
Proceedings of the First Southern Symposium on Computing
The University of Southern Mississippi, December 4-5, 1998EFFICIENT SPATIAL DATA MANAGEMENT USING BALANCED ANDDISTRIBUTED SEARCH TREESADRIANO DI PASQUALE� AND ENRICO NARDELLIyAbstra
t. In this paper we
onsider the di
tionary problem in a message passing distributed environment. Weintrodu
e a new version of an order-preserving distributed sear
h tree,
apable to both grow and shrink as long askeys are inserted and deleted. This is the �rst distributed data stru
ture to expli
itly support both insertion anddeletion with logarithmi

osts, i.e. a key
an be sear
hed, inserted and deleted in O(log n) messages, where n is thenumber of servers.Keywords: distributed data stru
ture, fully dynami
, order preserving, message passing environment, balan
edstru
ture.1. Introdu
tion. With the striking advan
e of
ommuni
ation te
hnology it is now easy and
ost-e�e
tive to set up distributed appli
ations running on a network of workstations. The te
h-nologi
al framework we make referen
e to is the so
alled network
omputing : fast
ommuni
ationnetworks, in the order of 10-100MB/se
, and many powerful and
heap workstation, in the orderof 50-100 MIPS. Many organizations have this kind of
omputing power: large organizations haveeasily a
umulative amount of main memory in the order of tenths of GB.In this work we
onsider the di
tionary problem in a message passing distributed environment.Litwin, Neimat e S
hneider [2℄ were the �rst to present and to dis
uss for this environment a datastru
ture paradigm
alled SDDS (S
alable Distribuited Data Stru
ture). The main properties ofSDDS paradigm are:1. Keep a good performan
e level while the number of managed obje
ts
hanges.2. Perform operations lo
ally.The distributed environment we make referen
e to is
onstituted by a set of sites (pro
essor or nodes)
onne
ted by a network. Every site in the network is either a server, that manages data, or a
lient,that requests a

ess to data. Ea
h server manages data items belonging to some parts of the datadomain. Sites
ommuni
ate by sending and re
eiving point-to-point messages. We assume network
ommuni
ation is free of errors. Every server
an store a single blo
k (
alled bu
ket) of at most bdata items, for a �xed number b. The overall data organization s
heme we
onsider is a sear
h tree:servers manage both nodes
ontaining data items (leaf nodes) and nodes guiding the sear
h pro
ess(internal nodes).The data distribution and management poli
y determines how data are distributed among theservers; there are no pre
onditions as to where the data
an be stored. New servers
an be addedas the volume of data in
reases to maintain the performan
e level. The
lients are not, in general,up-to-date with the evolution of the stru
ture, in the sense they have some lo
al indexing stru
ture,but do not know, in general, the overall status of the data stru
ture. Di�erent
lients may thereforehave di�erent and in
omplete views of the data stru
ture.The fundamental measure of the eÆ
ien
y of an operation in this distributed
ontext is the numberof messages ex
hanged between the
omputers of the network. In the literature various kinds ofSDDSs have been proposed: LH� [2℄, RP� [3℄, DRT [4℄, lazy k-d-tree [6, 8℄, RBST [7℄.All previous proposals but RBST
onsidered expli
itly only the semi-dynami

ase, that is the
ase where keys are only inserted and never deleted. In this work we fo
us on the extensions ofbinary sear
h trees to the distributed
ase (like DRT and RBST) and
onsider a fully dynami

ontext, i.e. keys
an be both inserted and deleted.� Dipartimento di Matemati
a Pura ed Appli
ata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila, Italia.y Dipartimento di Matemati
a Pura ed Appli
ata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila,Italia, (nardelli�merlino.iasi.rm.
nr.it). Istituto di Analisi dei Sistemi ed Informati
a, Consiglio Nazionale delleRi
er
he, Viale Manzoni 30, I-00185 Roma, Italia.

2 A. DI PASQUALE AND E. NARDELLIThe theoreti
al study of the
hara
teristi
s of s
alable distributed sear
h trees
ondu
ted byKr�oll e Widmayer [9℄ showed that if all the hypothesis used to eÆ
iently manage sear
h stru
turesin the single pro
essor
ase are
arried over to a distributed environment then a lower bound of
(pn) holds for the height of balan
ed sear
h trees.In the RBST [7℄ some of these hypothesis, related to the way the sear
h pro
es is exe
tued,are relaxed, yielding a
ost of O(log2 n) messages for sear
h and update operations, where n is thenumber of servers in the stru
ture.In this paper, we relax some other hypothesis, related to the kind of syn
hronization betweenservers and
lients of the stru
ture, and show that a distributed sear
h trees
an be maintainedbalan
ed in a distributed environment so that sear
h and update operations
an be exe
uted withO(logn) messages. Hen
e we present the �rst balan
ed distributed sear
h stru
ture to be fullydinami
 and order-preserving.2. Context. More formally, let T be a binary sear
h tree with n leaves (and then with n� 1internal nodes). We
all f1; : : : ; fn the leaves and t1; : : : ; tn�1 the internal nodes. To ea
h leaf abu
ket
apable of storing b data items is asso
iated. Let s1; : : : ; sn be the n servers managing thesear
h tree. We de�ne leaf asso
iation the pair (f; s), meaning that the server s manages the leaff and its asso
iated bu
ket, node asso
iation the pair (t; s), meaning that the server s manages theinternal node t. In an equivalent way we de�ne the two fun
tions:� t(sj) = ti, where (ti; sj) is a node asso
iation,� f(sj) = fi, where (fi; sj) is a leaf asso
iation.To ea
h node x, either leaf or internal one, the interval I(x) of data domain managed by x isasso
iated.In the
entralized
ase a sear
h tree is a binary tree su
h that every node represents an interval ofthe data domain. Moreover, the overall data organization satis�es the invariant that the intervalmanaged by a
hild node lies inside the father node's interval. Hen
e the sear
h pro
ess visit a
hildnode only if the sear
hed key is inside the father node's interval.Kr�oll and Widmayer
all this behavior the straight guiding property [9℄. They observed that itis not possible, in the distributed
ase, to dire
tly make use of rotations for balan
ing a distributedsear
h tree while guaranteeing the straight guiding property. They proved that a lower boundof O(pn) holds for the height of balan
ed sear
h trees if the straight guiding property has to besatis�ed.In [7℄ we devised a distributed sear
h tree,
alled RBST (for Relaxed Balan
ed Sear
h Tree)where, by a

epting a violation of the straight guiding property, the height of the tree is keptlogarithmi
 and all update operations have a logarithmi

ost, but the upper bound on the
omplexityof the sear
h pro
ess is O(log2 n) .In the following we relax the requirement of the straight guiding property, but by assuming adi�erent syn
hronization me
hanism between
lients' lo
al indexes and servers we show how to keepa distributed binary sear
h tree balan
ed while all operations are maintained within a logarithmi
upper bound.3. Basi
 idea. In all previous works on SDDS, whenever a
lient index is introdu
ed to improveperforman
es, it is always built and managed to exa
tly re
e
t the global tree stru
ture. This meansthat both
lients and servers keep tra
k of both node asso
iations and leaf asso
iations. Moreover itis assumed that the knowledge the
lient has of the global tree stru
ture is partial and almost exa
t,in the sense it may possibly be in
omplete and at a
oarser level of detail than it is in the reality. A
orre
tion to a
lient index
onsists only in adding more detailed information.If one wants to keep the overall stru
ture balan
ed then rotations in the overall tree have to beused. But after a rotation in the overall tree has been performed,
lient indexes do not represent anymore, in general, a portion of the global tree in an exa
t way. The approa
h of sending messagesfrom servers to all
lients whenever a rotation is performed is
learly not an eÆ
ient solution.Our basi
 idea to obtain logarithmi

osts is to relax the syn
hronization between
lients and serverindexes. By a

epting a stru
tural mismat
h between the overall index and the lo
al indexes we
an then use rotations to maintain the overall tree balan
ed. The straight guiding property is

BALANCED AND DISTRIBUTED SEARCH TREES 3still violated but we are now able to keep a logarithmi
 upper bound on both sear
h and updateoperations.To be more pre
ise, we manage in di�erent ways the two asso
iations. Servers manage bothnode and leaf asso
iations, while
lients manage only leaf asso
iations. A rotation in the overall treestru
ture only a�e
ts node asso
iations, sin
e we never rotate leaves.The global tree is therefore kept balan
ed and the sear
h pro
ess is bounded by logarithmi

osts. On the other side,
lient indexes will never have to be modi�ed due to rotations.4. The data stru
ture. The distributed data stru
ture we fo
us on is a binary sear
h tree,where data are stored in the leaves and internal nodes
ontains only routing information. Everynode has zero or two
hildren. Every server s but one, with leaf node asso
iation (t; s) and leafasso
iation (f; s), re
ords at least the following information:� An internal node t = t(s) and the asso
iated interval of key's domain I(t),� The server p(s) managing the father node pn(t) of t, if t is not the root node,� The server l(s) (resp., r(s)) managing the left (resp., right) son ls(t) (resp., rs(t)) of t, andthe asso
iated interval Il(t) (resp., Ir(t)),� A leaf f = f(s) and the asso
iated interval of key's domain I(f),� The server pf(s) managing the father node pn(f) of f , if f is not the unique node of globaltree (initial situation).This information
onstitutes the lo
al tree lt(s) of server s (see �gure 4.1). Sin
e in a global tree of

Fig. 4.1. The lo
al tree of server s.n nodes there are n� 1 internal nodes, there is one server s0 managing only a leaf asso
iation, hen
elt(s0) is made up by only the two last pie
es of information in the above list.We say a server s is pertinent for a key k, if s manages the bu
ket to whi
h k belongs. In our
ase ifk 2 I(f(s)). Moreover we say a server s is logi
ally pertinent for a key k, if k is in the key intervalof the internal node asso
iated to s, that is if k 2 I(n(s)). Note that the server managing the rootis logi
ally pertinent for ea
h key.When a server sends a message, it always adds its lo
al tree to it. This is useful to in
reasethe knowledge about the global stru
ture in the
lient re
eiving the message. As soon as a
lientre
eives an answer from a server, it uses the re
eived lo
al tree to update its lo
al index, where onlyleaf asso
iations are stored. A
lient uses its lo
al index to better address its queries.5. The sear
h pro
ess. We now des
ribe how to sear
h in our stru
ture,
alled BDST forBalan
ed and Distributed Sear
h Tree. We examine whi
h events
an o

ur and algorithms to treatthem.Event 1. A query from a new
lient.. A new
lient is a
lient that never issued a query to thestru
ture and then has no knowledge about it. Su
h a
lient, say
, always send the request of akey k to the root r of global tree. If r is the pertinent server for k, then r manages the request andanswers to
, else it
hooses between the servers l(r) and r(r) managing its left and right sons thepertinent or logi
ally pertinent one for k and sends it the request. Note that one of two has to beat least logi
ally pertinent. The pro
ess
ontinues until the request arrives to the pertinent servers0 for k. s0 manages the request and answers to
, see �gure 5.1 (left).

4 A. DI PASQUALE AND E. NARDELLI
Fig. 5.1. Sear
hing queries from a new
lient (left) and from a
lient with addressing error (
enter and right).Event 2. A query from a
lient without addressing error.. A
lient
 sends the request for a keyk to a server s whi
h is the pertinent server for k. s manages the request and answers to
.Event 3 A query from a
lient with addressing error.. A
lient
 sends the request for a key kto a server s, but s is not the pertinent server for k.If s is logi
ally pertinent for k then s
hooses between the servers l(s) and r(s) managing leftand right sons the pertinent or logi
ally pertinent one for k and sends it the request. Note that oneof two has to be at least logi
ally pertinent. The pro
ess
ontinues until the request arrives to thepertinent server s0 for k. s0 manages the request and answers to
, see �gure 5.1 (
enter).If s is not logi
ally pertinent for k then s sends the request to p(s), i.e. the server managingthe father of t(s). From p(s) the sear
h may pro
eed further upwards. There is
ertainly a nodet00 in the path between t(s) and the root su
h that its managing server s00 is pertinent or logi
allypertinent for k. If s00 is pertinent then it behaves like s0. If s00 is only logi
ally pertinent then it
hooses between the servers managing left and right sons and
ontinues as in previous
ase, see�gure 5.1 (right).Theorem 5.1. Let T be a BDST and let h denote its height. Sear
hing for a given key requiresin the worst
ase O(h) messages.Proof. If event 1 happens a
hain of messages departs from the root and arrives to a leaf. Inthe worst
ase, the
hain is
omposed by h messages. Counting also request and answer messages,h+ 2 messages are needed.If event 2 happens only O(1) messages are needed (namely, the request and answer message).If event 3 happens, then we distinguish two
ases. In the �rst
ase, s is logi
ally pertinent, andh+ 2 messages are needed. In the se
ond one, s is not logi
ally pertinent, hen
e we must go up inthe global tree to found the logi
ally pertinent server. In the worst
ase we depart from a leaf atheight h and arrive to the root, then we go down again to another leaf of height h (see �gure 5.2).In total we need 2h+2 messages.

Fig. 5.2. The worst
ase for sear
hing.Now, if we keep the global tree balan
ed during updates by using rotations, the height h alwaysremain bounded by O(logn) and the
ost of sear
h pro
ess too.

BALANCED AND DISTRIBUTED SEARCH TREES 56. Insertion and deletion. We now des
ribe how to perform insertion and deletion in aBDST. Please note that in a distributed environment insertion and deletion refers, respe
tively, tothe
reation of a new server that re
eives part of the keys previously managed by an existing serverthat is now in over
ow and to release of an existing server that is now in under
ow and sends allits keys to an existing server. Insertion and deletion of data items that do not
ause, respe
tively,over
ow and under
ow, do not require any rebalan
ing a
tion, and their
omplexity analysis is thesame of sear
hing data items. When over
ows and under
ows o

ur, we must perform some a
tionsto keep the stru
ture balan
ed and a binary sear
h tree (i.e. ea
h node has either zero or two
hildren).The balan
e a
tions must a�e
t only internal nodes and never
hange the leaves, sin
e rotatingthe leaves would for
e to transfer the whole bu
ket
ontent to another server and this is not eÆ
ient.This means that during balan
ing only node asso
iations
hange while leaf asso
iations remains thesame. Therefore a leaf
an
hange its father, but
an never be
ome an internal node. It is possibleto use any balan
ing te
hnique whi
h satis�es these assumptions and keeps the
osts logarithmi
.In the des
ription of algorithms for insertion and deletion we assume that a server is able to performa fun
tion,
alled balan
e bdst, whi
h performs the a
tion that may be needed to keep the BDSTbalan
ed after an update. We assume balan
e bdst uses at most O(logn) messages, where n is thenumber of servers managing the BDST, and that before the exe
ution of the algorithms des
ribedbelow the BDST is already balan
ed, i.e. h, the height of BDST, is bounded by O(logn).6.1. Algorithm for insertion.Step 1: Insert {. We sear
h for the leaf where the new key has to be inserted and insert it. Weassume that this insert generates an over
ow, that is the key to be inserted is the (b + 1)-th keyassigned to that bu
ket.Step 2: Manage the over
ow {. Leaf f , managed by server s, goes in over
ow. In this
ases must perform a fun
tion
alled split. This fun
tion is similar to the synonimous one des
ribedin [2, 4℄. Leaf f splits in two new leaves f1 and f2. A new internal node tn+1 repla
es f in thetree. A new server sn+1 is
alled to manage the new internal node and one of the new leaf. Servers releases the old leaf f and manages the other new leaf.In
on
lusion we delete leaf asso
iation (f; s) and add two leaf asso
iations (f1; s) and (f2; sn+1)and one node asso
iation (tn+1; sn+1) (see �gure 6.1). The old interval I(f) is divided in the newintervals I(f1) and I(f2), su
h that I(f1) [I(f2) = I(f).
Fig. 6.1. Insertion of an element in an over
owing bu
ketStep 3: Balan
e the BDST {. Perform the balan
e bdst fun
tion starting from tn+1.Theorem 6.1. Insertion in a BDST
onstituted by n servers
osts in the worst
ase O(logn)messages.Proof. From the algorithm above we have in the worst-
ase the following
osts for the varioussteps:Step 1: From theorem 5.1 this
osts O(logn) messages.Step 2: A
onstant number of messages is needed to perform the split fun
tion (see [2, 4℄).Step 3: From the assumptions above we have a
ost of O(logn) messages.6.2. Algorithm for deletion.

6 A. DI PASQUALE AND E. NARDELLIStep 1: Delete {. We sear
h for the leaf where the key has to be deleted and delete it. Weassume that this generates an under
ow, that is by deleting that key the bu
ket has less than b2keys.Step 2: Manage the under
ow {. The leaf f , managed by server s, goes in under
ow. In this
ase the server s must perform a fun
tion
alled merge. We assume b is the server su
h that t(b) isthe father node of f(s) and
 is the server su
h that t(
) is the father node of t(b). This fun
tion is
onstituted by the following sub-steps (see also �gure 6.2):
Fig. 6.2. Deletion of an element from an under
owing bu
ket1. Release server s and delete leaf f = f(s).2. Sin
e node t(b) has now one son, then delete t(b) and repla
e it with t(a) as the son of t(
).3. If s managed an internal node t = t(s), then from now on t is managed by server b (notethat b has just released its internal node t(b)).The new value of interval I(t(a)) be
omes the union of the value of I(t(a)) before the deletion andof the value of I(f).There are two spe
ial
ases: in the �rst
ase f is the root, the BDST is
omposed by one nodeand then no a
tions are performed. In the se
ond
ase, the BDST is
omposed by the root r andtwo leaves f and x, hen
e there are only two servers s and s0. Then s is released and after the
ommuni
ation to s0 and the deletion of r and that x be
ome the root of BDST.Step 3: Balan
e the BDST {. Perform the balan
e bdst fun
tion starting from t(
).In the next lemma we prove that every message needed to perform the merge fun
tion
an a
tually besent, i.e. every server sear
hing in the lo
al tree eventually �nds the servers destination of messages.Lemma 6.2. The merge fun
tion is
orre
t with respe
t to the lo
al tree of the servers involved.Proof. In step 2 server s has to notify to b that it has to release its internal node t(b). This
anbe done sin
e b is the father of f = f(s) and then is in the lo
al tree of s. Server b has to notify toservers a and
 the
hange of, respe
tively, the father of t(a) and the son of t(
). This
an be donesin
e we
an �nd a and
 in the lo
al tree of b. In step 3, if s managed an internal node t, then s hasto notify to b the new internal node t to manage (this
an also be performed in previous messagesfrom s to b) and whi
h are the father and the sons of t. Then this
hange has to be noti�ed to theservers managing the father and the sons of t. All the required information is in the lo
al tree of s.Lemma 6.3. The merge fun
tion
osts O(1) messages in the worst
ase.Proof. From lemma 6.2 we
an see that step 2 needs one message from s to b, one from b to a,and one from b to
.If s was not managing an internal node t then step 3 needs zero messages, else it needs onemessage from s to b, one from s to the server managing the father of t (zero if n is the root), andtwo from s to the servers managing the sons of t. This makes a total of 6 messages.If b
oin
ides with s then only two messages are needed. In the two spe
ial
ases we have,respe
tively, zero and one messages.Theorem 6.4. Deletion in a BDST
onstituted by n server
osts in the worst
ase O(logn)messages.Proof. From the algorithm above we have the following worst
ase
osts for the various steps:Step 1: From theorem 5.1 this
osts O(logn) messages.

BALANCED AND DISTRIBUTED SEARCH TREES 7Step 2: From lemma 6.3 this
osts O(1) messages.Step 3: From the assumptions above we have a
ost of O(logn) messages.7. The
lient index. Every
lient manages an index to redu
e addressing errors. This is a
olle
tion, in general in
omplete, of leaf asso
iations. Sin
e our
omplexity measure is the numberof messages on the network, then it is not important whi
h is the stru
ture used to store theasso
iations. It
an be a list or a sear
h tree. If it is a sear
h tree, its stru
ture is, in general,di�erent from the stru
ture of the global tree.A
lient uses its index to individuate the server s whi
h should answer to a query so to issue apoint-to-point message to s. If this server is not individuated, then the
lient must send the queryto the server managing the root of the global tree. This is true, in parti
ular, for a new
lient, whoseindex is empty.When a
lient issues a query, it re
eives in the answer message a
ertain number of servers'slo
al trees (owned by the servers involved in the sear
h pro
ess). It uses these lo
al trees to improveinformation re
orded in its index: for a server s of a leaf asso
iation present in its index, the
lientknows that s manages an interval I(f(s)). In the reality it may be that either s has been releaseddue to an under
ow or s is managing a sub-interval of I(f(s)).8. Rotations in a distributed environment. Rotations in a distributed environment areperformed via message ex
hanges between servers. Sin
e we are in a
on
urren
y framework, in thesense that various
lients independently manipulate the stru
ture, ea
h rotation must be pre
eededby a lo
k of the servers involved. Then some messages are needed to
reate the lo
k, others to
ommuni
ate the modi�
ations and others to release the lo
k. Ea
h rotation has therefore a
ostin terms of messages. We
an show that is a
onstant
ost and then if a balan
ing strategy uses alogarithmi
 number of rotations for operation, then the overall
ost is kept logarithmi
.We show by means of an example how to realize a rotation in a distributed environment. Withoutloss generality, let us
onsider �gure 8.1 (top-left), and suppose that node a must rotate with nodeb: 1. a sends messages to (
lient) nodes A, B and to (server) node b, to notify that a lo
k mustbe
reated. After having re
eived these messages, nodes A, B, and b stop routing messagestowards a and send a lo
k a
knowledgement to a.2. b sends messages to (
lient) node C and to (server) node
, to notify that a lo
k must be
reated and that a
knowledgement must be sent to a. After this message, nodes C and
stop routing messages towards b.3. Every server answers to a, see �gure 8.1 (top-
enter), to a
knowledge the lo
k state.4. a noti�es to all servers involved in the rotation whi
h modi�
ations are needed and after allhave been
on�rmed a releases all lo
ks, see �gure 8.1 (top-right).5. When lo
ks are released the situation is shown in �gure 8.1 (bottom) and all servers restartto route messages.It is simple to prove that the example is
orre
t with respe
t to the lo
al tree of a server. We used15 messages and 5 servers are involved. We note that in ea
h rotation exists a server that does notneed to be informed of the rotation, and then is not involved in the lo
k. In the dis
ussed examplethis server is C. We
an therefore improve the pro
edure and use only 12 messages (with 4 serverinvolved).Ea
h lo
k, in a
ertain sense, redu
es the degree of
on
urren
y and this is a drawba
k in a distributedenvironment. It is then important to keep the number of lo
ks low.Although any balan
ing strategy with a logarithmi
 number of messages is good for the generalobje
tive, we must fo
us on those minimizing the number of rotations and then the number of lo
ks.For example the splay tree [10℄ uses a great number of rotations.It is more
onvenient to use a data stru
ture like a red-bla
k-tree, whi
h has a
onstant numberof rotations both for deletion and insertion operations.Mu
h work has been done about redu
ing the number of rotations while balan
ing a
on
urrentsear
h tree [1, 5℄, but this regards the
on
urrent, shared-memory
ase.

8 A. DI PASQUALE AND E. NARDELLI

Fig. 8.1. Lo
king messages during a rotationThere is a big di�eren
e between this kind of work and the distributed tree studied here. In [1, 5℄every update operation
an unbalan
e the stru
ture, while in our
ase a great number of updateoperations do not
ause an unbalan
e to the stru
ture.This is due to the fa
t that data are managed in bu
kets of size b. If a server s start with anempty bu
ket, b insert operations addressed to s do not
ause an over
ow and do not
hange thedistributed tree's stru
ture. More in general if we have k insert operations in a stru
ture where ea
hserver manages b2 keys (i.e. every server has just performed a split), then the number of over
ows(and then of splits) is bounded by d 2kb e (the bound holds when all k inserts are in the same server).Then if b is large, we have a low number of over
ows. An analogous situation holds for under
ows.9. Con
lusions. We have presented an approa
h to keep balan
ed a distributed binary sear
htree, enabling it to manage both insertion and deletion of data items in a message-passing distributedenvironment.Hen
e we have shown that a fully-dynami
 and order preserving distributed sear
h stru
ture,that is a stru
ture that is able to grow and shrink as long as data items are inserted and deleted,
anbe implement in a message-passing distributed environment as eÆ
iently, namely with a O(logn)worst
ase bound, as in the single pro
essor
ase.A
knowledgments. This resear
h was partially supported by the European Union TMRproje
t \Choro
hronos". REFERENCES[1℄ J. E
kerle, O. Nurmi, Te
hni
al Report Aug17-7, Te
hni
al University of Muni
h, 1994.[2℄ W. Litwin, M.A. Neimat, D.A. S
hneider LH*-Linear hashing for distributed �les, ACM SIGMOD Int. Conf.on Management of Data, Washington, D. C., 1993.[3℄ W. Litwin, M.A. Neimat, D.A. S
hneider RP* - A family of order-preserving s
alable distributed data stru
-ture, in 20th Conf. on Very Large Data Bases, Santiago, Chile, 1994.[4℄ B. Kr�oll, P. Widmayer Distributing a sear
h tree among a growing number of pro
essor, in ACM SIGMODInt. Conf. on Management of Data, pp 265-276 Minneapolis, MN, 1994.[5℄ K. Larsen, E. Soisalon-Soininen, P. Widmayer. Relaxed balan
e through standard rotations, in Workshopon Algorithms and Data Stru
tures, Halifax, Nova S
otia, Canada, August 1997.[6℄ E. Nardelli Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer S
ienze So
iety (SCCC'96),Valdivia, Chile, November 1996.[7℄ F. Barillari, E. Nardelli, M. Pepe. Fully Dinami
 Distribuited Sear
h Trees Can Be Balan
ed in O(log2N)Time, Te
hni
al Report 146, Dipartimento di Matemati
a Pura ed Appli
ata, Universita' di L'Aquila, July1997, submitted for publi
ation.

BALANCED AND DISTRIBUTED SEARCH TREES 9[8℄ E. Nardelli, F.Barillari, M. Pepe. Distributed Sear
hing of Multi-Dimensional Data: a Performan
e Evalu-ation Study, Journal of Parallel and Distributed Computation, 1998.[9℄ B. Kr�oll, P. Widmayer. Balan
ed distributed sear
h trees do not exists, in 4th Int. Workshop on Algorithmsand Data Stru
tures (WADS'95), Kingston, Canada, (S. Akl et al., Eds.), Le
ture Notes in ComputerS
ien
e, Vol. 955, pp. 50-61, Springer-Verlag, Berlin/New York, August 1995.[10℄ D.D. Sleator, R.E. Tarjan. Self-Adjusting Binary Sear
h Trees, JACM 32(3):652-686, 1985.

