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Abstract

In this paper some architectural issues related to the
geographical information system CARTECH are presented
and discussed. The system is based on an extension of the
relational model. In this paper we focus our attention on
the interactions among the different level of abstraction of
the system. In particular we describe the relations between
the logical data model and the underlying data structure
used for its physical representation. The goal is the
realization of a set of powerful and flexible operators for
the management of geometrical-spatial data, in order to
obtain a more efficient cooperation among the different
modules of the system, accordingly to the adopted “system
integration” approach.

1. Introduction

In the field of data base management system (DBMS) a
growing interest is focused on the capability of efficently
handling spatial-geometrical data [Sam91, SSD89, GA90,
SSD91]. This arises from the need of managing, with
DBMS technology new kinds of applications which are
able to capture and to represent the reality of interest by
means of models closer to user’s view of real world. The
difference with standard applications relies on the nature of
the data and of the types used for their description and
manipulation: now, in general, is not sufficient to
efficently handle alphanumeric strings, but we want to
represent the shape, i.e. the spatial location of the entity
of interest.

It is easy to be aware that the complexity of this new kind
of data implies significant efforts during the design phase
at the different levels of abstraction for the definition of
suitable logical data models capable of furnishing an
uniform approach to the data, and of data structure that
efficently maps models and allows the implementation of
powerful and flexible operators.

A class of applications which play a key role in this
context, is constitued by geographical information system
or geographical data bases, as the efficient representation
of the land and of the related elements, is becoming more
and more relevant in many application fields, for instance -
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in the planning and design of services in the land, in the
optimization of the use of natural resources, in the
localization of geological sites, in the urban area
administration, in map drawing, and so on. In the case of
interaction with a system for the management of
cartographic data, it is of particular relevance for the user
the availability of specific operator of aggregation on
spatial-geometrical data, the possibility of supporting
direct spatial searches, based on geometric properties of
object, and of supporting undirect spatial searches, which
allow the identification of geometric entities on the base
of their descriptive properties. Our approach for the
implementation of a cartographic data management
system, is based on the proposal presented in [GN90]
which relies on a “system integration” methodology of
different cooperating modules and where the integration is
granted by an unifying logical data model.

In this paper architectural issues related to the geographical
information system CARTECH are discussed. In particular
discussion is focussed on the design of the basic operators
for the management of spatial geometrical data that
implement the logical data model operators. This has
required the design of data structures able to support them
efficiently and effectively.

This paper is structured as it follows: in section 2 a
general description of our approach to the problem is
presented and the architecture of CARTECH is sketched;
section 3 presents geoSQL, our proposal of extension to
the SQL language and examples of its use; in section 4 we
describe the main features of GEOTECH, the library for
the management of spatial data and finally, in section 5
query resolution strategies are discussed.

2. The architecture of CARTECH

In [GN90, GNT91a, AN92] an analysis of advantages and
drawbacks of different approaches to the realization of
geographical databases was presented. In the integration
approach, it is necessary to have a logical data model the
defines both a uniform reference schema for the
specification of the integration between subsystems and
provides the user with a high level data manipulation
language. The model thus guarantee to the user a uniform
and integrated view of geographical entities while allow an
access trough both descriptive and spatial characteristics.

The idea on which we have based our proposal is that the




descriptive component and the spatial-geometrical one of a
given territorial datum have to be separated at the physical
level, to obtain efficiency, but they have to be integrated
at the logical level, so their representation and
manipulation are simple and immediate. It has to be
possible to refer to the shape of a region or to an entity
that has a spatial-geometrical component, in the same way
as to any traditional attribute of a relational DBMS. On
the other hand, the treatment of spatial-geometrical data is
fulfilled by special purpose functions assuring higher
efficiency.

In (GNT91a] a model for the management of complex
data based on an extension of the relational model was
formally defined. In [GNT91b] its formal properties were
investigated and its completeness and soundness were
proved. The focus of the model is to introduce abstract data
types for the specification of the attribute domains.

Our choice for supporting logical integration has been
of relying on the well founded relational theory [Cod70],
and to suitably extend the relational data model in order to
represent in integrated way the descriptive and geometric
part of geographical information. The possibility of
treating in a relation geometric values as well as
traditional alphanumeric attributes allows to extend the
SQL language with new simple syntactic structures:
topological predicates may be expressed on the
geographical entities and it is possible to apply some
geometric operators on these.

The SQL language has been enriched (from now on we
will refer to this extension with the name of geoSQL) by
means of the introduction of new relational operators based
on functions for the composition of spatial-geometric
components of the geographical entities, and for their
aggregation, performed on the base of suitable conditions
to be verified on the descriptive components of the
entities. Since in geographical applications the area of
interest is usually represented by thematic maps! the user
has the possibility with these functionalities to easily
create new maps by composing and aggregating existing
ones according to its application needs. The new thematic
maps are fully integrated in the system and can be further
processed.

CARTECH architecture essentially consists of two
functional modules: the relational DBMS and the spatial-
geometric module, which implements a set of functions
for the representation and processing of spatial-geometric
data. The choice to represent and separately manage these
two types of information, generates two different activities
of data manipulation. The partial results have then to be
compared and integrated for obtaining the final result. In
particular, an interpreter checks the syntactic correctness of

1A thematic map is a geometrical subdivision of a piece
of land in areas homogeneous with respect to values of a
set of attributes, together with a table which associate to
each homogeneous area the given set of values for the
attributes .
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the issued queries and calls the modules appropriate to
their resolution. The strategy for queries resolution firstly
manages the geometric part of the query and then makes
use of the outcome for the resolution of the relational part
by using the relational DBMS. The different actions
carried on by the relational DBMS and by the spatial
module are completely hidden to the user. He can access
and manipulate data only through the primitives of the
geoSQL language.

The above described approach leads to an architecture,
shown in figure 1, consisting of the following functional
modules:

- an interface which allows the users to access to
system;

- apreprocessor for the identification and separation of
the descriptive and geometric parts of the query;

- aquery processor which coordinates the different phases
of query resolution and checks the consistency of the
cross-references among the geometric components,
contained in the library of geometrical data, and the
keys-names managed in the relational DBMS

- aprocessor of geometric queries, which manages
geometric subqueries and creates temporary tables
containing the partial results obtained from the their
resolution;

- arelational DBMS that resolves the descriptive part of
the query using the temporary tables produced by the
spatial query processor.

The interface connects the system to the human user or
the application programmers: it makes available the
system functionalities, recognizes the commands and
displays the result of the operations.

The preprocessor divides spatial subexpressions,

involving exclusively geometric attributes, from non
spatial ones, which refer to alphanumeric attributes.
Spatial subexpressions can be found either in select
clauses as geometric operators, or in where clauses as
topological predicates.
The preprocessor is also recognizes the new aggregation
operators introduced in geoSQL. This functionality is
carried out by a syntactic analyzer that sends the identified
subexpressions to the geometric query processor for their
evaluation.

The query processor drives the query resolution and
uses a system relational table, namely “geometry”, in
order to mantain the relationships between the user’s
names and those internal to the geometric data structure.

The relational DBMS, based on the INGRES system,
evaluates the queries concerning alphanumeric data and
executes the commands for creating and modifying the
temporary tables used by the spatial processor.

The geometric query resolutor, based on GEOTECH
library, accepts as input spatial subexpressions. It carries
out the computation of the temporary tables containing
partial results, that is tables containing the regions
satisfying the imposed topological conditions. Also, it
computes the required geometric functions. This activity




produces geometric objects in the case of union or
intersection operators, numeric values when the area of the
specified regions is computed.
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Fig. 1: CARTECH System Architecture

3. The geoSQL language

The geoSQL language [AN92] extends SQL to deal with
the new relational operators, G-Compose and G-
Decompose, and with the ADT Geometry(S).

In the geoSQL language are implemented the operators
COMPOSE and MERGE for the G-Compose and the
operator SEPARE for the G-Decompose.

The COMPOSE operator groups the values of one or
more geometric attributes applying to the grouped values

the fusion fuction U and discards the remaining attributes.
The grouping is done on the basis of the equality of others
attributes of the relation.

The MERGE operator groups the values of one or
more geometric attributes applying to the grouped values
the fusion fuction geo.

Note the different effect of the application of the two
operators: in the first case regions with more than one
component may be given as output results, in the second
one only regions with one component are produced. It
follows, in the last case, that the resulting relation cannot
be disaggregated in the original components.

The possibility of using geometric conditions in the where
clause makes it possible to select, with more precision,
tuples on which apply the aggregation operators.

Notice that a safe use of the fusion fuctions in the
COMPOSE and MERGE operators is assured because, due
to ADT approach, the manipolation fuctions allowed on
set of values of an attributes A; are only the operation
defined in the ADT specification of type(Ay).

The SEPARE operator perform the inverse function of
the COMPOSE one. Each Shape of the geometric
attribute on which the SEPARE is applied, is decomposed
in its elementary components. Such an operation can be
considered as a normalization action on the relation.

We give in the following two simple examples in order to
show the typical syntax of the COMPOSE and MERGE
operators.

Assume the relation MINERALS is given accordingly
to the table of figure 2, and that one wants (o aggregate
the area of exploitation of each mineral on the base of its
family.

The following geoSQL expression can be issued:
COMPOSE minerals.Shape
BY minerals.Family FROM minerals;

Family Type Shape
slate type 11 min_11} }
slate type 12 min_12} }

sandstone type_21 { {min 21} }

sandstone type 22 { {min 22} }

clay type_3 { {min_3} }
limestone type 41 { {min 41} }
limestone type 42 { {min_42} }
limestone type 43 { {min_43} }

Figure 2 : relation MINERALS

The operator group the values of the attributes
minerals.Shape applying the fusion fuction U on the basis
of the equality of the values of the attribute

minerals.Family. Relation FAMILY_OF_MINERALS, in
figure 3 below, shows the result:




Family Shape

slate { {min_11}, {min_12} }
sandstone { {min_21}, {min_22} }

clay { {min_3} }
limestone { (min_a1] , (min_42) , (min_43} ]

Figure 3 : relation FAMILY_OF_MINERALS

The application of the operator MERGE would have

instead produced the following table (figure 4):

Family Shape

— i

slate { {min_11, min_12} }
sandstone { {min_21, min 22} }

clay { {min 3} }
limestone { {min_41, min_42, min_43} }

Figure 4 : relation FAMILY_OF_MINERALS_MERGED

Note that here each entity has a geometric value which is a
Shape with only one component.

The sintax of the introduced operators is , in the general
case:
COMPOSE x BY y FROM r WHERE p;
MERGE x BY y FROM r WHERE P;
SEPARE x BY y FROM 1;

To cope with the manipulation of ADT Geometry(S) a
number of topological predicates and geometric operators
have been introduced.

The SQL clauses SELECT and WHERE in the Geo
SQL supports in a uniform manner both the traditional
and Geometry-valued attributes; in particular in the clause
SELECT it is now possible to apply the introduced
geometric operators and within the WHERE clause it is
possiblle to express predicates with geometric attributes.

Geometric operators are the implementation of the
corrispondent operators introduced in the Geometry(S)
definition. In particular we have implemented the three
binary operators which give a new region:

- INTERSECTION: applied to SHAPES A and B gives
SHAPE intersection between A and B, that is the SHAPE
whose components are given by the equality of a
component of A with a component of B.

- INTERSECTION¥*: applied to SHAPES A and B gives
the SHAPE whose components are the results of the
intersection of every component of A with every
componet of B.

- UNION: applied to the SHAPE A and B furnishes the
SHAPE C whose components are components of B or A.

A unary operator it is also introduced:
- AREA: it calculates the area of specified region surface.

The topological predicates provide a boolean result. In all
cases the arguments are two geometric attributes, which
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may possibly belong to the same relation.

- INTERSECT: it returns “true” when the regions
represented by the two attributes have a non empty
intersection; “false” if the two regions have an empty
intersection.

- INTERSECT*:it returns “true” when almost one
component of region A intersect one compont of
region B ,"false” otherwise.

- INCLUDE: it returns “true” if the region represented
by the second attribute is included in the first one;
“false” otherwise.

- ADJACENT: it returns “true” if the two regions are
adjacent; “false” if they are not.

- EQUAL: it recognizes when two regions are equal.
That is, it returns “true” if the regions represented by
the two attributes have the same shape and location in
the plane; “false” otherwise.

We present now an example of application to Land

Resource Management. We suppose the database schema

is composed by two relations, the former describes the

presence of minerals on the land, the latter describes the

constraints presents on the land itself:
MINERALS_BY_QUANTITY (name,

exploitation_quanti-ty, shape);

CONSTRAINTS( type, shape);

During the interaction the user may be interested into the
definition of exploitation plans by means of the
construction of particular thematics maps, called
exploitation maps, which describes the regions where the
materials can be exploited, taking into account the
constraints imposed on the land. Therefore it is interesting
to evaluate which constraints can be relaxed in order to
reach the objective of collecting a predefined amount of a
given material. A possible methodological approach is
described in what follows.:

We start building a new relation, MINERALS, which
groups the exploitation lands by type of mineral:




COMPOSE minerals_by_quantity.shape
BY minerals_by_quantity.name
EFROM minerals_by_quantity;

The schema of the obtained relation is:
MINERALS( name, shape);

From the relation MINERALS and CONSTRAINTS, we
can find the intersection between the pieces of land subject
to constraints and the lands where there are minerals by
issuing:
SELECT minerals.name, constraints.type
INTERSECT*(minerals.shape, constraints.shape) shape
FROM MINERALS, CONSTRAINTS
WHERE
INTERSECT*(mineral.shape,constraints.shape);

The new relation MINERALS_BY_CONSTRAINTS
with the schema
MINERALS_BY_CONSTRAINTS(name, type, shape);
is obtained, where the istances of the new geometric
attribute ‘shape’ are the intersection between each land
where is a mineral and each land subject to a constraint.

It is possible built other news maps to group all the lands
where we can exploit a specific mineral and where the
amount we can obtain is greater than a fixed threshold (say
500):
COMPOSE minerals_by_quantity.shape

BY minerals_by_quantity.name

FROM minerals_by_gquantity

WHERE (minerals_by_quantity.name = ‘clay’)

AND (mineral_by_quantity.exploitation_quantity >

500);
4. of the

Implementation ADT

Geometry(S)

The goal of realizing a logical data structure which reflects
the way the user looks at the data requires the support of
non-atomic domains, capable of represent in a uniform
way the spatial-geometrical component of an object. The
above presented model permits the integrated
representation of geographical entity, by means of the
introduction of the abstract data type (ADT) Geometry(S),
which supports SHAPE-valued attributes. A single
element of the SHAPE domain, instance of the ADT
Geometry(S), univocally defines the shape and the
position of an object, hence the spatial-geometrical nature
of an object can fully be represented at logical level by the
value of a single attribute. The user way of looking at
geographical entities is therefore fully supported.

To implement such a model we have chosen to represent
the spatial geometrical nature of the objects by a discrete
set of points in the plane. The set S, which represents the
set of the atomic elements on which is based the ADT
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Geometry(S), has been defined as a finite subset of the
integer coordinates points of the plane(raster plane). One
element with shape value will be therefore composed by
one or more elementary components each one of which
can be described by a finite subset of plane points as well (
Hg = P(P(S)) ).

The implementation of ADT associates to each region of
the plane one SHAPE valued element, and as consequence,
a region is viewed as a finite subset of elementary
components.

In order to represent such elementary components a data
structure, namely Multivalued Quadtrees, has been used.
With such a structure we do not need to esplicitely
represent all the couples of integer which belong to the
component, but for each component only a limited
amount of information is memorized, although each single
point can be reached by means of the appropriate
algorithm,

The GEOTECH library employs multivalued quad-trees
[ArD89, AENP93], a direct extension of quad-trees
[Sam84]. A multivalued quad-tree is a hierarchical data
structure, introduced and analyzed in [ArD89] and refined in
[ABN91], for the representation of sets of regions
overlapping on the plane. An example of a multivalued
quad-tree is shown in figure 5. In the normal quadtree only
regions which do not overlap are allowed. It is built
starting from a regular decomposition of the plane in
quadrants. The plane on which the queries are defined is

represented as an array of 2"'x2™ elements. It is recursively
split in quadrants and subquadrants until we arrive either at
empty quadrants or at quadrants which entirely belong to a
(set of) region(s).

region 2

=
2

region 3

Fig. 5: a multivalued quadtree




This decomposition may be represented with a tree, in
which every internal node has four children. The leaves of
this tree corresponding to homogeneous decomposition
blocks are black: to allow the representation of
overlapping regions, to every black node is associated a
pointer to the list of all regions which share the block.
Leaves corresponding to empty areas are marked white. All
the other nodes, which are internal nodes, are marked gray.

The simplest implementation of a quad tree is by means of
a pointer data structure. This solution has the drawback
since it requires a big quantity of memory.

For this reason the implementation has been based on a
linearized view of the quadtree built by means of a depth
first order visit of the quad tree and storing the order on
which nodes are visited in an array. Such a structure, called
linear multivalued quad-tree, has the advantage of resulting
very compact and non restrictive, as any operation which
can be realised on the tree can be realised on the linear data
strucure [AENP93]

The correspondance among elementary components stored
in the multivalued quad tree and the regions it is realized
by means of a structure which furnishes the mechanism
for associating to each component the region it belongs
to. The strongest requirement of this association is the
efficiency. The adopted solution uses arrays whose
elements contains the references to regions. The array
indexes, which are the identifiers of the elementary
components, realizes the association mechanism from the
components to the belonging regions. A simple direct
acces to an array element establishs the link between
elementary component and its region. Moreover, to each
multivalued quad tree we can associate more regions
arrays, each one of which can be considered as a particular
view on the same geometry.

Such a structure allows to realize an efficient
implementation of the composition functions, which
characterize the new introduced operator of COMPOSE and
MERGE In particular a COMPOSE operation on a
geometric attribute is simply realised by building a new
view of the same geometry, that is by defining of a new
array of the regions to be associated to the same quad tree,
where the elementary components that constitutes the
regions are represented.

6. Query resolution

Before describing the technique adopted for the query
resolution, a premise is needed about the way used to
identify the regions in the database. The links between
spatial data and descriptive data are maintained by means of
numeric identifiers; in the geometric attributes of a
relational table, the region is indicated by an integer, that
identifies the region among those stored in the same array
of the regions.

489

In the evaluation of a query, the system firstly verifies the
syntactic correctness of the input string. Secondly,
SELECT clause is processed. Whenever one geometric
predicate is recognized, the geometric query processor
manages it and inserts the results in a temporary relational
table. After the processing of all geometric predicates, the
query is slightly modified: firstly, the just solved
predicates are deleted from the WHERE subclause and
suitable constraints are added to impose that resulting
tuples belong to these temporary tables; then we
temporarily eliminate the references to geometric operators
in the SELECT clause and leave only their operands. This
modified query is ready for being processed by the
relational DBMS, which stores the results of this
evaluation in a new relation. This is given back to
geometric query processor which can now process the
geometric operators. Finally, the system presents in
output the requested data.

If clauses COMPOSE or MERGE are recognized,
predicates which aggregates geometrical data are processed
first; the result is inserted in a table whose schema
contains also the columns for the new geometric attributes
and whose regions will be given by the application of
geometric functions. Then a new temporary table is built
whose schema is given by the columns on which the
composition functions operate together with the columns
for the new geometric attributes. Such a table contains all
the information for constructing new vectors of the
regions associated to geometrical attributes. The schema of
the final relational table is built accordingly to the
requirements given by the user in the particular command.

We can clarify at this point, how the system keeps the
consistency of the data. All the regions belonging to a
geometric attribute of a given relation are stored in the
same array of regions. The name of the file containing the
array of the regions is univocally associated to the couple
relation-name, column-name, such an association is
transparent to the user and is managed completely by the
system by means of system-defined relational table which
mantains also the correspondence between array of the
regions and the underlying geometry, that is with the file
that contains the multivalued quadtree. As already
mentioned, different arrays of regions can refer to the same
quad tree.

We have illustrated a possible strategy for query
resolution. Another possibility is to firstly calculate the
relational side of the query and to next use these results for
evaluating the spatial side. The choice between the two
possibilities can only be made on the basis of
considerations depending on the specific instance of the
query and on the current extension of the database, which
are usually not known a priori. It is reasonable to choose
the strategy that minimize the amount of the data to
process: but it is not possible to specify a general strategy
which is always valid. A further possibility of
optimization is to provide an information exchange




between the relational DBMS and the spatial processor for
decreasing the complexity of the query processing
algorithms involved. To this end, an approach which is
currently under investigation, is the use of the so-called
“on-line” approach to quickly compute partial approximate
solutions to spatial queries [FN91] and to use this
information to drive the query optimization process.

5. Conclusions

In this paper we have presented and discussed a system for
geographical data management, CARTECH. The system
is based on a logical data model developed as extension of
the relational model. It also features an interface based on
an extension of SQL to deal in a uniform way with
descriptive and spatial-geometric information, which is the
specific focus of this paper. CARTECH has been
implemented and runs on 80386 machine, under the SCO
Unix operating system and interfacing with INGRES
database management system.

The usability analysis of the applications developed using
CARTECH are encouraging both for the manageability
and simplicity of use, and for the efficiency in the
treatment of geographic queries. The geoSQL language,
introduced for the geographical data manipulation, turns
out to be a simple and powerful instrument, being able o
satisfy the demands of different application problems. The
behaviour of the data structures adopted for the resolution
of topological queries seems really good, as it results from
the efficiency comparison between our system and the
commercial systems with analogous functions and
comparable computing power.

The extreme modularity of the system architecture
allows to easily extend the data types that it can manage,
keeping always separated the manipulation of the
descriptive component from the more complex ones (i..:
three-dimensional data).
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