses on secondary storage.

If the solution proposed in [Are90] is put on secondary memory using Bt-trees,
the following bounds can be obtained: @(7'2/1') for space, O(nlog,T) for exist and
report, O(nlog,T+n2/r) for select (in [Are90] no dependency from the 7?2 term is
claimed for the select query, using a technique called feature-dependencies, but it is not
clear how it is possible to give as answer a list of 0(rz2) elements in less than ()(nz)).
Therefore our solution has the same worst case bounds as a secondary memory
implementation of [Are90], but uses less space in the average since do not store
always the complete quadtree as it is done in [Are90].

The paper proceeds as follows: in Section 2 we recall the guadtree structure for
single and multiple non-overlapping features, also giving an overview of pointerless
representations. In Section 3 we present the algorithms to perform the window
operations with an efficient number of accesses on secondary storage. Finally, section
4 contains considerations for further work and concluding remarks.

2 The data representation

In this section we describe how the quadtree data structure is used to represent
efficiently spatial data for multiple non-overlapping features.
2.1 The guadtree data structure

The quadtree is a progressive refinement of an image that saves storage being based
on regularity of features distribution. Assuming to have at disposal an image of size
TxT (e.g., pixel elements), where T is such that it exists an integer m such that
2m=T we proceed in the following way: at level 0 there is the whole image, of side
length T. At the first level of decomposition the image consists of four guadrants of
side length 772. We shall use also the term block to denote a quadrant. At the second
level each quadrant is then subdivided into four quadrants of side length 7/22 and so
on. The decomposition process carried out by the quadtree goes on until each quadrant

262

ﬂshcovezeci by only one feature. The decomposition can go on until the pixel level,
with quadrants of side length 7/2", where we assume that a quadrant is always covered
E)gf only one feature. The decomposition can be represented as a tree of outdegree 4
with the root (at level 0) corresponding to the whole image and each node (at level d)
to a quadrant of side length 7/29. The sons of a node are, in preorder, labelled NW,
NE, SW and SE. For a given image, nodes are then homogéneous (leaf nodes) or
heterogeneous (intermediate nodes). Correspondingly, we speak of homogeneous and
heterogeneous blocks. Using a drawing as an example, ideas will be clearer:

Fig. 1. Multiple non-overlapping features and their quadiree

ifhe quadtree can be implemented as a tree (pointer-based representation) or as a fist
(pointerless representation). In the former, random access is privileged, but a
substantial amount of overhead in terms of space is associated to it. In the: latter,
random access is not supported, but the pointerless nature simplifies disk-based
representations, absolutely needed for large amounts of spatial data. ‘

2.2 Secom@ary memory implementation

There exist substantially two categories of list-based representation of a quadtree:
the collection of the leaf nodes and the linear list resulting from a preorder traversal of
the quadtree.

One of the most .attractive approach in the first category is the FL linear quadtree
[(_}ar82]_. Gargantini gave a representation starting from the assumption to have a
binary image, bu_t extending the FL linear quadtree to multiple non-overlapping
f_catuxes is immediate. Also here the collection of leaf nodes is stored as a sorted linear
list, but now each node has two fields:

L. the locational key, whose digits reflect successive quadrant subdivisions;

2. the value field, that contains the index of the feature associated with the node.

. The l.ocational key (I-key in the following) for a node of level d in a 2/"x2™ space
;s reﬁlllrsxvgy defined as it follows. Define the key for the root as an all-zero string of
ength m. Given a node n and its father node n' in the quadtree, let n’ have l-key k'
Then, the 1-key k of n is: ! , M

_ k=k’+s5M-d
where s=1, 2,.3 or 4 if n is respectively the NW, NE, SW, or SE son of n”:

The I-key is then a base 5 code with m digits. So, for example, the locational keys

over a 22x22 space are the following:

11] 12 ¢ 21 [22
tm 10 e 20 e
13 l 14 | 23 ! 24

00

31 | 2|4 I 4
e 30 w4) et
33 l 34 | 43 l 44

Fig. 2. Locational keys in a 4x4 space

263

So, for example, for the image in figure 1, we generate the following list:

(111,0),(112,2),(113,0),(114,0),(120,2),(130,3),(141,1),(142,0),(143,0),
(144,1),(200,0),(300,3),(410,1),(420,0),(430,0),(440,0)

corresponding to the following features table:

feature index
O 0

2
B 3
Fig. 3. Features index table

Note that in this way also the background can be treated as a particular feature. We
could save space excluding the background nodes from the list, but for the sake of
generality it is preferable to treat the background like all other features.

Representing a quadtree as an ordered list of the homogeneous nodes is efficient
because reduces space occupancy and improves performances of sequential operations
(and we shall see how much this can be important). Also, when the I-keys are sorted
in increasing order, the sequence corresponds to the preorder traversal of the leaves in
the quadiree.

Concerning representations in the form of a linear list resulting from a preorder
traversal of the quadtree, the DF-expression [Kaw83] is surely one the most used. The
DF-expression for multiple non-overlapping features can be viewed, treating the
background as a feature, as a string containing two symbols: ‘H’ denoting
heterogeneous nodes and ‘F° followed by the index of the feature associated for
homogeneous nodes. As an example, the following string is the DF-expression for the
image in figure 1:

HHHFOF2FOFOF2F3HF1FOFOF1FOF3HF 1FOFOF0

Representing a quadtree as a DF-expression is efficient because of the data
compression, but accessing leaf blocks is rather time-consuming and this represents an
obstacle to its use for window queries processing. Furthermore, when the image size
forces us to use secondary memory, a balanced tree structure to improve searching
performances has to be used, but this can be done only for an indexed list. Thus, for
example, an implementation based on B*-trees may be used for the FL linear
representation [Abe83], but not for the DF-expression.

2.3 A hybrid representation

In this paragraph, an improved representation, called hybrid linear quadtree is
proposed. The idea is to represent also the internal nodes of the quadtree (like in the
DF approach) but coding them with an I-key (tike in the FL approach). The result is a
list as in the FL approach, but containing all the nodes in the quadtree. This allows
the use of a balanced tree structure as the B*-tree to efficiently represent the quadtree
and simultaneously supports random access to every node. We have a storage overhead
because of the need to store intermediate nodes, but these are no more than 1/3 of the
leaf nodes and thus the asymptotic space occupancy remains the same.
We assume that each page of the B*-tree has a capacity of r items, whether it contains
leaf nodes or internal nodes, and it is sorted in increasing order.

Each node of the hybrid linear quadtree (HL-quadltree in the following) has two
fields:

264

1. the locational key, whose digits reflect successive guadrant subdivision;

2. the value field, that is a string of a fixed number 5 of features slots.

The I-key is defined as in the FL approach. Concerning the value field, the bit slot
is set to 1 if and only if the associated feature is contained in the spatial region
corresponding to the node. As an example, the following list is the HIL-quadtree for
the image in figure 1:

(000,1111),(100,1111),(110,1010),(111,1000),(112,0010),(113,1000),(1 14,1000),
(120,0010),(130,0001),(140,1100),(141,0100),(142,1000),(143,1000),(144,0100),
(200,1000),(300,0001),(400,1100),(410,0100),(420,1000),(430,1000),(440,1000).

From the example it could appear that space for representing features dominates
over the space for I-keys, but remember that: (i) from a theoretical point of view,
given the RAM with uniform costs model, in asymptotic space bounds it is only the
number of nodes that is important; (ii) from a practical point of view, for typical sets
of spatial data, quadtree depth is in the range 10-16, which leaves space (given current
32-bits architectures) for at least 16 features (usually more than it is needed) in a 2-
words per node implementation.

3 Techniques and algorithms

In this section we describe techniques and algorithms to perform efficiently (in
term of secondary storage accesses) window operations for images containing multiple
non-overlapping features and represented as HL-quadtrees implemented using a B*-tree
structure. First, we present how the query window can be decomposed in smaller
subwindows to obtain a more efficient processing; then, algorithms are presented and
discussed, and their worst-case complexity is analyzed.

3.1 Decomposing Windows

The basic approach to window query processing is to divide the window into
subwindows and therefore to decompose the query into a sequence of smaller queries
onto the subwindows. Subwindows are the blocks corresponding to the leaf nodes in
the quadtree representing the inside of the window region in the image space. We name
these subwindows maximal blocks. We are interested to the number of maximal
blocks that are generated in the worst-case, since this number directly affects the
number of accesses on secondary storage. Dyer [Dye82] and Shaffer [Sha88] proved the
following:
Lemma 1: The number of maximal quadtree blocks inside an nxn window on a TxT
image is in the worts-case K=3(2n-logn)-5.

®

Maximal blocks can be generated in O(nloglog7) time [Are90]. Let L™ denote the set
of all 1-keys over a 2/"x2" space.

Definition 1: Let & and &’ be in L™, k is ancestor of k' if it exists an integer j
(0<j<m) such that the leftmost digits of k and k' are equal and the remaining m-j
digits of k are equal to 0. Correspondingly, we say that &’ is a descendant of k.
L]
Note that, given the correspondence between each block and its I-key, the 1-keys
sorted in increasing order correspond to the preorder traversal of the quadtree. Therefore
the above defined ancestor and descendant relations correspond to the hierarchical
relations between blocks in the quadtree. Moreover, due to the properties of a preorder
visit of a tree, all 1-keys relative to the descendants of a block with I-key k are the
smallest of the I-keys greater than k. Finally, the following lemma can be derived:

265

Lemma 2: Let 0 be a quadtree representing an image of size 22" and let [be its
hybrid linear representation. Let & be in £ and let r denote the spatial region with [-
key k. Then 7 is homogeneous in Q iff [contains either k or an ancestor of k, with
exactiy one bit-slot set to 1. e

3.2 Window queries

For multiple non-overlapping features, window queries are formulated as follows:
exist(f,w): Determine whether or not the feature f exists inside window w;
report(w): Report the identity of all the features that exist inside window w;
select(f,w): Determine the locations of all occurrences of the feature f inside window
w. This means to output all blocks homogeneous for feature f.

The basic approach to process all window queries is to decompose the query over 2
window into a sequence of smaller queries onto the maximal blocks contained inside
the window. In the following we examine them separately.

3.2.1 The exist query
For each maximal block b, we scarch the B*-tree the corresponding 1-key / to know if
b contains the features f. There are two possibilities:
(1) | appears in the B*-tree and the bit-slot corresponding to fis set to 1. Then we
output YES.
(2) I does not appear in the B*-tree. Then we check the block having the l-key
immediately smaller than / (with at most an additional access in case it resides on the
previous page of the B*-tree). This block necessarily corresponds to an homogeneous
ancestor of b. If the bit-slot corresponding to f is set to I, then we output YES.
Otherwise we pass to the next maximal block.
If we check for all the maximal blocks inside the window without finding the feature
f, then we output NO.

Procedure exist_multiple_feature here below gives the pseudo-code (note that the
return() instruction stops the execution of the procedure):

procedure exist_multiple_feature(f); o
list_of _blocks listmb; Mlistmb contains the list of maximal block inside

/the window
begin . o
listmb=window_gen(w); /generate the list of maximal blocks inside the
/window w;

for (each record r in listmb) de begin
B:=search(r); /search for the I-key of r in the B*-tree representing the HL-quadtree
/and returns the bucket that may contain r: if r exists in the B*-tree,
/it is contained in this bucket; each bucket contains also the pointer
/to the previous and next bucket;
for (each record s in B) do
if ((s is an ancestor of 7) or (r=5)) themn
if (the the bit-slot associated to fin s is 1) then return (YES);
A:=getpreviousbucket(B); [toad in main memory the bucket A preceding B;
freturn nil if B is the first bucket;
if (A is not nil) then
if (the last record of A is an ancestor of r) themn
if (the the bit-slot associated to fin s is 1) then return (YES);
end;

return (NO);
end.

Theorem 1: Given an nxn window on a TxT image containing multiple non-
overlapping features represented as an HL-guadtree stored on a B+-tree, the procedure
exisi_multiple_feature given above answers to the exist query with O(nlog,T) accesses
to secondary storage.

Proef: Let the number of nodes in the quadtree be N. Knuth [Knu73] shown the
depth of a B*-tree of order r is:

) h<1+log A(N+1)/2)

and then, since is N=0(72), it follows that for each maximal block we do, considering
also the extra access to the contiguous bucket, 0((1+!0g,T2)+l)=()(ﬁogr7) accesses on
disk. From lemma 1, the thesis follows. ®

3.2.2 The report query
We follow the same technique as in procedure exist_multiple_feature. The only
difference is that here we report all features we find,

procedure report_multiple_feature();
boolean block_covered, outside_block;
list_of_blocks listmb;
list_of features listf; Nlistf contains the list of features in the window;
begin
listmb=window_gen(w);
for (each record r in listmb) do begin
block_covered:=false;
B:=search(r);
for (each record s in B) do
if ((s is an ancestor of r) or {r=s)) then begin
add (listf, f); /add feature f associated to s to listf;
block_covered:=true;
end;
if (not block_covered) then begin
A:=getpreviousbucket(B);
if (A is not nil) then
if (the last record s of A is an ancestor of) then add (listf, /);
end;
end;
delete_duplicates (listf);
return (listf);
end.

/eliminate duplicate features in listf;

Theorem 2: Given an nxn window on a Tx7 image containing multiple non-
overlapping features represented as an HL-quadtree stored on a B+-tree, the procedure
report_multiple_feature given above answers to the report query with O(znlog 1)
accesses to secondary storage.

Proof: Same as theorem 1. e

3.2.3 The select query
Following the same idea as developed above, for each maximal block b we search

in the B*-tree its locational key I. There are four possibilities:

267

(1) I appears in the list and the block is homogeneous with respect to the feature bE
then we output it directly;
(2) I appears in the list and the block contains feature f but is not homogeneous with
respect to it. Then we have to examine all the descendants of b until we reach the first
node that is not a descendant of b.
(3) | appears in the list and the block does not contain the feature f* then we pass {0
the next maximal block;
(4) | does not appear in the list; in this case we have to check the l-key immediately
smaller than / (with at most an additional access in case it resides on the previous page
of the B¥-tree). This block necessarily corresponds to an homogeneous ancestor of b:
if the block contains the feature f, then we output b directly, otherwise we pass to the
next maximal block.

Procedure select_multiple_feature here below gives the pseudo-code:

procedure select_multiple_feature(f);
boolean block_present, outside_block;
list_of blocks listmb, listbb; /listbb contains the list of all occurrences of
/feature fin the window;
begin
listmb=window_gen(w);
for (each record r in listmb) do begin
block_present:=false;
B:=search(r);
for (each record s in B) do /remember that records appear in increasing order;
if ((s is an ancestor of r) or (r=s)) then begin
block_present:=true;
if (only the bit-slot associated to fin s is 1) then /s is homogeneous
/with respect to f
add(listbb, r);
if ((the bit-slot associated to fin s is 1) and (at least another different bit-slot
in 5is 1)) then begin /s contains fbut is not homogeneous
outside_block:=false;
while ((B is not nil) and (not outside_block)) do begin
for (each record s in the bucket B) do
if (the I-key of s is greater than the l-key of r) then
if (s is a descendant of r) then begin
if (only the bit-slot associated to fin s is 1) then
add(listbb, s);
end
else outside_block:=true;
B:=getmextbucket(B);

end;
end;
/the third possible case is when s does not contain f;
end;

if (not block_present) then begin
A:=getpreviousbucket(B);
if (A is not nil) them
if (the last record s of A is an ancestor of r) then
if (the bit-slot associated to fin s is 1) then add(listbb,)

268

/if the bit-slot associated to fin s is 1 none of the other bit-slots in s is 1

emdi;
end;
return (listbb);
end.
Theorem 3: Given an axn window on a 7T image containing multiple non-
overlapping features represented as an HL-quadtree stored on a B*-tree, the procedure
select_multiple_feature given above answers to the select query with ()(nlog,-T+n2/r)
accesses to secondary storage.
Proof: Cases (1), (3) and (4) cost 0((Zﬂ+logr2‘2)+1)=0(logr7) accesses to disk.
Concerning case (2), we note that each block has width O(n) and then it has 0(n?
sons in the worst case; then, O(n2/r) accesses to secondary storage for each maximal
block in the window may be necessary. From lemma 1, this analysis would derive an
upper bound on the number of accesses of O(n(long+n2/r)). But since O(n?) is an
upper bound on the number of homogeneous blocks in the window, at most we
transfer in main memory O(n?/r) pages in the totality of the accesses. Therefore the
bound becomes O(nlog, T+n/r). o

We conclude this section giving a comparison between the performances in terms
of space occupancy and I/O time complexity of our structure and those provided by the
previous approaches proposed in literature. Let us just recall that our notations are: T
for the image size, n for the window size, r for the bucket size, Q for the total number

of quadtree blocks in the underlying spatial database (and therefore is Q:O(TZ)), M for
the total number of quadtree blocks in the underlying spatial database that overlap the
window, (and therefore is M=0(n2)).

SPACE N TIME
buckets # I/O access
exist report select
HI_~quadtree QN O(nlog,Q) O(nlog Q) O(nlog,Q n? I
i 2 2. 2
Linear Quadtree || OX(Q/r) O(nlog,Q +n“/r) | O(nlog,Q +n“/r)| O(nlog,Q+n Ir)

Active border oQIn OMlog,Q) OMilog,Q) OMlog,Q)
Inc. Pyramid (9(72/r) O(nlog,T) O(nlog,T) O(nzlogrY)

4 Conclusions

In this paper we have proposed and analyzed worst-case complexity of a new
technique for efficiently processing window queries on spatial data stored on secondary
memory. We use as performance measure the number of secondary storage accesses
and we show that for multiple non-overlapping features the number of accesses is
proportional to the window width for the exist and the report queries and never greater
than the number of pixels inside the window for the select query.

Future work will be in the direction of an extension of this technique to the more
general case of multiple overlapping features, including a definition of a secondary
memory data structure supporting them.

269

References

[Abe83]: D.J. Abel, A B¥-tree Structure for Large Quadirees, in Computer Vision,
Graphics and Image Processing 27, 1 (July 1984), pp. 19-31.

[Are90]: W.G. Aref and H.Samet, Efficient processing of Window Queries in the
Pyramid Data Structure, in Proc. of the Ninth ACM-SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, Nashville, TN, April 1990, pp.265-272.
[Are92]: W.G. Aref and H.Samet, An Efficient Window Retrieval Algorithm for
Spatial Query Processing, Technical Report n° 2866 of Computer Science
Department, University of Maryland, March 1992,

[Bec90): N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, The R*-tree: an
Efficient and Robust Access Method for Points and Rectangles, in Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, 1990, pp. 322-331.
[Dye82]: C.R.Dyer, The space efficiency of quadtrees, Computer Graphics and Image
Processing, 19(4):335-348, August 1982.

[Ege93]: M.J. Egenhofer, What's special about Spatial: Database Requirements for
Vehicle Navigation in Geographic Space, Session on Database Challenges in Proc. of
ACM Sigmod Int. Conf. on Management of Data, Washington DC,1993,pp.398-402.
[Fal87]: C. Faloutsos, T. Sellis and N. Roussopoulos, Analysis of Object Oriented
Spatial Access Methods, in Proc. of the SIGMOD Conf., San Francisco, May 1987,
pp. 426-439.

[Gar82]: I. Gargantini,.An Effective Way to Represent Quadtrees, Comm. of the
ACM, Vol. 25, No. 12, 1982, pp. 905-910.

[Gun89]: O. Ginther, The Design of the Cell Tree: An Object Oriented Index
Structure for Geometric Databases, in Proc. of the Fifth IEEE Int. Conf. on Data
Engineering, Los Angeles, CA, February 1989, pp. 598-605.

[Gun90]: O. Gunther, O. and A. Buchmann, Research Issues in Spatial Databases,
SIGMOD RECORD, Vol. 19, No. 4, December 1990, pp. 61-68.

[Gut84]: A. Guttman, R-Trees: a Dynamic Index Structure for Spatial Searching, in
Proc. of the SIGMOD Conf., Boston, June 1984, pp. 47-57.

[Kan93]: P. Kanellakis, S. Ramaswamy, D. Vengroff and J. Vitter, Indexing for Data
Models with Constraints and Classes, in Proc. of the 12th ACM Symp. on Principles
of Database Systems, Washington, DC, May 1993, pp. 233-243

[Kaw83]: E. Kawaguchi, T. Endo and M Yokota, Depth-first Expression Viewed from
Digital Picture Processing, in IEEE Trans. on Pattern Analysis and Machine
Intelligence, July 1983, pp. 373-384.

[Knu73): D.EXnuth, The art of computer programming, Vol.3: sorting and
searching, Addison-Wesley, Reading, MA, 1973.

[Nar93]: E. Nardelli and G. Proietti, Efficient Secondary Memory Processing of
Window Queries on Spatial Data, in Eigth Int. Symposium on Computer and
Information Sciences, Antalya, Turkey, November 1993.

[Nie84]: J. Nievergelt, H. Hinterberger and K.C. Sevcik, The Grid File: an Adaptable.
Symmetric, Multikey File Structure, ACM Trans. on Database Systems 9, March
1984, pp. 38-71.

[Sam84]: H. Samet, The Quadtree and Related Hierarchical Data Structures, in
Computing Surveys, Vol. 16, No. 2, June 1984, pp. 187-260.

[Sam89]: H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1989.

[Sha88]: C.A.Shaffer, A formula for computing the number of quadiree node
fragments created by a shift, Pattern Recognition Letters, 7(1):45-49, January 1988.

