
Finding All the Best Swaps
of a Minimum Diameter Spanning Tree

Under Transient Edge Failures?

Enrico Nardelli1,2, Guido Proietti1,3, and Peter Widmayer4

1 Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila
Via Vetoio, 67010 L’Aquila, Italy
nardelli,proietti@univaq.it.

2 Ist. di Analisi dei Sistemi e Informatica, CNR, V.le Manzoni 30, 00185 Roma, Italy
3 On leave to Computer Science Dept., Carnegie Mellon University, 15213

Pittsburgh, PA, supported by the CNR under the fellowship N.215.29
4 Institut für Theoretische Informatik, ETH Zentrum, 8092 Zürich, Switzerland

widmayer@inf.ethz.ch.

The work of this author was partially supported by grant “Combinatorics and
Geometr” of the Swiss National Science Foundation.

Abstract. In network communication systems, frequently messages are
routed along a minimum diameter spanning tree (MDST) of the net-
work, to minimize the maximum delay in delivering a message. When a
transient edge failure occurs, it is important to choose a temporary re-
placement edge which minimizes the diameter of the new spanning tree.
Such an optimal replacement is called the best swap. As a natural exten-
sion, the all-best-swaps (ABS) problem is the problem of finding the best
swap for every edge of the MDST. Given a weighted graph G = (V,E),
where |V | = n and |E| = m, we solve the ABS problem in O(n

√
m) time

and O(m + n) space, thus improving previous bounds for m = o(n2).

1 Introduction

For communication networks, it is important to remain operational even if indi-
vidual network components fail. In the past few years, the ability of a network
to survive a transient failure (its survivability) has been studied intensely (an
excellent survey paper on survivable networks is [5]). From the practical side,
this has largely been a consequence of the replacement of metal wire meshes
by fiber optic networks: Their extremely high bandwidth makes it economically
attractive to make networks as sparse as possible. In the extreme, a network
might be designed as a spanning tree of some underlying graph of all possible
links. A sparse network, however, is less likely to survive a transient edge (or
node) failure than a mesh with a multitude of connections that can be used as

? This research was carried out while the first two authors visited the third author
within the CHOROCHRONOS TMR program of the European Community.

G. Bilardi et al. (Eds.): ESA’98, LNCS 1461, pp. 55–66, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

56 E. Nardelli, G. Proietti, P. Widmayer

detours. Therefore, it is important for sparse networks to also take survivability
into account from the very beginning.

On the theoretical side, this gave rise to an interesting family of problems
on graphs. In particular, it is important to know in advance how some specific,
significant feature of the spanning tree changes as a consequence of a transient
edge failure. For example, if the spanning tree has minimum length (i.e., is a
minimum spanning tree (MST)), the most immediate feature of interest is the
total length of the tree itself, and we are interested in finding the edge whose
removal results in the greatest increase of the length of the MST. This problem
has been studied (at least implicitly) for a decade, and the fastest solution known
to date is an O(m + n logn) time algorithm [8], where |V | = n and |E| = m.
Another meaningful class of problems arises when the spanning tree is a single-
source shortest path tree (SPT), which is another popular network architecture.
In such a case, the problem of finding an edge in the tree whose removal results
in the largest increase of the distance between the source node r and a given
node s has been solved efficiently by Malik et al. [9], who gave an O(m+n logn)
time algorithm. Recently, Nardelli et al. [10] defined a different parameter for
measuring the vitality of an edge along a shortest path, looking for the edge
whose removal will result in the worst detour to reach the destination node, and
they solved the problem in O(m+ n logn) time.

However, in several applications, the used spanning tree is neither an MST
nor a SPT. Rather, many network architectures look for minimizing the diameter
of the spanning tree, that is the length of the longest path in the tree between any
two nodes, so that the maximum propagation delay in the network will be as low
as possible. Hence, a minimum diameter spanning tree (MDST) is a spanning tree
having minimum diameter among all the spanning trees. For an MDST subject
to transient edge failures in the way just described, it makes sense to temporarily
substitute the failing edge with a single edge which makes the diameter of the
new spanning tree as low as possible (for practical motivations, see [7]). Such an
optimal replacement is called a best swap. As a natural extension, the all-best-
swaps (ABS) problem is the problem of finding a best swap for every edge of the
MDST.

The related problem of maintaining a spanning tree of small diameter in
a fully dynamic context, where a tree evolves due to repeated insertions and
deletions of edges, has been solved in [7]. This problem belongs to the family of
problems that is concerned with updating the solution of a graph problem after
dynamic changes of the graph; for a recent survey, consult [2]. The approach in
[7] is more general than what is needed for solving the ABS problem. Hence, if
we use it for solving the ABS problem, we spend O(n2) time and O(m+n) space
and preprocessing time. We get these bounds by computing a best swap in O(n)
time for each deleted edge. Recently, Alstrup et al. [1] improved the runtime for
computing a best swap in an incremental context (i.e., when no deletions are
allowed) to O(log2 n). By using some of the results in [7], their approach can be
adapted to solve the ABS problem, and the obtained runtime is O(n

√
m logn),

with O(m+ n) space.

Finding All the Best Swaps of a Minimum Diameter Spanning Tree 57

In this paper we solve the ABS problem in O(n
√
m) time and O(m+n) space,

thus strictly improving previous bounds for m = o(n2). This can be done by
adapting the well-known path halving compression technique [11] for answering
in O(1) amortized time (over a total of Θ(n

√
m) queries) the following query:

Given a rooted tree T and a pair of nodes y and v in T such that v belongs to
the subtree of T rooted at y, what is the length of a longest simple undirected
path in T , starting at v and staying within the subtree of T rooted at y?

The paper is organized as follows: in Section 2 we define the problem more
precisely and formally. Section 3 proposes the algorithm for solving the problem.
Finally, in Section 4, we present the adaptation of the path halving compression
technique which allows to efficiently solve the ABS problem.

2 Problem Statement

Let G = (V, E) be a biconnected, undirected graph, where V is the set of vertices
and E ⊆ V ×V is the set of edges, with a nonnegative real length |e| associated
with each edge e ∈ E. Let n and m denote the number of vertices and the
number of edges, respectively. A graph H = (V ′, E′) is called a subgraph of G if
V ′ ⊆ V and E′ ⊆ E. If V ′ ≡ V then H is called a spanning subgraph of G. A
connected acyclic spanning subgraph of G is called a spanning tree of G.

A simple path (or a path for short) in G = (V, E) is a subgraph (V ′, E′) with
V ′ = {v1, . . . , vk|vi 6= vj for i 6= j} and E′ = {(vi, vi+1)|1 ≤ i < k}, also denoted
as 〈v1, . . . , vk〉. Path 〈v1, . . . , vk〉 is said to go from v1 to vk. Because there is
exactly one path between any two nodes in a tree, let us denote in this case the
length |〈v1, . . . , vk〉| of the path as d(v1, vk).

Let D(T) = 〈d1, d2, . . . , dk〉 denote a diameter path of T , that is a path whose
length |D(T)| is maximum in T . We call |D(T)| the diameter of T . For simplicity,
we will use the term diameter also for the diameter path, whenever no confusion
arises. A minimum diameter spanning tree of G is a spanning tree of G having
minimum diameter. If e ∈ ET is a tree edge, a replacement edge (or swap edge)
for e is an edge f ∈ E \ET such that Te,f = (V, ET − e+ f) is a spanning tree
of G. Let Re denote the set of replacement edges for e. A best swap for e is an
edge r(e) ∈ Re such that

|D(Te,r(e))| = min
f∈Re

{|D(Te,f)|}.

The all-best-swaps (ABS) problem is the problem of finding a best swap for
every edge e ∈ ET .

3 Solving the ABS Problem

To solve the ABS problem efficiently, we will exploit relationships among the
original spanning tree T and the replacing ones. Let dc, with 1 ≤ c ≤ k, be
the center of the diameter path, that is the node in D(T) for which |d(d1, dc)−

58 E. Nardelli, G. Proietti, P. Widmayer

d(dc, dk)| is minimum. If this node is not unique, we take the node farther from
d1. Let T̂ denote a source directed tree obtained by rooting T in dc and orienting
the edges towards the leaves. Following [7], we maintain an augmented topology
tree and an augmented 2-dimensional topology tree [3,4] to efficiently retrieve
only O(

√
m) selected edges among the O(m) replacement edges, whenever an

edge e in T is deleted. In fact, among the selected edges, a best swap is contained.

3.1 The algorithm

The general outline of our algorithm is the following:

Step 0: Perform preliminary computations.
Step 1: For each edge e ∈ T̂ as considered by a postorder visit
Step 2: Delete e; update the topology and the 2-dimensional topology tree.
Step 3: Compute the set of selected replacement edges Se ⊆ Re.
Step 4: For each edge f ∈ Se, compute |D(Te,f)| and select a best swap.
Step 5: Insert e and update the topology and the 2-dimensional topology tree.

Step 0 requires O(n+m) time and space, as we show next. Notice that in Step
1 we consider all the O(n) edges of the tree, in the order they are generated by a
postorder tree visit (this order is needed for a correct path halving compression,
as is shown in Section 4). Steps 2, 3 and 5 can be accomplished in O(

√
m)

time, and |Se| = O(
√
m) [7]. Concerning Step 4, we will show that |D(Te,f)|

can be computed in O(1) amortized time. This can be done using the path
halving compression technique that will be presented and analyzed in detail in
Section 4. This technique, given a rooted tree T̂ and a pair of nodes u and
v in T̂ such that u belongs to the subtree of T̂ rooted at v, allows to find in
O(log(1+Q/n) n) amortized time per query (over a total of Q queries) the length
Findpath(u, v) of a longest simple undirected path starting from u and staying
within the subtree rooted at v. Since for solving the ABS problem we will prove
that Q = Θ(n

√
m), Findpath(u, v) can be computed in O(1) amortized time.

Thus, Step 4 costs O(
√
m) amortized time, and the global time for solving the

ABS problem is O(n
√
m), using O(n+m) space.

3.2 Preliminary computations

Let LD = 〈d1, . . . , dc−1, dc〉 and RD = 〈dc, dc+1, . . . , , , dk〉. W.l.o.g., let us as-
sume |LD| ≥ |RD|. We mark in O(n) time all the nodes in T̂ rooted at dc−1, say
Nl, and all the nodes rooted at dc+1, sayNr , with the nearest node on the diame-
ter from which they descend (if a node is on the diameter, then it is marked with
itself). Nc will denote the remaining nodes, marked with dc. Figure 1 depicts
this notation.

Then, we associate with each node v ∈ T̂ its distance from dc, and the
lengths hi(v), i = 1, 2, of the two longest directed paths in T̂ emanating from
v and making use of two different subtrees of v, if they exist. For each of these

Finding All the Best Swaps of a Minimum Diameter Spanning Tree 59

dc+1

dk

d1

dc-1

dc

LD RD

Nl
NrNc

Fig. 1. The oriented minimum spanning tree

paths we also store the nodes ai(v), i = 1, 2, adjacent to v. Let [h1(v), a1(v)] and
[h2(v), a2(v)] be these pairs of values, with h1(v) ≥ h2(v). With the root, we also
associate a further value, say h3(dc), corresponding to the length of a longest
path in T̂ starting from dc and not using dc−1 and dc+1. After, we associate with
each node dj ∈ LD (dj ∈ RD) a further value, say λ(dj), containing the length
of a longest path in T̂ starting from dc and containing neither dc+1 (dc−1) nor
the edge (dj, dj−1) ((dj, dj+1)). Note that since dc belongs to both LD and RD,
λ(dc) coincides with h3(dc). We express λ(dj) recursively as follows:

λ(dc) = h3(dc)

λ(dj) = max(λ(dj+1), d(dc, dj) + h2(dj)) for j = c− 1, . . . , 1

λ(dj) = max(λ(dj−1), d(dc, dj) + h2(dj)) for j = c+ 1, . . . , k.

Next, we associate with each node dj ∈ LD (dj ∈ RD) a further value, say µ(dj),
containing the length of a longest path in T starting from d1 (dk) and staying
within the subtree of T̂ rooted at dj. We express µ(dj) recursively as follows:

µ(d1) = µ(dk) = 0

µ(dj) = max(µ(dj−1), d(d1, dj) + h2(dj)) for j = 2, . . . , c− 1

µ(dj) = max(µ(dj+1), d(dk, dj) + h2(dj)) for j = k − 1, . . . , c+ 1.

We also associate with each node on the diameter a further value, say ρ(dj),
containing the nearest node along the diameter of the path stored in µ(dj) (this
can be done during the computation of µ(dj)). It is easy to see that all the above
computations cost O(n) time.

Finally, we convert G into a graph G′ with maximum vertex degree 3 [6], and
we derive from T a spanning tree T ′ of G′ (see [7] for further details). Then, we
associate to T ′ a topology tree and an augmented 2-dimensional topology tree
[3,4,7], which can be initialized in O(m) time and space. It is easy to see that
an edge swap in T corresponds to an edge swap in T ′, and vice versa. Therefore,
in the following we will continue to refer to the original spanning tree T , even

60 E. Nardelli, G. Proietti, P. Widmayer

though our algorithm makes use of the topology tree and the 2-dimensional
topology tree of T ′.

Summarizing, preliminary computations have an overall cost of O(m + n)
time and use O(m+ n) space.

3.3 Computing |D(Te,f)| in O(1) amortized time

In the rest of the paper, two paths will be considered adjacent if they share the
root dc only. When the edge e = (x, y) is removed, T̂ is split into two subtrees,
say Tx and Ty, which will be later connected by means of a replacement edge
f = (u, v). As a consequence

|D(Te,f)| = max{|D(Tx)|, |D(Ty)|, |Pf |} (1)

where |Pf | is the length of a longest path in Te,f passing through f . We now
analyze different cases that can arise in solving the ABS problem. For the sake
of clarity, we perform a different analysis depending on whether the removed
edge is located on the diameter or not.

3.3.1 The removed edge is not on the diameter

Assume the edge e = (x, y) is removed, where x is closer to dc than y and
e 6∈ D(T). In this case, neither LD nor RD are affected. Trivially,D(Tx) = D(T).
Moreover, |D(Ty)| ≤ |D(T)|, since a diameter in Ty is a diameter in T too. It
then remains to compute |Pf |, for any selected replacement edge f ∈ Se. Let
f = (u, v), where u ∈ Tx and v ∈ Ty. It is clear that

|Pf | = |Lu|+ |f | + |Lv|

where Lu is a longest path in Tx starting from u and Lv is a longest path in
Ty starting from v. Since v is a descendant of y in T̂ , by using the path halving
compression technique |Lv| = Findpath(v, y) can be computed in O(1) amortized
time, while |f | is clearly available in O(1) time. It remains to compute |Lu|. The
following claim is easy to prove:

Lemma 1. At least one of the longest paths in Tx starting from u contains dc.

Proof. Suppose, for the sake of contradiction, that none of the longest paths
in Tx starting from u contains dc. Let us restrict our attention to any one of
such longest paths, say Pu. We will show that such a path can be modified into
another path at least as long as Pu and passing through dc, from which the claim
will follow. Let w be the node in Pu nearest to dc, and let z be the ending node
of Pu other than u. Three cases are possible:

1. w ∈ Nl: let q ∈ LD be the node on D(T) nearest to w (if w is on the diameter,
then q ≡ w). It is trivial to see that in this case, being q 6≡ dc since w ∈ Nl,
it must be

d(q, z) ≤ d(q, dk)

Finding All the Best Swaps of a Minimum Diameter Spanning Tree 61

since otherwise d(d1, q)+d(q, z) > d(d1, q)+d(q, dk) = |D(T)|. Being d(q, z) =
d(q, w) + d(w, z), it then follows that Pu can be modified into the path
Pu′ = 〈u, . . . , w, . . . , q, . . . , dk〉 containing dc and such that

|Pu′| = d(u, w) + d(w, q) + d(q, dk) ≥ d(u, w) + d(q, dk) ≥

≥ d(u, w) + d(q, z) ≥ d(u, w) + d(w, z) = |Pu|

that is a contradiction.
2. w ∈ Nr: this case is symmetric to the first one.
3. w ∈ Nc: in this case, it must be clearly d(w, z) ≤ d(w, dc) + d(dc, d1), since

otherwise d(dc, d1)+d(dc, w)+d(w, z) > |D(T)|. It then follows that Pu can
be modified into the path Pu′ = 〈u, . . . , w, . . . , dc, . . . , d1〉, containing dc and
such that

|Pu′| = d(u, w) + d(w, dc) + d(dc, d1) ≥ d(u, w) + d(w, z) = |Pu|

that is a contradiction. ut

¿From the above analysis and from the fact that LD is one of the longest
paths emanating from dc in T̂ and thatRD is one of the longest paths emanating
from dc in T̂ which does not make use of dc−1 it follows that

|Lu| =
{
d(dc, u) + |RD| if u ∈ Nl
d(dc, u) + |LD| otherwise

and therefore, it follows that |Lu| is available in O(1) time. Summarizing, |Pf |
can be computed in O(1) amortized time, and

|D(Te,f)| = max(|D(T)|, |Pf |).

Once this value is computed for the O(
√
m) selected edges identified by the

augmented topology and 2-dimensional topology tree, a best replacement edge
is available. Therefore, the case e 6∈ D(T) can be managed in O(

√
m) amortized

time.

3.3.2 The removed edge is on the diameter

We will analyze the case in which e = (di, di−1) ∈ LD is removed, since the
case e ∈ RD is symmetric. When e is removed, T̂ is split into two subtrees, say
Tdi and Tdi−1 , which will be later connected by means of a replacement edge
f = (u, v) ∈ Se. Equation (1) becomes

|D(Te,f)| = max(|D(Tdi)|, |D(Tdi−1)|, |Pf |).

Let us now analyze the value of these three terms.

• |D(Tdi)|: We start by proving the following fact:

62 E. Nardelli, G. Proietti, P. Widmayer

Lemma 2. At least one of the diameters of Tdi contains dk ∈ RD.

Proof. In fact, for the sake of contradiction, suppose that none of the diameters
of Tdi contains dk. Let us restrict our attention to any one of such diameters,
say P. We will show that such diameter can be modified into a path containing
dk and at least as long as P, from which the claim will follow. Let w be the
node in P nearest to dc. Let P1 and P2 be the two subpaths in which P splits
with respect to w, with ending nodes z1 and z2, respectively, and suppose that
z1 precedes z2 in a preorder traversal of T̂ . Three cases are possible:

1. w ∈ Nl: this case is similar to the case 1 of the proof of Lemma 1. In fact,
the modified path there built also contains dk, apart from dc.

2. w ∈ Nr: in this case, let q ∈ RD be the node on D(T) nearest to w (if w is
on the diameter, then q ≡ w). Clearly, any path emanating from q in T̂ is
no longer than d(q, dk). In particular

d(q, dk) ≥ d(q, z1) ≥ d(w, z1)

and
d(q, dk) ≥ d(q, z2) ≥ d(w, z2).

Since either P1∪〈w, . . . , q〉 or P2∪〈w, . . . , q〉 (or both of them) is adjacent to
〈q, . . . , dk〉, it follows that P can be modified into a no shorter path containing
dk, that is a contradiction.

3. w ∈ Nc: in this case, since z2 descends from dc in T̂ , it must be clearly
d(w, z2) ≤ d(w, dc)+d(dc, dk), since otherwise d(dc, d1)+d(dc, w)+d(w, z) >
|D(T)|. It then follows that P can be modified into the path P ′ = 〈z1, . . . , dc,
. . . , dk〉 containing dk and such that

|P ′| = d(z1, w) + d(w, dc) + d(dc, dk) ≥ d(z1, w) + d(w, z2) = |P|

that is a contradiction. ut

¿From the above result, it follows that a longest path starting from dk and
not using the edge e just removed can be computed O(1) time as

|D(Tdi)| = max(µ(dc+1), λ(di) + |RD|).

• |D(Tdi−1)|: analogously to the previous case, it can be proved that at least one
of the diameters of Tdi−1 must contain the node d1. Therefore, it will be

|D(Tdi−1)| = µ(di−1)

which can be computed in O(1) time.

• |Pf |: let be f = (u, v), where u ∈ Tdi and v ∈ Tdi−1 , and |Pf | = |Lu|+|f |+|Lv|.
|Lv| = Findpath(v, di−1) can be computed in O(1) amortized time and |f | is
available in O(1) time. It remains to analyze |Lu|. Remember that to the node
u is associated the nearest node q on the diameter from which it descends. The
following three situations are possible for u:

Finding All the Best Swaps of a Minimum Diameter Spanning Tree 63

1. u ∈ Nl: in this case, still using the same arguments as for the point 1 of the
proof of Lemma 1, it can be easily proved that at least one of the longest
paths in Tdi starting from u must contain dc, and then |Lu| can be obtained
in O(1) time as

|Lu| = d(dc, u) + |RD|.

2. u ∈ Nr: In this case, still using the same arguments as for the point 2 of the
proof of Lemma 2, it can be proved that at least one of the longest paths
in Tdi starting from u must contain q. Therefore, it follows that |Lu| can be
obtained in O(1) time as (note that the following is equivalent to compute
Findpath(u, dc))

|Lu| = max
(
d(u, q) + d

(
q, ρ(dc+1)

)
+ µ(dc+1) − d

(
dk, ρ(dc+1)

)
,

d(u, dk), d(u, dc) + λ(di)
)
.

3. u ∈ Nc: in this case, it is easy to see that at least one of the longest paths
in Tdi starting from u must contain dc. In fact, for the sake of contradiction,
suppose that none of the longest paths in Tdi starting from u contains dc.
Let us restrict our attention to any one of such longest paths, say Pu. Let w
be the node in Pu nearest to dc, and let z be the ending node of Pu other
than u. Clearly, d(w, z) ≤ d(dc, dk), and therefore Pu can be modified into
the path Pu′ = 〈u, . . . , w, . . . , dc, . . . , dk〉, containing dc and such that

|Pu′| = d(u, w) + d(w, dc) + d(dc, dk) ≥ d(u, w) + d(w, z) = |Pu|

that is a contradiction. Given that Lu contains dc, it remains to compute
the length of a longest path starting from dc and not containing u, and this
can be done by looking at |RD| and at λ(di) (note that if λ(di) is exactly
the length of a path passing through u, then it follows that |RD| ≥ λ(di)).
Thus, |Lu| can be computed in O(1) time as

|Lu| = max(d(dc, u) + |RD|, d(dc, u) + λ(di)).

Summarizing, the case e ∈ LD can be managed in O(1) amortized time for any
of the O(

√
m) selected edges. Since the case e ∈ RD is symmetric to the previous

one, it can be managed with the same amortized runtime. Repeating the above
for all the n− 1 edges of T we therefore have the following:

Theorem 1. The ABS problem for a minimum diameter spanning tree T of
a graph G with n vertices and m edges can be solved in O(n

√
m) time, using

O(m+ n) space. ut

64 E. Nardelli, G. Proietti, P. Widmayer

4 Constructing and Using Compressed Paths

In this section we use an adaptation of the well-known path halving compres-
sion technique to prove that a Findpath(v, y) operation can be satisfied in O(1)
amortized time, as required to solve efficiently the ABS problem.

We start creating a virtual forest F of trees. Initially, F is composed of n
singletons, each one associated to a node v ∈ V . With each node v in F the
following values are associated: [hi(v), ai(v)], i = 1, 2, as defined in Section 3.2
and up(v), which will contain an estimation of the length of a longest path
emanating from v and ascending towards dc in T̂ , now considering the edges of
the path from dc to v as directed from v towards dc. At the beginning, up(v) =
0, ∀v ∈ F . The following instructions manipulate F :

– Link(u, v): combine the trees with roots u and v into a single tree rooted in
u, adding the edge e = (u, v) of length |e|;

– Eval(v): Return the length of a longest path starting from v in the tree
containing it and apply a suited path halving compression technique.

Note that Eval(v) assumes that a pointer to element v is obtained in constant
time. The sequence of Link() operations in F is determined by the sequence of
edge removals from T̂ . Remember that we sequentially consider all the edges
e ∈ ET in postorder fashion. When the edge e = (x, y) is (temporarily) removed,
we perform a sequence of Link(y, zi) in F , where zi, i = 1, . . . , k are all the sons
of y in T̂ . This means that for any given node v ∈ V , whenever a Findpath(v, y)
in T̂ occurs, the node y is exactly the root of v in F . In fact, remember that we
only ask Findpath(v, y) on nodes descending from the currently removed edge.
This observation is crucial for the correctness of the method. We implement
a Findpath(v, y) operation in T̂ by means of an Eval(v) operation in F , that
examines all the nodes along the path from v to the root y of the tree containing it
and compresses such a path. The compression technique used is an adaptation of
the path halving technique [11], which will guarantee the associativity of Eval(v).
Let us describe how the path halving works. Given a couple of nodes u, v ∈ V ,
with u ancestor of v (u ≺ v) in T̂ , we define the following function

h(u, v) =
{
h2(u) if a1(u) ≺ v
h1(u) otherwise.

It is easy to see that h(u, v) can be computed in O(1) time, for any u, v ∈ V ,
after O(n) time of preprocessing of T̂ . Assume an Eval(v) operation occurs and
this is the first time an Eval() operation takes place. For the sake of simplicity,
let us focus on a path of three nodes 〈y, u, v〉, with y ≺ u ≺ v in T̂ and such that
|(u, v)| = α and |(y, u)| = β. We have

Eval(v) = max
(
h1(v), up(v), α+h(u, v), α+up(u), α+β+h(y, v), α+β+up(y)

)
.

Finding All the Best Swaps of a Minimum Diameter Spanning Tree 65

The compression takes place as part of this operation, and replaces the edge
(u, v) with an edge (y, v) of length α+ β and the label up(v) of v with

up(v) = max
(
up(v), α+ h(u, v), α+ up(u)

)
.

After the compression we hence have

Eval(v) = max

(
h1(v),max

(
up(v), α+h(u, v), α+up(u)

)
, α+β+h(y, v), α+β+up(y)

)
exactly as before the compression. Therefore, we can conclude that Eval(v) com-
presses paths while correctly maintaining longest path information.

In the general case, let 〈v0 = v, v1, . . . , vk = y〉 be the path from v to the
root y of the tree containing v in F , having edges ei = (vi, vi+1), i = 0, . . . , k−1.
We have

Eval(v) = max
i=1,...,k

(
h1(v), up(v), h(vi, v) +

i−1∑
j=0

|ej|, up(vi) +
i−1∑
j=0

|ej|
)
. (2)

W.l.o.g., let k be even. The path halving technique makes every other node
along the path (except the last and the next to last) point to its grandfather,
i.e., replaces the edge (vi, vi+1), i = 0, 2, . . . , k − 2 with the edge (vi, vi+2) of
length |ei|+ |ei+1| and sets

up(vi) = max
(
up(vi), |ei|+ h(vi+1, vi), |ei|+ up(vi+1)

)
, i = 0, 2, . . . , k− 2. (3)

Hence, after the halving, the path between v and y is 〈v0 = v, v2, . . . , vk−2, vk =
y〉, with edges e′i = (vi, vi+2), i = 0, 2, . . . , k− 2 of length |ei|+ |ei+1|. Therefore,
after the halving, we have

Eval(v) = max
i=1,...,k/2

h1(v), up(v), h(v2i, v) +
2i−1∑
j=0

|ej|, up(v2i) +
2i−1∑
j=0

|ej|


which, from (3), is equivalent to (2). Therefore, it turns out that Eval(v) before
and after the halving is invariant. Remembering the order the edges are removed,
it is clear that the compression of the paths works correctly (i.e., the compression
incrementally proceeds towards the upper levels of T̂ , according to the edge
removals). Therefore, we conclude that Findpath(v, y) ≡ Eval(v).

Since naive linking in F must be applied to preserve paths of T̂ , a sequence
of Q ≥ n Eval(v) queries in F can be satisfied in O(Q log(1+Q/n) n) time [11].
Therefore, to establish that a single query can be satisfied in O(1) amortized
time, it remains to prove that Q = Ω(n1+ε) for some constant ε > 0. We now
informally show that Q = Θ(n

√
m), i.e., ε ≥ 1/2.

66 E. Nardelli, G. Proietti, P. Widmayer

Let us distinguish the edges of T in basic edges (i.e., edges contained inside
a basic cluster [7] and therefore associated to a node at level ` = 0 in the
corresponding topology tree) and spanning edges (i.e., edges joining two clusters
at the same level ` ≥ 0 of the topology tree). If an edge removed from T is a
basic edge, then we have |Se| = Θ(

√
m). On the other hand, if an edge removed

from T is a spanning edge and joins two clusters corresponding to nodes at level
` in the topology tree, 0 ≤ ` ≤ dlog

√
me − 1, then we have |Se| = Θ(

√
m/2`).

For each edge in Se a Findpath() query is issued. Hence the minimum overall
number of queries is obtained when as many as possible of the n−1 failing edges
of T are spanning edges at the highest possible level in the topology tree. Since
there will be Θ(

√
m/2`+1) spanning edges for nodes at level ` of the topology

tree, i.e., a total of Θ(
√
m) spanning edges, it follows that the minimum number

of queries is posed when Θ(
√
m) edges of T are spanning and the remaining

Θ(n−
√
m) are basic. Therefore, we have

Q = Ω

(n−
√
m)
√
m+

dlog
√
me−1∑

`=0

√
m

2`+1

√
m

2`

 = Ω(n
√
m)

and since Q = O(n
√
m), it follows Q = Θ(n

√
m), which implies ε ≥ 1/2.

Acknowledgements – The authors would like to thank anonymous referees for
their helpful suggestions.

References

1. S. Alstrup, J. Holm, K. de Lichtenberg and M. Thorup, Minimizing diameters of
dynamic trees, Proc. 24th Int. Coll. on Automata, Languages and Programming
(ICALP), (1997) 270–280.

2. D. Eppstein, Z. Galil and G.F. Italiano, Dynamic graph algorithms, Tech. Rep.
CS96-11, Univ. Ca’ Foscari di Venezia (1996).

3. G.N. Frederickson, Data structures for on-line updating of minimum spanning
trees, SIAM J. Computing, 14 (1985) 781–798.

4. G.N. Frederickson, Ambivalent data structures for dynamic 2-edge connectivity
and k smallest spanning trees. Proc. 32nd IEEE Symp. on Foundations of Com-
puter Science (FOCS), (1991) 632–641.

5. M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks, in: Hand-
books in OR and MS, Vol. 7, Elsevier (1995) 617–672.

6. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
7. G.F. Italiano and R. Ramaswami, Maintaining spanning trees of small diameter,

Proc. 21st Int. Coll. on Automata, Languages and Programming (ICALP), (1994)
212–223. A revised version will appear in Algorithmica.

8. K. Iwano and N. Katoh, Efficient algorithms for finding the most vital edge of a
minimum spanning tree, Info. Proc. Letters, 48 (1993) 211–213.

9. K. Malik, A.K. Mittal and S.K. Gupta, The k most vital arcs in the shortest path
problem, Oper. Res. Letters, 8 (1989) 223–227.

10. E.Nardelli, G.Proietti and P.Widmayer, Finding the detour-critical edge of a short-
est path between two nodes, Info. Proc. Letters, to appear.

11. R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms,
JACM, 31 (2) (1984) 245–281.

	Introduction
	Problem Statement
	Solving the ABS Problem
	The algorithm
	Preliminary computations
	Computing $|{cal D}(T_{e,f})|$ in $O(1)$ amortized time
	The removed edge is not on the diameter
	The removed edge is on the diameter

	Constructing and Using Compressed Paths

