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ABSTRACT

In this paper we propose and analyze a new meaningful
branching sequence to generate random quadtrees
representing binary images. In particular, we show that
this sequence produces expected distributions of external
and internal nodes much closer to real data than all
previous proposed approaches in the literature to model
both random binary images and quadtrees. This new model
provides a good compromise in representing images
belonging to various classes, more or less structured. The
effectiveness of the new proposed model is shown through
a comparison with respect to nodes distributions of
representative real spatial data images. The introduction of
this new realistic model can have a large impact on the
analysis of expected performances of a large class of
algorithms for spatial data processing. First experimental
results show that this new model closely simulate real
cases.

1. INTRODUCTION

Many different approaches have been proposed in the
literature to represent noiseless images of spatial data:
array representation (raster-based), runlenght codes,
polygons (vector-based), bounding boxes, mapping to
higher or lower dimensional spaces and so on; see [1] for a
survey. A largely used data structure for its good
compromise between space occupancy and time
consumption in the most recurrent spatial data processing
operations is the quadtree [2]. The term quadtree is
generally used to denote a hierarchical data structure
developed on the basis of a regular decomposition of the
space. The hierarchical decomposition is data-driven, but
always proceeds according to a regular scheme, going to
deeper levels only where represented features are more
densely distributed. In this way space is saved where the
distribution is more scarce.

The analysis of the time and space efficiency of the
quadtree dala structure generally clashes with the not easy
problem to give a random model defining in a satisfactory
way the behaviour of a certain class of images. In fact, the
intuitive and conventional random model that assigns to
each pixel, independently from any other pixel, a certain
probability to be black or white (i.., the so called pixel
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based model), leads to represent images in which there is a
very low degree of aggregation. Disaggregated images are
not typical instances of many real image classes (e.g.,
landuse maps, geographical maps and also sets of
geometrical objects). So, even if the probability for a
pixel to be black is high, the generated random image
seems always to be sparse and far away from reality. Since
the quadtree data structure is not very efficient for such a
kind of disaggregated images, this also affects in a
significant way its performances, distorting the robustness
of the theoretical approach.

Therefore, Samet [3] tried to overcome the pixel based
model and suggested a new random model aiming to
describe more closely the kind of images representing
spatial data. The novelty in Samet's idea is in the fact that
his model is “tree-oriented”, in the sense that it gives a
description of the way a typical quadtree is structured to
represent real spatial data. According to Samet's idea of
random quadtree, each leaf node is assumed to be equally
like to appear at any position and level in the tree. The
effectiveness of this perspective in the modeling of random
images has been outlighted in [3], where it is shown that
theoretical results on the average time complexity in the
analysis of neighbour finding algorithms are close to
statistics of real tests. Also concerning the average storage
efficiency of quadtrees, Samet [4] proposed a detailed
comparison among his random model and real instances
taken as representative of the most common image
classes.

Later, Puech and Yahia [5], proposed a more general
approach, enclosing also the intuitive model given by
Samet: in their definition, a random quadtree is built on
the basis of a branching process that at each level assigns
a certain probability for a node to be internal or external.
Modifying the coefficients of the branching sequence, one
is able to represent classes of images of completely
different nature, and this flexibility is quite the strength of
the branching model.

The introduction of the general random quadtree model
representing binary images, has given the possibility to be
able to produce quadtrees close to those that represent
images in the reality. Starting from this objective and
basing on standard images as suggested by Samet [4], we
have been able to discover a very intriguing nodes



distribution law that seems to link images of different
classes. From this law, a recursive branching sequence has
been produced. In this paper we present the sequence and
show that it produces expected distributions of external and
internal nodes much closer to real data than all previous
proposed approaches in the literature to model both
random binary images and quadtrees. Unfortunately, the
recursive sequence appears hard to be exploited with
respect to the quadtree level using standard analytical
techniques, and then no theoretical bounds can at the
moment be provided. Anyway, practical comparisons are
made, that show how well the sequence works.

The paper proceeds as follows: in Section 2 we recall
the definition of the quadtree structure for binary images.
In Section 3 we review the definitions of the various
models of image and quadtree randomness proposed up to
now. In Section 4 we introduce our proposal for a new
branching sequence that seems to model in a very accurate
way classes of images taken as samples of the whole
universe. Finally, Section 5 contains considerations for
further work and concluding remarks.

2. BINARY IMAGES AND
QUADTREES

When only a single feature exists in an image with
respect to a background, we can think to it as constituted
of black pixels (i.c., all the pixels containing the feature)
and white pixels (i.e., all the pixels that do not contain the
feature), and so we speak of binary image.

For binary images, the decomposition process carried
out by the quadtree becomes intuitive. Assuming to have
at disposal a binary image of size TxT (e.g., pixel
elements), where T is such that there exists an integer m
such that 2m=T, we proceed in the following way: at level
m there is the whole image, of side length 7. At the first
stage of decomposition the imagc consists of four
quadrants of side length T/2. At a sccond stage cach
quadrant is then subdivided into four quadrants of side
length 7/22 and so on. The decomposition stops either
when a quadrant is wholly covered (it is said to be black)
or wholly uncovered (it is said to be white). We shall use
also the term block to denote a quadrant. The
decomposition can go on until the pixel level, with
quadrants of side length 7/2™. The deccomposition can be
represented as a tree of outdegree 4, with the root (at level
m) corresponding to the whole image and cach node (at
level m-d) to a quadrant of side length 7/24, The sons of a
node are, in preorder, labeled NW, NE, SW and SE. For a
given image, nodes are then black, wite (leaf nodes) or
grey (intermediate nodes). Correspondingly, we speak of
black, white and grey blocks. Using a drawing as a
sample, the ideas will be clearer:
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Figure 1: A binary image and its quadtree

3. PROBABILISTIC MODELS FOR BINARY
IMAGES AND QUADTREES
An image can be modelled either by means of its pixel
distribution or just looking to the structure of the quadiree
representing it. This has produced in the literature the
following two models that, under certain conditions, are
equivalent [6]:

(1) PIXEL BASED: in this model (image oriented)
each pixel is assumed to be statistically independent
from any other pixel; if p is the probability for a
generic pixel to contain the feature, then a level-i node

is fully covered by the feature with probability B,:p4 R
fully uncovered with probability W, =(l-p)4 and
partially covered (and then internal to the quadtree)

4' ]
with probability G, =1-p* -(1-p)* |

(2) NODE BASED: this model (tree oricnted) has
been proposed by Puech and Yahia [S). Let Q,, be the
set of all class-m quadtrees, i.c. quadtrees of height
less than or equal to m. Let (8,) be a non increasing
sequence of m+1 reals between zero and 1/2 (0<f<1/2
being By=1/2). A random tree of Q,, is built by using
a branching process, such that the quantity 2 is the
probability for a level i node to be external (and so by
definition 2f=1, i.e., at level O all nodes are external
with probability 1 as they should), and then G, =1-28,
is the probability for a level i node to be internal.
Once a node is known to be external, we do not make
assumption on its colour, i.e., the node can be
indifferently white or black.

Independently from the above probabilistic
assumptions, another not conventional model has been
proposed by Samet [3]. There, the idea is that an external
node containing a fixed pixel has equal probability of
being of any size, or, in other words, a leaf node is equally
likely 10 appear in any position and leve! in the quadiree.
This means that in the complete quadtree of height m, and

4m+1_1

then containing nodes, there are 1,4,16,...,4™ |eaf




nodes at levels m, m-1, m-2,..., i respectively. In a
generic sample of a random quadtree, if each leaf node is
equally like to appear everywhere in the quadtree, the
probability of its existence at level i is the ratio between
the number of places available at level i and the total

mi

number of places, i.e., 3(—4,”—,,1—) This number also
4 -1

expresses how many of all leaf nodes can be found at level

i. In [4] a slightly approximated value is provided for this

value, namely 3/4i+1.

The equivalence between the node based model when f;
is equal to 1/2(i+1) and the random model of images as
defined by Samet has been stated in [4] but not presented;
here is how it works.

Proposition 1: In a random quadtree generated using a
branching process with B;=1/2(i+1), each leaf node is
equally likely to appear in any position and level in the
quadtree.

Proof: Because of the branching process we have that a
node at level i exists as a leaf with probability:

=) &
i+1

where E; is the probability for a node to exist at level i.
The probability E; for a node to exist at level i depends by
the probability for a node at level i+1 to exist and to be
internal. This, pointed out that E,,=1 since the root always
exists, produces the following recurrence:

From here, the above expression becomes:

L= 1 Ei=.—'1—i+1 - 1
i+1 +1m+l m+1

and then the expected number of leaf nodes at level i is:

From this the expected number of leaf nodes for a quadtree
of height m is:

Z,
2
"
M
‘A
I

and then the expected rate of leaf nodes at level i for a
quadtree of height m is:

-4— m-i
Nm,i - m+1 _ 3( 4 )
= m+1
Nm 4.m+1_1 4 + 1
3Am+1)

perfectly in accord with the Samet’s definition of random
image.
O

Then, the model proposed by Samet is a significative

m-1 instance of the node based model. We say significative for
E=GuiEni=|1- R o k+1 _ i+l two main reasons: as first, it appears (as the following
e T i+2) 2 m+l table borrowed from [4] shows) close to the effective node
k=i distribution of a large class of images; moreover, its
meaningful resides in the fact that it is the expression of a
relatively simple and structural definition.
Leaf Size Model Floodplain Topography Landuse Pebble
1x1 26,214 (75.00) | 2468 (47.4) 14,832 (59.3) 16,112 (56.4) 27,316 (60.8)
2x2 6,553 (18.75) 1,599 (29.9) 7336 (29.3) 8,484 (29.7) 11,995 (26.7)
4x4 1,638 (4.69) 660 (12.7) 2,175 (8.70) 2,984 (10.5) 4,418 (9.83)
8x8 409 (1.17) 263 (5.05) 470 (1.88) 784 (2.62) 1,095 (3.44)
16x16 102 (0.293) 175 (3.36) 138 (0.552) 175 (0.613) 108 (0.240)
32x32 25.6 (0.073) 57 (1.09) 51 (0.204) 38 (0.133) 18 (0.040)
64x64 6.4 (0.018) 22 (0.423) 8 (0.032) 8 (0.028) 0 (0.000)
128x128 1.6 (0.005) 2 (0.038) 2 (0.008) 0 (0.000) 0 (0.000)
TOTAL 34,952 5,206 25,012 28,549 44,950

Table 1: Leaf node size distribution

612




To fully comprise the table, a number of remarks is
needed:

1) The size of the image we are considering is 512x512,
but we limit our attention (as suggested by Samet) to
128x128 size nodes;

2) In effect, it appears that the Samet's distribution differs
not so slightly from real data; furthermore, a great deal of
structural uniformity seems evident in all the images,
apart from differences in represented data.

4. THE NEW BRANCHING SEQUENCE

We propose here to introduce a new meaningful model
that allows us to closely represent real images behaviour.
We start observing that in almost all different kinds of
images and especially in the landuse and topography maps
(incidentally, the two maps appear to have an average
structure between the floodplain and the pebble maps), the
leaf size percent distribution could be resumed by the
following statement: the ratio between the number of
leaves contained in the i-th level and the number of those
contained in the i+1-th level seems to be approximately
equal to i+2. So for example, it seems that at level 1 (i.e.,
pixel's father level) there is a half of the leaves contained
at the pixel level and at the same time three times the
percentage of leaf nodes at the pixel's grandfather level.

If we adopt the notations:

G is the probability for a level-i node to be gray;
int;: is the expected number of non-leaf nodes at level i;
ext;: is the expected number of leaf nodes at level i;

with the equality:

int;
G"= - !
inttext;

we can express the above defined leaf nodes distribution by
means of the following recurrence formula:

ext; 1

ext;y i+1

and being: ext; = dint;(1- G)),

it follows that has to be: # = _1_
dint;(1- G;.)) i+l
that becomes:
ext;+ int; int; 1

Aint,(1- Gi 4int;(1- G i+l
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- 1 1 v
4G,(1-G,)) 4(1-G.y) i+1

I-G,' _ 1

4Gi(1-Giy) _.
= ——— —_— =
4G(1- G,.q) i+l

i+1
1- G;
= 4G,(1- G} = i+1-iG ;- G; = iG,;+ 5G,4GG,, - 1=i

i+1

from which: G;= ————
S+i - 4Gi_1

with GO=0

From this we have that such a model can be obtained
as the following instance of the node based model:

G;=1-2ﬂ,’ that is ﬁ":l——G—i
S+i-41-2 i
and then: f;= : 24{ Bl

48
that becomes: §;= ——@L wi

th
8B 1+i +1 Po

=l.
2

This formula appears hard to be exploited with standard
analytical techniques, but we can anyway compute the
sequence of f; for a sufficient length, so that a comparison
with real data can be made; in the following we provide
the first 16 values of the succession:

/3():.5; ﬁ1=.333; ﬁ2=.235; B3=.16; B4=.101; ﬂ5=.059;
B6=.032; B7=.015; B5=.006; B¢=.002; B,,=.0009;
/311=.0003; B12=.0001; ﬁ13=.00002; ﬂ14=.000007;
B15=.000001.

From this sequence, we can derive the expected leaf
size percentage on the first seven level of a 512x512
image, to be compared with the values in table 1. Because
of the branching process we have that a node at level i
exists as a leaf with probability:

Li=2BiE:

where E; is the probability for a node to exist at level ;.
The probability E; for a node to exist at level i depends by
the probability for a node at level i+1 to exist and to be
internal. This, pointed out that for a quadtree of height m
is E,=1, since the root always exists, and being:

E;= Gi+1 Ei+1 = (1' 2ﬂi+1) E;,

produces the following recurrence:



m

L;=28T] l+- 284

k=i+1

that can be calculated having fixed m. From this, the
expected number of leaf nodes at level ; is:

m-i
ext,~=4 Li

Setting m=9, we obtain the following values:

Leaf Size # leaves % leaves
1x1 19,783 58.5
2X2 9,891 29.25
4x4 3,297 9.7
8x8 824 2.4
16x16 164 0.4
32x32 27 0.08
64x64 3.8 0.01
128x128 0.4 0.001
256x256 0.05 0.0001
512x512 0.005 0.00001
TOTAL 33,990 100

Table 2: Leaf distribution of the new model

and then almost perfectly in accord with values reported in
table 1 for the various classes of spatial data. From the
table is evident that the structure generatced by our sequence
is more homogeneous than the Samet's one, in the sense
that the nodes distribution is more balanced on the
different levels.

To complete the comparison between our nodes
distribution and the Samet's one, we provide now a table
containing the expected number of nodes for different
resolution of images:

Image size Samet's model| New model
2x2 3 2.33

Ax4 9 5.94

8x8 28 17.16

16x16 90.6 55.65

32x32 303 196.97
64x64 1,039.86 738.47
128x128 3,640.50 2.,863.30
256x256 12,945 11,298.56
512x512 46,603 44,950.87

Table 3: Expected number of internal and external nodes

where the expected number of nodes can be computed with
the formula:

Ap=1+ 3 402800 - 2Bpr). - (1~ 2Bins)

i=1

that has been proved in [7]. From the table the differences
between the models emerge, outlighting the structure
more aggregated of our proposed model.

5. CONCLUSIONS

In this paper we have proposed and analyzed a new
branching sequence to generate random quadtrees
representing binary images. We have shown that this
sequence produces expected distributions of external and
internal nodes closer to real data than all previous proposed
approaches in the literature to model both random binary
images and quadtrees. The effectiveness of the new
proposed model with respect to real spatial data images can
have a large impact on the analysis of expected
performances of a large class of algorithms for spatial data
processing, as for the finding of neighbours or the
computing of the mean perimeter of an image. First
experimental results show that this new model closely
simulate real cases.
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