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t. In this paper we address algorithmi
 issues arising in 
onsidering the extension to a distributedframework of data stru
tures for spatial data.1. Framework. The newer appli
ations that are being developed require more and more aneÆ
ient representation and a

ess to multi-dimensional obje
ts. One approa
h to gain eÆ
ien
y isto use the 
omputing power that is 
olle
tively available in organizations over the network.The te
hnologi
al framework we make referen
e to is the so-
alled Network Computing [9℄,
hara
terized by fast 
ommuni
ation networks, i.e. �ber-opti
 networks delivering 100Mbits perse
ond that are now 
heaper and 
heaper, and powerwul and 
heap workstations (
onsider that for10K dollars you 
an now have very fast ma
hines).With these ingredients it is easily possible to a

umulate a very large 
omputing power. Com-muni
ation between ma
hines takes the form, at a logi
al point of view, of point-to-point messages,whi
h is the standard assumption.The obje
tive of our paper is to de�ne a distributed data stru
ture able to manage eÆ
iently k-dimensional points. The approa
h we take to his aim is to extend to the 
onsidered distributedframework eÆ
ient data stru
tures already developed for the 
ase of a single ma
hine.In this kind of distributed environment the key requirements to obtain eÆ
ien
y, introdu
ed byLitwin et al. [8℄, are:� no 
entralized 
ontrol, otherwise bottlene
ks may derive with the in
rease of the size of thedata set,� s
alability, that is 
apability of the stru
ture to adapt itself to a growing number of points,so that advantage 
an be obtained from a distributed 
ontext, where one 
an �nd additional
omputing power.For what regard queries, the basi
 requirements for every multidimensional data stru
ture are:� exa
t mat
h, where the query is looking for a point whose all 
oordinates are given,� range, looking for all points lying in a given k-dimensional interval.We assume the distributed data stru
ture is used by a variable number of ma
hines, 
alled 
lients,whi
h query the ma
hines managing the k-dimensional spa
e and storing the k-dimensional points,
alled servers. Clients have di�erent and variable behaviour, hen
e it 
annot be anti
ipated if andwhen they are 
onne
ted to the network to be kept up-to-date with the evolution of the stru
ture.This means that, in general, some adaptable indexing me
hanism have to be set up to avoid that,for ea
h query, a 
lient is disturbing all servers [10℄.The performan
e measure we 
onsider are hen
e geared at evaluating how well the stru
ture isbehaving from a distributed point of view. Hen
e our measure is the overall number of messagestraveling over the network for a given query. For more details on issues regarding distributed datastru
ture in the des
ribed framework see [9℄.
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2 A. COCCHI AND E. NARDELLI2. The data stru
ture. The distributed data stru
ture we have de�ned in this work is anextension to the distributed framework of the R+-tree [1℄, a well known and widely used datastru
ture to manage spatial data of the 
lass of R-trees [3℄.More pre
isely, our distributed data stru
ture 
an be 
onsidered, from a a 
on
eptual point view,as a unique R+-tree. From a physi
al point of view, this unique R+-tree is 
ut in various pie
es, ea
hone managed by a di�erent ma
hine. To be more pre
ise, ea
h leaf of the R+-tree stores one bu
ketof data, and ea
h bu
ket is managed by its own server. Ea
h server also manages one of the internalnodes of the R+-tree, that are used to guide the sear
h pro
ess. This s
hema was introdu
ed, withreferen
e to binary (but not balan
ed) sear
h trees by Kr�oll and Widmayer [7℄.The behaviour of the stru
ture is determined by the 
lients, that add k-d points. A new k-dpoint is added to the pertinent bu
ket, that is to the bu
ket 
overing the part of the k-d spa
e wherethe obje
t lies. When a bu
ket over
ows, due to the insertion of a new element, we split it followingthe usual rules for R+-tree.Before pro
eeding further we now brie
y re
all the de�nition and the behaviour of R-trees, for the
ase of a single ma
hine. R-trees 
an be 
onsidered as an extension of a B-tree to the multidimen-sional 
ase. For more details see [3℄.Namely, an R-tree is a m-ary tree to index 2-dimensional points or 2-dimensional extendedobje
ts. For ease of des
ription in the following we des
ribe it in the 
ase it manages 2-dimensionalpoints. An R-tree has the following 
hara
teristi
s (see also �gure 2.1):

Fig. 2.1. Example of an R-tree� Ea
h leaf nodes stores a set of re
ords of type (B, id), where B is the smallest re
tangle
ontaining the set of points referred to by pointer id;� Ea
h internal nodes stores a sets of re
ords of type (B, id), where id points to a 
hild andB is the smallest re
tangle 
ontaining all re
tangles asso
iated the 
hild node;� Ea
h node has thus asso
iated a minimum bounding re
tangle (MBR) that is the smallestre
tangle 
ontaining all re
tangles B stored in the node;� Ea
h node but the root has a degree less than or equal m and greater than or equal m=2.The root has degree � 2 and � m;� All paths from the root to a leaf have the same lenght. This means that all leaves are atthe same level, hen
e all the sear
h paths have the same upper bound on their length.The last two items above are similar to the analogous 
onstraints for B-tree.Sear
h in an R-tree is exe
uted by a top-down traversal, by looking for the desired element in allnodes su
h that their asso
iated MBRs interse
t the query element.Example. In the R-tree shown in �gure 2.1 there are three leaf nodes, A, B, and C. Nodes A andB overlap. Re
tangle G is present only in node A, but has to be sear
hed also in node B, sin
e node



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 3B is overlapping part of the spa
e where G is, and, before sear
hing, one 
annot say if G is in A orin B.Insertion is done by 
arrying out a sear
h and then inserting the point in a leaf node, 
hosen bymeans of some suitable heuristi
s.The MBR of the leaf node whi
h takes 
are of the just inserted element may be enlarged in
onsequen
e of the insertion. Possibly, also parents of su
h a leaf node may be enlarged.If it is needed to maintain the 
onstraint on node degree, nodes are split during the insertionpro
ess, and this is managed like in B-trees, by letting the R-tree grows towards the root.Many variant of R-trees have been de�ned. The one we are interested to is 
alled R+-tree [1℄. Itsdistin
tive 
hara
teristi
 is that to avoid multiple sear
h paths, in R+-trees MBRs are split duringthe insertion pro
ess so that, at ea
h level of the tree, MBRs asso
iated to nodes never interse
t (seealso �gure 2.2).

Fig. 2.2. Example of an R+-treeExample. In the R+-tree shown in �gure 2.2 the requirement of having non overlapping nodes issatis�ed by the insertion of a new node, named P, whi
h stores H and part of G. In fa
t sin
e G isanyway overlapping both nodes A and P, re
tangle G is split and stored twi
e, on
e in A and on
ein P.The drawba
k is that the maintenan
e of the non-overlapping 
onstraints between MBR may 
ausethe rearrangement of the assignment to nodes of the already existing points.A further problem is that when, during insertion, a node is for
ed to split, the maintenan
e ofthe non-overlapping 
onstraints may 
ause some node to have less than m=2 
hildren. In this 
asea restru
turing of the tree (or of some subset of it) is required.3. The deadlo
k problem. When a new point is inserted it might happen that no server 
anenlarge its MBR to take 
are of the new point withour interse
ting other servers.Example. A deadlo
k is shown in �gure 3.1. There are four servers, namely A , B, C, and D. TheMBR of the four servers is the re
tangle named N, that is the MBR of the parent in the R+-tree ofthe four nodes managed by the four servers. The shaded area in the �gure is a deadlo
k zone: if apoint is inserted in it, any of the servers that enlarges its MBR is going to inserse
t another server.In the distributed version a reorganization of the tree is too 
ostly in terms of messages, sin
esu
h a reorganization 
an involve, in the worst 
ase, all node of the tree, hen
e 
an require to sendmessages to all servers.
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Fig. 3.1. A deadlo
k 
on�gurationThe only te
hnique to avoid deadlo
k is to prevent it by suitably 
hoosing, at ea
h insertion, thenode to be expanded. We now show how this is modeled from an algorithmi
 point of view.To avoid deadlo
k we introdu
e the Coverage Problem, whose de�nition is the following:Problem 3.1 (The Coverage Problem). Given a set S of disjoint re
tangles, whi
h are 
alledseeds, does it exist or not a set C, 
alled 
overage, of re
tangles su
h that:� ea
h re
tangle in S is 
ontained in exa
tly one di�erent re
tangle of C,� re
tangles in C are pairwise disjoint,� the union of re
tangles is C is the MBR of re
tangles in S.Example. In �gure 3.2 there are four seeds numbered from 1 to 4. For this 
ase the Coverage prob-lem admits a solution, shown by the 4 re
tangles named A to D whi
h satify the above 
onstraints.

Fig. 3.2. The Coverage problemTo avoid the deadlo
k, the approa
h is to solve the Coverage problem for the node of the distributedR+-tree su
h that the point has to be inserted into one of its 
hildren.Infa
t, given the solution to the Coverage problem, the point will be assigned for the insertionto the 
hild node that is 
ontained in the re
tangle of the 
overage that in
ludes the point itself.This guarantees that su
h a 
hild node 
an in
lude the point without 
ausing any deadlo
k in thefuture.4. Solving the deadlo
k problem. To ta
kle the Coverage problem we �rst 
onsider a sim-pler version of it, namely the Coverage Problem for Iso-Polygonal Zones. In su
h a simpler version:



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 5� the set of seeds de�nes a polygonal zone whose sides are parallel to the orthogonal axes,� no seed is present internally to the de�ned zone,� all seeds have one of their sides aligned along the perimeter of the de�ned zone.An example of an iso-polygonal zone is shown in �gure 4.1.

Fig. 4.1. An example of iso-polygonal zoneA basi
 
on
ept for an iso-polygonal zone is the 
ut. A 
ut is a isotheti
 line 
utting in two thepolygonal zone without 
utting any seed. Note that a 
ut 
an go along a side of a seed, but 
annottraverse the internal of a seed. In �gure 4.1 the iso-polygonal zone admits no 
ut, sin
e all isotheti
lines that do not 
ut seeds are not able to partition in two the iso-polygonal zone.A parti
ular 
ase of iso-polygonal zone is when the zone is simply a re
tangle. In su
h a 
asewe have the following result.Theorem 4.1. A re
tangular zone admits a 
overage if and only if it admits at least one 
ut.Proof. We �rst prove the 
ondition is suÆ
ient, namely if a 
ut exists then the zone admits a
overage.In �gure 4.2 a horizontal 
ut is shown for the re
tangular zone. The 
ase of a verti
al 
ut isanalogous. The 
ut, see the leftmost drawing, evidentiates two zones, named zone 1 and zone 2.
Fig. 4.2. A re
tangular zone and its 
utLet us 
onsider zone 1. The 
on�guration of seeds along the borders of zone 1 
an only be one ofthe two shown in the 
enter or to the right (or the symmetri
 version of the 
on�guration to theright). If we have the 
on�guration in the 
enter, then we 
over zone 1 with expansion of re
tangles
oming from above. If we have the 
on�guration to the right, then we 
over zone 1 with expansionof re
tangles 
oming from the left.To show that the 
ondition is ne
essary we have to introdu
e the 
on
ept of visible partition. Avisible partition for an iso-polygonal zone is a partition of it into re
tangles so that ea
h re
tangleshare at least one of its sides with the perimeter of the zone. In �gure 4.3 on the left is shown a



6 A. COCCHI AND E. NARDELLIvisible partition and on the right a non-visible partition, sin
e the shaded re
tangle in the middlehas no side in 
ommon with the perimeter of the zone.
Fig. 4.3. A visible partition (left) and a non-visible partition (right)A 
onsequen
e of the existen
e of a visible partition is the following result.Lemma 4.2. If a re
tangular zone admits a visible partition then it admits a 
ut.Proof. (Sket
h) If we start from one side of the re
tangular zone along one side of a re
tangle,due to the fa
t that 
annot exist re
tangles with no side in 
ommon with the perimeter, sooner orlater we en
ounter an alignment of sides of re
tangles, that is a 
ut. Now, it is esay to prove thene
essity of the 
ondition. Infa
t, if a re
tangular zone admits a 
overage then su
h a 
overage is avisible partition, hen
e, by the previous lemma, it admits a 
ut.In general we have the following result.Theorem 4.3. The Coverage problem is solvable for an iso-polygonal zone if and only it admitsa 
ut dividing it into two zones su
h that for ea
h of them the Coverage problem is solvable.Proof. (Sket
h) In �gure 4.4 you 
an see that it is possible to expand ea
h of the seed witha little arrow, ea
h until it rea
hes the 
ontinuous lines. Su
h an expansion does not respe
t the

Fig. 4.4. An example for the Coverage problem
ut indi
ated by the dashed line, that is some seed are traversed by the dashed 
ut. Instead, su
han expansion respe
ts the 
ut indi
ated by the 
ontinuous line on the right. But we 
an modifyexpansions of seed so that the dashed 
ut is respe
ted. For example we 
an expand the two seeds atthe right not just until the 
ontinuous line but until the dashed line, expand the bottom small seed



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 7just on the left of the dashed line all the way through to the upper border of the re
tangular zone,and then 
omplete the 
overage with the expansion of the seed with the oblique arrow on the leftand the expansion of the seed with the horizontal arrow on the top.The meaning of this theorem is that the Coverage problem for iso-polygonal zones 
an be re
ursivelysolved, by �rst �nding a 
ut and then solving in the problem in ea
h of the two obtained parts. Theimportan
e of the theorem is that any 
ut that one �nds will work, that is, it is not required to �nda parti
ular 
ut.On the basis of the previous theorem we 
an de�ne a polynomial algorithm to solve the Coverageproblem for an iso-polygonal zone. Infa
t, it is suÆ
ient to start from an arbitrary 
ut and pro
eedre
ursively into the obtained zones. If one arrives at re
tangular zones 
ontaining ea
h one seed theCoverage problem is solvable for the iso-polygonal zone, otherwise is not solvable.5. The Coverage problem for arbitrary polygonal zones. For an arbitrary polygonalzone we have no de�nitive result. We have instead the following 
onje
ture.Conje
ture 5.1. The Coverage problem is NP-
omplete for an arbitrary iso-polygonal zone.To support the 
onje
ture we show two formulations of the problem leading to NP-
omplete prob-lems. But we have not yet been able to �nd a redu
tion.We �rst have to introdu
e the 
on
ept of base grid of a set of seeds. A base grid of a set S ofseeds is built by stret
hing the sides of the seeds until they en
ounter the side of the MBR of S.The result is a partition in re
tangles of the MBR itself.In �gure 5.1 you 
an see four re
tangles, shown in bold, and the base grid resulting from thestret
hing of their sides up to the perimeter of the MBR of the set of seeds.

Fig. 5.1. An example of base gridThen we introdu
e the 
on
ept of feasible expansion of a seed (with respe
t to the MBR of theset of seeds). A feasible expasion of a seed s of a set S, is any re
tangle whi
h 
ontains s and ismade up by the elements of the partition of the base grid of S.The �rst formulation transform the Coverage problem in a Max Weight Independent Set problem.The idea is to derive from the Coverage problem a graph, with weights asso
iated to nodes. Lookingfor an independent set of node with maximum weight and 
he
hing that it is equal to some valuedepending on the base grid allows us to solve the problem.More formally, given an instan
e of the Coverage problem we obtain an instan
e of the Max WeightIndependent Set problem by applying the following steps:1. From the set S of seeds derive the set ES℄ of all feasible expansions of all seeds in S withrespe
t to their base grid.



8 A. COCCHI AND E. NARDELLI2. Build a node-weighted graph G = (V;E;w) where V = ES℄ and edge (x; y) exists if andonly if the re
tangle represented by x interse
ts the re
tangle represented by y. The weigthw(x) of node x is the number of re
tangles of the partition of the base grid of S that are
ontained in x.Now, we �rst �nd a set W of independent nodes in G with maximum weight. Then we 
he
k if thisweigth is equal to the area of MBR of S measured in terms of the re
tangles of the partition of thebase grid of S.If the weight is equal then W identi�es a solution to the Coverage problem. If it is not theCoverage problem has no solution.But unfortunately the Max Weight Independent Set is in general an NP-
omplete problem [2℄,and is also NP-
omplete when restri
ted to this kind of graphs [4, 5, 6℄, 
alled Boxi
ity-2 graphssin
e they derive from the interse
tion of re
tangles [11℄.Example. In �gure 5.2 an example of su
h a formulation is shown. There are two seeds, named

Fig. 5.2. An example of the transformation to Max Weight Independent SetA and B and shown in bold. The base grid is shown with �ner lines. Re
tangle A has a weight of6. For re
tangle A only one expansion, using the lines de�ned by the base grid, is possible. It isindi
ated by A'. Expansion A' has a weight of 9. Re
tangle B has a weight of 4. Also for re
tangle Bonly one expansion is possible using the base grid. Su
h an expansion, named B', has a weight of 6.The resulting graph is shown below. The independent set in su
h a graph that has maximum weightis formed by A' and B'. Its total weight is 15 that is equal to the area of the base grid. Thereforethe Coverage problem has solution.In the se
ond formulation we transform the Coverage problem in Exa
t Cover on a bipartite graph.The idea is to 
over nodes in the lower layer of the bipartite with nodes in the upper layer.More formally, given an instan
e of the Coverage problem we obtain an instan
e of the Exa
t Coverproblem by applying the following steps:1. From the set S of seeds derive the set ES℄ of all feasible expansions of all seeds in S withrespe
t to their base grid.2. Build a bipartite graph G = (N; V;E) where N = ES℄ and V is the set of elements of thepartition of the base grid of S, and an edge (x; y) exists if and only if the feasible expansionrepresented by x 
ontains the element of the partition represented by y.



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 9Now we �nd a set W of nodes of N su
h that(8v; w 2W 69u 2 V j (v; u); (w; u) 2 E)^ (8u 2 V 9v 2W j (u; v) 2 E)If su
h a set exists then it identi�es a solution to the Coverage problem. If it does not exist thenthe Coverage problem has no solution.Unfortunately, the Exa
t Cover is an NP-
omplete problem [2℄.Example. In �gure 5.3 an example of the formulation as an Exa
t Cover problem on bipartitegraph is shown. The instan
e of the Coverage problem is the same as before with two seeds, A and

Fig. 5.3. An example of the transformation to Exa
t CoverB. But now both the seeds and their expansions with respe
t to the base grid are represented asnodes in the upper layer of a bipartite, labeled A, A' B and B', while on the lower layer we representall the elementary 
ells de�ned in the base grid. In the �gure ea
h 
ell is numbered from 1 to 6.By �nding a set of nodes in the upper layer su
h that (1) no two nodes in the found set have a
ommon adja
ent in the lower layer and (2) all nodes in the lower layer are adja
ent to some nodein the found set, we solve the Exa
t Cover problem. In the example, by 
hoosing nodes A and B'we have that node 5 is not adja
ent to a node in the set, if we take node A and A' we violate the
onstraint of not having 
ommon adja
ent nodes, while taking nodes A' and B' we solve the Exa
tCover problem and hen
e the Coverage problem.We remark that while instan
es for both formulations 
an be built in polynomial time, on
e givenan instan
e of the Coverage problem, we have not been able to �nd a general redu
tion from theirinstan
es to the Coverage problem. This means that we are not able, given an instan
e I of MaxWeight Independent Set or of Exa
t Cover, to build a set I 0 of re
tangles su
h that from the solutionto the Coverage problem for I 0 we 
an derive a solution for I .A
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