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Hierarchies and Planarity Theory
GIUSEPPE DI BATTISTA anp ENRICO NARDELLI

Abstract —Hierarchies are widely used in many fields of social and
mathematical sciences. In diagrammatic representations of hierarchies the
minimization of the number of crossings between edges is a well-admitted
criterion for improving readability. An efficient algorithm is proposed for
testing if a hierarchy is planar (i.e., it can be drawn without edge crossings).
Furthermore, a complete combinatorial characterization of the class of
planar hierarchies is given.

I. INTRODUCTION

Hierarchies are widely used in structuring and managing com-
plex problems in many fields of social and mathematical sciences
[20]. A clear graphic presentation of a hierarchy allows the reader
to focus on the information content of the diagram [18], {19].

Several algorithms have been proposed in the literature for
achieving readability of diagrams by means of automatic tools
(see, for example, [12}, [3]). The state of the art in this field is
surveyed in {15]. In particular, some algorithms have been pre-
sented for automatic drawing of hierarchies [19], [5], [14]. Usu-
ally, hierarchies are drawn by assigning the vertices to levels and
representing the edges as straight lines (or at least as polygonal
lines monotonically increasing in the vertical direction).

A criterion largely used to obtain a good readability is to
produce diagrams with a limited number of crossings between
edges [2]. From the point of view of combinatorial complexity the
problem of minimizing the crossing number for k-level hierar-
chies has been shown to be NP-complete even if k=2 [9]. The
problem remains NP-complete also if the positions of symbols in
one of the two levels is fixed [6]. Moreover, the problem of
deleting the minimum number of edges to obtain a two-level
planar hierarchy is NP-complete [17].

These arguments enforce the heuristic approach used in deal-
ing with the crossing number problem in {19]. Improvements to
such an approach have been proposed in [5], [14], [13].

The crossing number problem has been shown to be NP-com-
plete for unlayered graphs [9], but for this kind of graph there
exist two well-known algorithms to test if the graph is planar (i.e.,
it can be drawn without edge crossings): the first is presented in
[8] and the second in [11] and [4]. Furthermore, a complete
combinatorial characterization of the class of planar graphs was
given in [10]. However, as noticed in [5], the planarity-testing
algorithms do not yield a representation of the graph according
to any hierarchy. See, for instance, the hierarchy in Fig. 1 that is
planar in the usual sense but that cannot be drawn without
crossings if the vertices are constrained to remain on the levels
and the edges are represented with straight lines. An algorithm
for testing planarity of two-level hierarchies is given in [6].
However, it is not possible, in general, to reduce the problem of
testing the planarity of a k-level hierarchy to the one of testing
the planarity of the (k —1) two-level hierarchies that compose it.

In this paper an efficient algorithm is proposed for testing if a
hierarchy can be drawn without edge crossings. The basic idea is
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Fig. 1.

Nonplanar hicrarchy.

Fig. 2.

Hicrarchy with three subsets.

to virtually generate all possible drawings, then to delete those
containing crossings. The data structure that is used to design the
algorithm efficiently is the PQ-tree structure, presented in [4]. If
the hierarchy admits a cross-free drawing, the algorithm con-
structs it from the PQ-tree structure.

Finally, a complete combinatorial characterization of the class
of hierarchies that admit a planar representation is given. Such a
characterization is formulated in terms of necessary and suffi-
cient conditions for a hierarchy to be cross free.

The rest of the paper is organized as follows. In Section II we
introduce basic definitions and some preliminary results. In Sec-
tion III we present a theoretical approach for testing the pla-
narity of hierarchies. Section IV deals with the planarity testing
algorithm and its time complexity. In Section V we give necessary
and sufficient conditions for a hierarchy to admit a representa-
tion without edge crossings. Finally, in Section VI we outline
further research topics.

II. DEFINITIONS AND PRELIMINARY RESULTS

Let G(V, E) be a graph, and suppose that the set V of its
vertices is partitioned into k subsets (S, S,,---.S;) such that
there is no edge of E connecting two vertices in the same subset.
We assume that each edge is directed from the vertex belonging
to the subset with lower index to the vertex of the subset with
higher index (we refer to [7] for standard terminology on graphs).

If for each vertex y belonging to subset S, (j#1) there exists
at least one edge (x, y) such that x belongs to a subset S, (i < j),
we say that G is a hierarchy [19] (see in Fig. 2 an example of a
hierarchy made up of three subsets).

Notice that in Fig. 2 the edges are drawn without arrows
because we assume that they are directed from the top to the
bottom of the figure. This kind of representation will be used in
all the figures of the paper.

A hierarchy is said to be proper [19] if every edge connects
vertices belonging to consecutive subsets. In the following we
refer to a hierarchy by G(V, E, L), where

V  set of vertices,

E set of directed edges,

L function ¥ —1,2,- - -, k that gives for each vertex the index
of the subset to which it belongs.
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Fig. 3. Proper hierarchy.

Fig. 4. Two embeddings for the hierarchy of Fig. 3.

The following properties hold for L:

1) for each v,w €V such that L(v) = L(w) =i, (v,w) € E;
2) for each v such that L(v)=i and i#1= there exists
w & V such that L(w) <i—1 and (w,v) € E.

G is proper if |
3) for each (w,v)€ E= L(v)— L(w)=1 (see in Fig. 3 a
proper hierarchy).

Every hierarchy can be easily reduced into a proper one by
transforming an edge between nonconsecutive subsets into a
sequence of edges, each one connecting two consecutive subsets.
In the following we deal only with proper hierarchies.

Given k pérallel lines on the plane, consecutively numbered,
we define a k-line embedding of a hierarchy G(V, E, L) to be a
drawing such that

® all vertices of subset S; are drawn on line i;
® edges are drawn as straight lines.

3
The embedding is completely specified by the ordered sequences
of vertices on lines corresponding to subsets. A k-line planar
embedding is a k-line embedding without crossings between
edges (see in Fig. 4 two embeddings of the same hierarchy, one of
which is k-line planar). A hierarchy is said to be k-line planar if
it admits at least one k-line planar embedding.

Notice that subset S; may have more than one vertex. In this
case it is always possible to add a new subset S, with exactly one
vertex, connected to every vertex of S (see in Fig. 5 the hierarchy
of Fig. 3 after the addition of the new subset). Such a transforma-
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Fig. 5. Hierarchy of Fig. 3 after addition of new subset.

HEIGHT(C)=i

DEPTH(c)=]

Fig. 6. Example of path.

Fig. 7. Example of bridge.

tion does not modify the planarity properties of the given hierar-
chy. As a consequence, in the following we consider only hierar-
chies such that |S;|=1.

Let G(V,E, L) be a hierarchy. We introduce the following
definitions.

A path is an ordered sequence of vertices v,, v, - -, 0,, (n>1)
such that for each pair v, v;,, (i=1,2,---, n —1) either (v;,v;,,)
or (v;,,,;) belongs to E.

Let C be a path. BOTTOM(C) is one of the vertices of C such
that L(BoTTOM(C)) > L(v) for each v belonging to C. TOP(C) is
one of the vertices of C such that L(ToP(C)) < L(v) for each v
belonging to C. Let DEPTH(C) = L(BOTTOM(C)) and HEIGHT(C)
= L(TOP(C)) (see Fig. 6). .

We denote with LACE(, j), (i < j), the set of paths C connect-
ing any two vertices x of §; and y of §; such that HEIGHT(C) =i
and DEPTH(C) = .

Let C, and G, be two completely distinct paths belonging to
LACE(i, j). We define bridge to be a path connecting vertices x
and y, with x belonging to C; and y belonging to C, (see
Fig. 7).
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Fig. 8 Example for Lemma 2.

Given a k-line embedding I" of G and a subset S:

® for each vertex x of S, ORD(x) indicates the position of x
in the ordered sequence associated to S, in T’

® given a subset R={x,,x,,"--,x,} (n>1) of S, we say
that vertices of R are consecutively ordered if ORD(x,, ) =
ORD(x,)+1 (i=1,2,---,n—1).

The following lemmas can be easily proved by means of topologi-
cal arguments.

Lemma 1: Let (x, y) and (w, z) be two edges such that x is
distinct from w and y is distinct from z. Suppose that L(x)=
L(w)=i and L(y)=L(z)=i+1. If ORD(x) <ORD(w) and
ORD( y) > ORD(z), then (x, y) and (w, z) cross each other in T

The previous lemma can be generalized as follows.

Lemma 2: Given four distinct vertices x, y, w, and z, such
that L(x)=L(w)=iand L(y)=L(z)=j>1i,let C;, be a path
between x and y belonging to LACE(/, j), and let C, be a path
between w and z belonging to LACE(i, j). Suppose that C; and
C, are completely disjoint. If ORD(x) < ORD(w) and ORD(y) >
ORD(z), then it exists at least one crossing in I' (see Fig. 8).

In the following theorem we show three sufficient conditions
for G to be not k-line planar.

Theorem 1: Let L,, L,, and L; be three paths belonging to
LACE(i, j). If one of the following conditions hold, then
G(V, E, L) is not k-line planar.

1) L,, L,, and L; are completely disjoint and pairwise con-
nected by bridges. Bridges share no vertex with L, L,, and L;,
but for the endpoints (see Fig. 9(a)).

2) L, and L, share an endpoint p and a path C (possibly
empty) starting from p, LN Ly= L, N L, =3; there is a bridge
b, between L, and L, and a bridge b, between L, and L,,
byNnL,=b,NL, =3 (see Fig. 9b));

3) L, and L, share an endpoint p and a path C, (possibly
empty) starting from p, L, and L; share an endpoint ¢ (¢ # p)
and a path C, (possibly empty) starting from ¢, G, NC, =3 ; L,
and L, are connected by a bridge b, b L, =3 (see Fig. 9(¢)).

Proof (by contradiction): Consider any k-line embedding I of
G. Suppose 1) holds and assume, without loss of generality, that
ORD(TOP( L,)) < ORD(TOP(L,)) < ORD(TOP(L,)). If T is k-line
planar, then ORD(BOTTOM(L,)) < ORD(BOTTOM(L,)) <
ORD(BOTTOM( L,)). Using the bridge between L, and L,, it is
possible to find a path between TOP(L,) and BOTTOM( L;) and a
path between TOP(L,) and BOTTOM(L,) which satisfy the hy-
pothesis of Lemma 2.

Suppose 2) holds and assume, without loss of generality, that
p=TOP(L,)=TOP(L,) and ORD( p) < ORD(TOP(L,)). If T is k-
line planar, then we can assume that ORD(BOTTOM(L,)) <
ORD(BOTTOM( L,)) < ORD(BOTTOM( L;)). Using the bridge be-
tween L, and L,, it is possible to find a path between TOP(L,)
and BOTTOM( L,) and a path between TOP(L,) and BOTTOM( L,)
which satisfy the hypothesis of Lemma 2.
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Fig. 9. Examples for Theorem 1

Suppose 3) holds and assume, without loss of generality, that
p=T10P(L,)=TOP(L,),
orD( p) < orD(TOP( L;)),
g =8BotToM( L,) = BOTTOM( L,).

If T is k-line planar, then ORD(BOTTOM(L,)) < ORD(g¢). Using
the bridge between L, and L,, it is possible to find a path
between TOP(L,) and BOTTOM(L,) and a path between TOP( L)
and BOTTOM( L,) that satisfy the hypothesis of Lemma 2.

In Section V we shall show that Theorem 1 also gives necessary
conditions for a hierarchy to not be k-line planar.

III. THEORETICAL BASES FOR HIERARCHY PLANARITY TESTING

In this section we state the theoretical bases for the planarity
testing algorithm that is shown in Section IV. Let T(V, E,, L) be
any directed spanning tree of a hierarchy G(V, E, L). and let
E,= E— E,. Suppose that G is k-line planar. The following
theorem holds.

Theorem 2: For each directed spanning tree T of G. there
exists at least one k-line planar embedding o of T such that.
simply adding to o the edges in E, a A-line planar embedding of
G is obtained.

Proof (by construction): Choose any directed spanning tree T
of G (see Fig. 10(a)). If G is k-line planar, then it admits a k-line
planar embedding T'. Now, remove from I' the edges belonging
to E,, and obtain a k-line planar embedding o for T that
satisfies the thesis (see Fig. 10(b)).
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Fig. 10. Directed spanning tree for hierarchy in Fig. 5 and one of its k-line

planar embeddings that satisfies Theorem 2.

Xy X2 X3

Fig. 11. Example for Fact 1.

Notice that in Fig. 10 edges belonging to E, are represented
with bold lines and edges belonging to E, are represented with
dotted lines. From now on we shall use this kind of representa-
tion. Theorem 2 suggests an approach for k-line planarity testing
based on the following algorithm.

Algorithm KLT (G, 2):

1) Choose any directed spanning tree 7 of G.

2) Determine the set £ of all the possible k-line planar
embeddings for T.

3) For each edge e belonging to E, do

® add the edge e to each embedding in Z, and
® remove from ¥ all the embeddings that are not k-line
planar after the addition of e.

For Theorem 2, when Algorithm KLT terminates, if £ is empty,
then the hierarchy G is not k-line planar, else it is k-line planar.

Now we deal with the problem of removing from X all the
embeddings that are not k-line planar after the addition of a
certain edge. We give some preliminary results.

Fact 1: Let T be any directed spanning tree of G(V, E, L). If
G is k-line planar, then no vertex has more than two outgoing
edges belonging to E;.
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Vo(n)={x, x5}
Vim={y,.,y2.ys}
V"(n)=(z |]
vin)={w}
V~(in,x; )=(u 1 ]
V~(n,x, )=(u,)

Fig. 12. Example of introduced notation.

Proof: Suppose n has three outgoing edges in E,, namely
(n,x,), (n, x,), and (n, x;). Since T is a directed spanning tree of
G, each one of x|, x,, and x; has a father in 7, respectively y,,
., and y. If y, »,, and y; are distinct vertices (see Fig. 11),
then Theorem 1 (condition 1) holds and G is not k-line planar. If
two vertices among y;, ),, and ), coincide, then Theorem 1
(condition 3) holds and G is not k-line planar.

Fuact 2: Let T be any directed spanning tree of G(V, E, L). If
G is k-line planar, then no vertex has more than two sons in T
with ingoing edges belonging to E;.

Proof: Suppose n has three sons in T, namely x,, x,, and
X5, each one with ingoing edges in E;. Let (y;, x;), (12, X,), and
()5, x3) be three edges in E,. If y;, y,, and y; are distinct
vertices, then Theorem 1 (condition 1) holds and G is not k-line
planar. If two vertices among y,, y,, and y; coincide, then
Theorem 1 (condition 3) holds and G is not k-line planar.

Suppose now T is any k-line planar embedding of G(V, E, L)
obtained by adding edges of E, to a k-line planar embedding of
a spanning tree 7. Let n be a vertex belonging to S;, FATHER(#)
the father of »n in T, and sons(n) the set of sons of n in T.

For the sake of shortness we introduce the following notation
(see Fig. 12)

V(n) set of vertices of S, , that belong to SONS(n) and have
at least one ingoing edge in E;; from Fact 2 it follows
that |[V(n)| <2,
set of vertices of S;_, that have exactly one outgoing
edge in E,, which incides on vertex n, and have no
outgoing edges in E,,
set of vertices of S,_, that have exactly two outgoing
edges in E,, one of which incides on vertex n, and
have no outgoing edges in E,,
set of vertices of S;_, that have at least one outgoing
edge in E,, which incides on vertex », and have at
least one outgoing edge in E,.

V'(n)

V'(n)

Vo(m)

The following properties (1-5) hold for T'. They can be trivially
proved by contradiction using Lemma 1.

Property 1: Suppose w belongs to SONS(n). For each vertex x
such that ORD(x) < ORD(w), then ORD(FATHER(X))< ORD(n)
and for each vertex y such that ORD(y)> ORD(w), then
ORD(FATHER( y)) > ORD(#). As a consequence, the vertices be-
longing to SONS(#) are consecutively ordered in T on the line
corresponding to S, , ;.

Property 2: The vertices belonging to {FATHER(n)} U V'(n) are
consecutively ordered in T on the line corresponding to S, |, but
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FATHER(x) Y
X 4
(a)
P Y w q
Z X
(b)
Fig. 13. Two examples for analysis of crossings.

possibly for the vertices of S, | without outgoing edges in E.

Property 3: Suppose x belongs to V”(n). Then the vertices
belonging to {x}U{FATHER(n)}U V’(n) are consecutively or-
dered in T on the line corresponding to S;_,, but possibly for the
vertices of S,_, without outgoing edges in E. Note that |V"(n)|
<2

Property 4: Suppose x belongs to V" (n). Then the vertices
belonging to {x}U{FATHER(n)} U V’'(n) are consecutively or-
dered in T on the line corresponding to S,_ |, but possibly for the
vertices of S;_, without outgoing edges in E. Note that [V " (n)|
<2

Let V7 (n, x) be the set of vertices u of S such that (u, x)
belongs to E, and x belongs to V"(n) (see again Fig. 12).

Property 5: Suppose u belongs to V'~ (n,x). Let m be any
vertex belonging to SONS(#) and distinct from x. Then for all u,
either ORD(u) < ORD(n) and ORD(x) < ORD(m), or ORD(u) >
ORD(#) and ORD(x) > ORD(m).

The previous properties give necessary conditions for a k-line
embedding T, obtained by adding edges in E, to a k-line planar
embedding of T, to be planar. It raises naturally the question of
whether or not they are also sufficient. In the following the
answer will be provided.

Let (x, y) be an edge in E,. Clearly, x belongs to one of the
disjoint sets V'(»),V"(y),V " (y). We say, respectively, that
(x, ) is an edge of type 1, 2, or 3.

Suppose now properties 1-5 hold for T' but it is not k-line
planar. Then it has at least one crossing. We distinguish among
three different cases

a) an edge of E, crosses an edge of E,,
b) an edge of E, crosses an edge of E,, and
¢) an edge of E; crosses an edge of E,.

Case a) is not possible due to the construction of T.

Suppose case b) holds. Let (y, x) be the edge of E,, and let
(n,z) be the edge of E,. From Property 5 it follows that n#
FATHER(x) (see Fig. 13(a)). Furthermore, n has to be between
FATHER(x) and y; otherwise, the argument of case a) can be
applied. The edge ( y, x) may be of type 1, 2, or 3. However, this
is not possible due, respectively, to Properties 2, 3, and 4. As a
consequence, case b) is not possible.

Finally, suppose case c) holds. Let (y, x) and (w, z) be the two
edges of E,. Assume, without loss of generality, that ORD( y) <
ORD(w), and let p=FATHER(z) and ¢ = FATHER(x) (see Fig.
13(b)). Notice that must be ORD(p) <ORD(y) and ORD(q) >
ORD(w); otherwise, the argument of case b) can be applied.

Now three subcases are possible:

cl) p=#y and g+ w; note that y is between p and w; the
edge (y,x) may be of type 1, 2, or 3, but this is not
possible due, respectively, to Properties 2, 3, and 4;
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Fig. 14. Embedding that does not satisfv Property 6.

c2) p#y and g=w; note that y is between p and w, but
this is not possible due to Property 4:

c3) p=y and ¢g=w: this is the only case in which an
embedding T that satisfies Properties 1-5 is not k-line
planar.

Starting from these arguments, to complete the characterization
of a k-line planar embedding I" we can introduce the following.

Property 6. Suppose w belongs to V' * (z). Then there is no
edge (y,x) in E; such that y =FATHER(z) and x belongs to
SONS(w) (see Fig. 14).

We can say now that Properties 1-6 are necessary and suffi-
cient conditions for a k-line embedding T', obtained by adding
edges in E; to a k-line planar embedding of T, to be planar. A
further observation can be made: if we choose the directed
spanning tree T using a depth first search (DFS) technique [16],
Property 6 is always satisfied.

In fact, if Property 6 does not hold, then there exist the
following edges (see again Fig. 14): (y, x) and (w, z) belonging
to E,, and (y, z) and (w, x) belonging to E,. If T is chosen with
a DFS technique, we can suppose without loss of generality that

y is visited before w. However, in this case, for the nature of the

DFS technique, x is visited starting from y» and not starting
from w; therefore, ( y, x) belongs to E,.

IV. AN ALGORITHM FOR PLANARITY TESTING
OF HIERARCHIES

The number of k-line planar embeddings of a tree grows
rapidly (as a factorial in the worst case) with the number of
vertices. As a consequence, the implementation of Algorithm
KLT requires a data structure able to deal efficiently with this
combinatorial explosion.

Now we show an efficient way to represent all k-line planar
embeddings of a tree. We use a data structure already known in
literature as PQ-tree [4]. A concise description of the PQ-tree
data structure is given in Appendix L.

A PQ-tree allows one to represent all permutations of a set U
of objects in which the elements of certain subsets of U occur as
consecutive subsequences. As it happens for all hierarchies, an
embedding of a directed spanning tree T of a hierarchy is
completely specified by the ordered sequences of vertices on each
level. Due to Property 1, a k-line planar embedding of a directed
spanning tree is completely specified by the ordering of the leaves
obtained with a DFS traversal of the tree. Thus all 4-line planar
embeddings of T can be represented with a PQ-tree. named =,
that can be generated by the following straightforward algorithm.

- Algorithm Create (T, w):

BEGIN
copy T into
FOR EACH vertex v belonging to «
IF v is not a leaf
THEN
substitute » with a P-node
END.

It is easy to see (using Property 1) that PQ-tree 7 generated by
Algorithm Create (see Fig. 15(a)) represents all the possible
k-line planar embeddings of 7. Notice that a P-node with just
one son is not meaningful and can be replaced by its son (see Fig.
15(b) where such a transformation is applied to the PQ-tree of
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(a)

(b)

Fig. 15. Application of Algorithm Create to spanning tree of Fig. 10.

Fig. 15(a)). It is not difficult to modify Algorithm Create to
produce PQ-trees in which all P-nodes have at least two sons.

In the detailed description of the planarity testing algorithm,
the PQ-tree used to represent all k-line embeddings of the
directed spanning tree is created incrementally, while the algo-
rithm examines sequentially each subset S, of G.

A further issue to be considered is the number of edges. A
graph has, in general, O(|V|?) edges, but due to the basic
property of planar graphs (|E|<3|V|—6) we can focus our
attention on the case of O(|V]) edges. To have a good time
efficiency, the first test in the algorithm gets rid of the hierarchies
that do not satisfy this basic property of planar graphs.

We assume to have a procedure Remove(w, A,Empty) that,
given the PQ-tree = that represents a set 2 of k-line planar
embeddings of T and a set 4 of leaves of T, removes from = all
the embeddings such that the leaves belonging to A do not
appear as a consecutive subsequence. Empty is a Boolean vari-
able, true if # is empty. Note that Remove is similar to procedure
Reduce(7, S) in (4], where 7 =T, A= S, and Empty is true if T
is returned null.

Using the PQ-tree data structure and the arguments presented
in Section III Algorithm KLT becomes the following.

Algorithm XLT(G,7):
BEGIN
IF |E|>3|V|—-6
THEN RETURN(not k-line planar);
choose any directed spanning tree T of G;
o « the empty PQ-tree;
put in # the leaf corresponding to the root of T;
FOR /=1 TO k —1 DO
BEGIN
FOR EACH vertex m belonging to S; DO
BEGIN
D) I |{m,x) € E}|>2
THEN RETURN(not k-line planar);
IF SONS(m) # &
THEN IF [SONS(m)|>1
THEN BEGIN
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replace the leaf of « corresponding to m with a
P-node;
FOR EACH vertex w belonging to SONS(#) DO
add to the P-node just inserted in =
the leaf corresponding to w;
END
ELSE replace the leaf of # corresponding to m with its
son
ELSE IF m has no outgoing edges in £,
THEN Mark (m);
END;
FOR EACH vertex n such that (n belongs to S, ;) and (» has
ingoing edges in E;) DO
BEGIN
2) Remove(w,{n}UV'(n), Empty);
IF Empty
THEN RETURN(not k-line planar);
3) FOR EACH vertex v belonging to V''(n) DO
BEGIN
Remove (7, {n}U V' (n)U {v},Empty);
IF Empty
THEN RETURN(not k-line planar);
END;
4) FOR EACH vertex v belonging to V' A(n) DO
BEGIN
5) IF {(y, z)*= y = FATHER(n), z ESONS(v)} #&
THEN RETURN(not k-line planar);
6) Remove (7, {n} U V'(n)UsoNs(v), Empty);
IF Empty
THEN RETURN(not k-line planar);
END
END;
FOR EACH vertex m such that (m belongs to S;) and
(SONS(m) =2) DO
Mark (m);
END;
RETURN( k-line planar);
END.

At line 1 the condition of Fact 1 is imposed to improve the time
efficiency of the algorithm.

It is straightforward to see that Algorithm KLT" imposes that
Properties 26 hold for each embedding contained in #. This is
made subset by subset, starting from S,. At line 2 we make
Property 2 satisfied. In the cycle that starts at line 3 we impose
that Property 3 holds. In the cycle that starts at line 4 we deal
with vertices belonging to ¥V ” (n). In particular, at line 5 we
check if Property 6 is satisfied (notice that this test can be
omitted if the directed spanning tree 7 has been chosen by
means of the DFS technique), and at lien 6 we impose Properties
4 and 5.

Procedure Mark (n) makes the node n negligible in the subse-
quent manipulations of = carried on by procedure Remove.
Procedure Mark marks recursively also P-nodes and Q-nodes
whose sons are all marked. For the purpose of testing k-line
planarity such nodes could be removed from #, but they are
useful in the construction of the k-line embedding.

The following theorem derives from the foregoing arguments
and from the properties stated in Section III.

Theorem 3: Algorithm KLT’ returns “not k-line planar” if and
only if the hierarchy G is not k-line planar.

Now we show an example of application of Algorithm KLT’. The
hierarchy whose k-line planarity is tested is shown in Fig. 16(a);
in Fig. 16(b) a directed spanning tree is chosen. Since the
hierarchy is composed by four subsets, the external cycle of the
algorithm must be repeated three times. Fig. 16(c) shows 7 at the
end of the first iteration (i =1).

At the beginning of the second iteration (i = 2) leaves b, ¢, and
d are replaced by new nodes, as it appears in Fig. 16(d). After the
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(e) Q)

Fig. 16.

replacement, it starts the cycle that examines vertices belonging
to S;.,; due to the fact that ¢ belongs to V" (e) procedure
Remove is invoked as follows: Remove(,{e, g, i }, Empty). No-
tice that in this case ¥’(e) is empty, and SONS(c) = {g,i}. See in
Fig. 16(e) 7 after the execution of procedure Remove. Since 7 is
not empty, procedure Remove returns with Empty equal to false.
Now Remove is applied again, since ¢ belongs to V" (m):
Remove(w,{m, g,i},Empty). Also in this case Empty is equal to
false (see in Fig. 16(f) = after this last Remove).

At the beginning of the third iteration (i =3) leaves e, i, m,
and f are replaced, as it appears in Fig. 16(g), and g is marked.
Now, since V'(s)={/}, Remove (line 2 of the algorithm) is
invoked: Remove(w,{s,/},Empty). The result is shown in Fig,
16(h). At this point 4 is found to belong to V"(s); therefore,
Remove is applied again: Remove(,{s,/, #},Empty). Nodes /
and h are marked. See in Fig. 16(i) the final version of =

] KA &“\R i é ™

r

(1)

Application of Algorithm KLT".

produced by Algorithm KLT'. As Empty is always returned false,
G is k-line planar.

We can consider now the time complexity of the proposed
algorithm. The complexity of finding a spanning tree is O(|E)).
However, in our case the number of edges is O(|V|). The overall
complexity of the cycles that scan subsets and their vertices is
O(IV]. In fact, each of the cycles of lines 3 and 4 is iterated at
most twice, due to Properties 3 and 4. Moreover, to determine
which edges are in the set tested at line 5 has a complexity O(1),
due to Fact 1. Procedure Mark has clearly an overall complexity
of O(|V)). As a consequence, procedure Remove is critical for the
complexity of the whole algorithm.

If the set of objects to manipulate with a PQ-tree has size M,
if the constraints on feasible permutations are expressed by
means of N sets, and if the sum of the sizes of such N sets is S,
then the procedure that satisfies all constraints has complexity
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O(M + N+ S) [4]. In our case M =O([V]), N=0(|Ey). With
regard to S, we have that §=O(|V|), using Fact 1. Therefore, the
time complexity of the whole Algorithm KLT" is O(|V).

Finally, we show how to construct a k-line planar embedding
for a k-line planar hierarchy, starting from the PQ-tree m pro-
duced by Algorithm KLT'. Assume to have the final version of 7.
We indicate with f aleaf of T. Let f,, fy,-- -, f,, be one among
the feasible orderings of the m leaves of T (e.g., obtained with a
DFS traversal of ). Suppose to have a stack P, (i=1,2,---, k)
for each subset S, of G to record the order of the vertices on the
corresponding line. Let s(v) be a Boolean function, true if v has
been inserted in the stack corresponding to its subset.

The following algorithm TreeEmbed accepts as input an order-
ing fi. fo." " . f,, of the m leaves of T and assigns to each vertex
of G a value of function ORD().

Algorithm TreeEmbed(f,, fr,-- -, f,):
BEGIN
FOR EACH subset S, DO
P, := the empty stack;
FOR EACH vertex v € G DO

s(v) = false;
push the root r of T in P;:
s(r) = true;
FOR j:=1 TO m DO
BEGIN
push f, in P,(,’]:
s(f,) = true:
Bubble (FATHER( f,); (*visit recursively f,’s ancestors*)
END;
FOR j:=1 TO k DO
BEGIN
t=|PJ
REPEAT
pop vertex v from P
ORD(0) =1,
t=1-1;
UNTIL ¢ = 0:
END:
END.

Procedure Bubble completes the description of Algorithm
TreeEmbed.

Procedure Bubble(v);
BEGIN
IF not s(uv),
THEN BEGIN
push vertex ¢ in P, .
s( )= true;
Bubble (FATHER(0)):
END:
END.

It is straightforward to see that due to Property 1 the ordering
of vertices built by Algorithm TreeEmbed specifies a k-line
planar embedding of G. Notice that the time complexity of
Algorithm TreeEmbed is O(|V).

In Fig. 17 we show the application of Algorithm TreeEmbed to
the ordering of leaves obtained by a DFS traversal of the PQ-tree
of Fig. 16(i). In Fig. 17(a) we show the stacks after the last push
and before the first pop. In Fig. 17(b) the k-line planar embed-
ding obtained for the hierarchy of Fig. 16(a) is shown.

V. A CHARACTERIZATION OF PLANAR HIERARCHIES

In this scction we provide a combinatorial characterization of
k-line planar hierarchies. First we deal with the problem of
determining which is the maximum number of edges in a k-line
planar hierarchy, then we show necessary and sufficient condi-
tions for k-line planarity in terms of forbidden patterns.
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Fig. 17. Application of Algorithm TreeEmbed to hicrarchy of Fig. 16(a).

The problem of determining the maximum number of edges in
a k-line planar hierarchy can be stated as follows. Given a set |4
of vertices find a function L and a set E of edges such that the
hierarchy G(V, E, L) is k-line planar and |E| is maximum.

As noticed earlier we have from the graph theory that |E|<
3|V/]- 6, but it is interesting to determine a stricter bound for |E|.
Suppose now to have a directed spanning tree T of G. We denote
with E,, the set of edges of E, starting from the vertices in S,.

Lemma 3: For a k-line planar hierarchy |E,|<1S|-1.

Proof: Suppose T is a k-line planar embedding of G. Let S/
be the set of vertices of S, with exactly one outgoing edge in E;
and without outgoing edges in E,. Consider now any two consec-
utively ordered vertices x and v in §, —S/. Let X= {x}u
sons(x) and Y={y}UsoNs(y). Duc to the properties of a
k-line planar embedding there exists at most onc edge in E,
connecting a vertex in X and a vertex in Y. The number of such
edges is |S, — S/|— 1. The lemma follows from the fact that the
vertices in S’ have only one outgoing edge in K.

We are able now to count the edges in F,. Clearly, this is
significant only if & >3, i.e.. there exists at least one inner level.

Theorem 4: If G(V, E, L) is a k-line planar hierarchy, then
|E|<2|/V|—4

Proof: Clearly |E|=|E|+|E). and |E|=|V|-1 We can
say by Lemma 3 that

kol k-1

Y Eds X (S1-1).

i=2

k
[Ey| = Z |Ey | =

i=1 (=2

However, we have the following upper bounds:

k-1
Y ISi< V-2, and

i=2

k-1
Y 1=—(k-2) < -1,
i=2

and it follows that

[ <Vi-3.
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Fig. 18 k-line planar hierarchy with maximum number of edges.

We can now conclude
|E|=|E,|+|E|<|V|-1+[V|-3=2|V|-4.

Note that the bound of Theorem 4 is tight. In fact, for each
value of |V|>3 there exists at least one hierarchy with k>3
such that |E|=2|V|—4. Such a hierarchy has three subsets,
[Si1=1, [S;] =1, [S,| =|V|—2, and all the vertices belonging to S,
are connected to the vertex of S; (see Fig. 18). This completes the
numerical part of the characterization.

In the rest of the section we state that the conditions of
Theorem 1 are also necessary for k-line planarity. We give here
only a sketch of the proof because it involves many technical
details. The complete proof is reported in Appendix II.

Theorem 5: A hierarchy G(V, E, L) is not k-line planar if and
only if it satisfies one of the conditions of Theorem 1.

Proof sketch: The “if” part has been proved in Theorem 1.
The sketch of the “only if” part follows.

Consider a hierarchy G(V, E, L) that is not k-line planar and
apply to it Algorithm KLT. According to Theorem 2, Algorithm
KLT stops when the set = of all the possible k-line planar
embeddings is empty.

Let (r,s) be the edge of E; consider during the last step,
L(r)y=i and L(s)=i+1, and let (w, z) be one of the edges
crossing (7,s). Let R be an embedding that was contained in 3
at the beginning of the last step. Assume that (w, z) belongs to
E . Let x be the lowest common ancestor in T of r and w, and y
be the lowest common ancestor in T of s and w, and suppose
L(x)> L(y).

The situation is depicted in Fig. 19(a). The crossing is due to
the fact that w is placed between r and FATHER(s). We can say
in this case that w is “constrained” between r and FATHER(s). If
there were an embedding R’ in which w is not between r and
FATHER(s), we could add to R’ edge (r,s) without crossings.
However, in this case we would have R’ in the next step of the
algorithm.

The point now is to understand why such an embedding R is
constrained. One possible answer is that there exists a link
between the paths (x,---,z) and (y,---,s); see Fig. 19(b). It is
not difficult to find in the figure the pattern of the condition 3 of
Theorem 1, in this way proving the thesis.

VI. CoNCLUSION

A graph-theoretic approach to the planarity problem for
hiearchies has been presented. A linear time algorithm for testing
the planarity of a hierarchy and a combinatorial characterization
of the class of hierarchies that admit a planar representation has
been proposed. The algorithm has been implemented on an IBM
PC-AT using Pascal language.

Future research will be focused on the following topics.

® A direct extension of the present work is to study how
theorems and algorithms may be applied to a more general class
of hierarchies. in which sources are not restricted to belong to the
first subset.
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Fig. 19.

Example for proof sketch of Theorem 5.

® If a hierarchy is not k-line planar, it is interesting to study
heuristic approaches for the problem of minimizing crossings
based on the planarity testing algorithm. In fact, Algorithm KLT
(introduced in Section III) can be modified in the following way.

Algorithm KLT(G, Z):
1) Choose any directed spanning tree T of G.
2) Determine the set = of all the possible k-line planar embed-
dings for T.
3) For each edge e belonging to E, do:
if after the addition of e to all the embeddings in T there is
at least one embedding that remains planar,
then
® add the edge e to each embedding in =, and
® remove from Z all the embeddings that are not k-line
planar after the addition of e,
else
® mark e.

At the end of the algorithm, I contains all planar embeddings of
G that are planar and maximal (in the sense that no other edges
can be added to G without missing planarity). At this point
marked edges can be introduced back into such embeddings,
using a local optimization strategy similar to the one in [3].

APPENDIX |

The PQ-tree data structure was introduced in [4] to solve the
problem of finding all the feasible permutations of a set U of
objects, under the restriction that the objects of certain subsets

Ni--+,N, (N cU, i=1.2.--,n) occur as consecutive subse-
quences. A PQ-tree consists of P-nodes, Q-nodes, and leaves.
Given the set U= {u.---,u,,}, the family of PQ-trees over U is

defined to be all rooted ordered trees [1] whose leaves are
elements of U and whose internal nodes are distinguished as
being either P-nodes or Q-nodes [4]. Every P-node has at lcast
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Fig. 20. Examples for proof of Theorem 5. (a) Case al.1. (b) Case a2.2. (c) Case a3. (d) Case c2.

two sons and every Q-node has at least three sons. Typically, a
P-node is drawn as a circle and a Q-node as a rectangle.

A permutation of the objects of U is represented by the
ordering of the leaves of a PQ-tree 7 (i.e., the frontier of )
which is obtained by a traversal of # with a DFS technique. Two
PQ-trees of the same family are said to be equivalent if and only
if one can be obtained from the other by a finite sequence of
equivalence transformations; the only admitted equivalence
transformations are to 1) reverse the sons of a Q-node, and 2)
permute arbitrarily the sons of a P-node.

Each PQ-tree of an equivalence class has a different frontier
and represents a different permutation. Starting from a set U of
objects and from a collection of n sets Ny,-- -, N, of objects that
have to appear consecutively in the permutations of U, in [4] is
shown an algorithm that

1) produces the equivalence class of PQ-trees (if one exists)
whose frontiers correspond to all the permutations that
satisfy the constraints expressed by Ny, -+, N,;

2) if no class exists, then stops; and

3) runs in time O(m+ n+ S), where S is the sum of the sizes
of the sets N;.

In the correspondence we refer to an equivalence class of PQ-trees
by means of a PQ-tree which is a member of the class.

APPENDIX 11

Theorem 5: A hierarchy G(V, E, L) is not k-line planar if and
only if it satisfies one of the conditions of Theorem 1.

Proof: The “if” part has been proved in Theorem 1. Now we
deal with the “only if” part.
Consider a hierarchy G(V, E, L) that is not k-line planar and
apply to it Algorithm KLT. Moreover, suppose that the edges of
E, are ordered by the increasing level of the start vertex, and

suppose that they are considered during Algorithm KLT follow-
ing this ordering.

According to Theorem 2, Algorithm KLT stops when the set =
of all the possible k-line planar embeddings is empty. Let (r,s)
be the edge of E, considered during the last step, L(r)=1i and
L(s)=i+1, and let (w, z) be one of the edges crossing (r, s).

If m is an ancestor of n in T, we indicate with 7(m, n) the path
that connects m and » in T. If f and g are two vertices of G, we
indicate with g( f, g) a path that connects f and-g and contains
at least one edge of E;.

In the following we say that a path ¢ of G is a BARRIER(i +1) if
HEIGHT(¢) < i, DEPTH(¢) =i +1, and one of the following state-
ments is true.

a) ¢ is made up entirely of edges belonging to E,;
b) ¢ is made up of edges belonging to E, (possibly none) but
for the bottommost edge.

We shall also use notations T(m, n), T(m, n), T[m, n), T[m, n] to
denote the set of vertices belonging to path #(m, n) according to
conventions for open and closed intervals. Namely, a square
bracket indicates that the extremal vertex is included in the set
and a round bracket indicates that the extremal vertex is not
included in the set. In a similar way, given a generic path ¢ in T,
we shall indicate with (c] the set of vertices of the path but for
TOP(¢).

Let R be an embedding that was contained in 2 at the
beginning of the last step.

1) Assume that (w,z) belongs to E,. Let x be the lowest
common ancestor in 7 of  and w, and y be the lowest common
ancestor in T of s and w. Three cases are possible.

a) L(x)>L(y)

b) L(x) <L(y)
c) x=y.
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Abstract — A pattern recognition system for classifying brain-stem audi-
tory evoked potential is described. A string of terminal symbols, as a
formal representation of the evoked potential waveform, is processed by a
regular attributed grammar. Its semantic functions return a list of numeric
features that can be processed by a simple statistical classifier. Implemen-
tation of attributed grammars is discussed.

Manuscript received November 3. 1987: revised July 29, 1988, This work
was supported in part by NSERC Grant ARO34.

The authors are with the Department of Computer Science and Systems and
the Department of Medicine, McMaster University. Hamilton. ON. Canada
AN 3753

[E1E Log Number 8824018,

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 18, NO. 6, NOVEMBER /DECEMBER 1988

I. INTRODUCTION

Classification of brain-stem auditory evoked potential has be-
come a major component of diagnosis in neurology [1]. The
quantitative guidelines in this classification procedure are mainly
the latencies of evoked potential peaks. In present-day neurologi-
cal practice, the technician identifies these peaks by visual inspec-
tion. The idea of using syntactic recognition for waveform analy-
sis has been described and utilized many times, and it seems to
be one of the most powerful approaches to the waveform recogni-
tion; see, e.g., [3]-(6]. We describe one of the steps in the process
of automating pattern rccognition and classification of evoked
potential peaks. The entire process consists of four steps (see
Fig. 1):

® filter processing;

o formal description of the input waveform (evoked potential)
by a string of symbols;

® syntactic analysis;

® statistical classification.

We present a new method for syntactic analysis. The details of
the other three steps and their engineering and medical signifi-
cance were discussed in our earlier paper [2]. Here we focus on
the “syntactic analysis’ step and present a new grammar that is
more rigorous and a parser thac is more general and flexible in its
implementation. We will be using all terms and definitions in
conformity with [3].

II. SYNTACTIC ANALYSIS OF EVOKED POTENTIALS
BY ATTRIBUTED GRAMMARS

The preprocessed evoked potential waveform is segmented in
fixed-distance intervals (100 ps), and each interval is described
by one of three (terminal) symbols: « for upward slope, 4 for
downward, and f for a flat line.

First of all, we introduce a new grammar G1 that is able to
identify the start of the relevant waveform, ie., to skip the
artifactual data in the beginning. On the basis of experiments, we
have found that the first ten symbols must be eliminated, and
then the relevant waveform starts as soon as the substring uu or
uf occurs. The grammar Gl is therefore defined as

Gl=[Vy,. Vy, P, TO]

where V,,, is the alphabet of nonterminals, V; is the alphabet of
terminals, P, is the set of rewrite rules, and 70 is the initial
nonterminal:

Vy,={T0,T1,---,T11}

Ve=A{ud,f}

P:T(i-1) > xTi forall xe Vy, i=1,---,10
T10 - d T10 T10 > £ T10
T10 »u T11
Tl1->dT10
T11- u T11- f.

The language L, generated by Gl consists of strings

XM Xuw, XU Xuf

where x€V,, and X €V;* does not contain uu or uf as its
substring.

The other grammar, G2, can identify one hill. A hill is com-
posed of 1) a leading edge that is formed by u followed by a
sequence of u’s or f’s in any combination, and 2) a trailing edge
that is formed by d followed by any combination of ¢’s and f's.
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