
Maintaining a Minimum Spanning Tree

under Transient Node Failures�

Enrico Nardelli1,2, Guido Proietti1,2, and Peter Widmayer3

1 Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, Via
Vetoio, 67010 L’Aquila, Italy. E-mail: {nardelli,proietti}@univaq.it

2 Istituto di Analisi dei Sistemi e Informatica, Consiglio Nazionale delle Ricerche,
Viale Manzoni 30, 00185 Roma, Italy.

3 Institut für Theoretische Informatik, ETH Zentrum, CLW C 2, Clausiusstrasse 49,
8092 Zürich, Switzerland. E-mail: widmayer@inf.ethz.ch

Abstract. Given a 2-node connected, undirected graph G = (V, E),
with n nodes and m edges with real weights, and given a minimum
spanning tree (MST) T = (V, ET) of G, we study the problem of finding,
for every node v ∈ V , the MST of G − v = (V \ {v}, E \ Ev), where Ev

is the set of edges incident to v in G. We show that this problem can
be solved in O(min(m ·α(n, n), m+ n log n)) time and O(m) space. Our
solution improves on the previously known O(m log n) time bound.

1 Introduction

Let V be a set of n sites that must be interconnected, let E be a set ofm potential
links between the sites, and let w(e) be some real weight associated with link e.
Let G = (V,E) be the corresponding weighted, undirected graph, and assume
that G is 2-node connected (i.e., to disconnect G we have to remove at least
2 nodes). Let NG = (V,E′), E′ ⊆ E be a connected spanning subgraph of G.
We call NG a communication network, or simply a network, in G. A network is
generally built with the aim of minimizing some cost, which is computed using
some criteria defined over NG according to the edge weights. For instance, if the
network must be built so that the sum of all the edge weights in the network
is minimum, then NG is a minimum (weight) spanning tree (MST) of G. As
another example, if one wants the network to be a spanning tree such that the
maximum distance between any two nodes is minimum, then NG is a minimum
diameter spanning tree (MDST) of G.

In addition to minimizing the network cost, we want to focus on another
important feature of the network that must be taken into account from the very
beginning: Its reliability or survivability, i.e., the ability of the network to remain
operational if individual network components (edges or nodes) fail. In the past
� This work has been partially developed while the second author was visiting the
third one, supported by the EU TMR Grant CHOROCHRONOS and by the Swiss
National Science Foundation.

M. Paterson (Ed.): ESA 2000, LNCS 1879, pp. 346–355, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Maintaining a Minimum Spanning Tree 347

few years, several survivability problems have been studied intensely [7]. Clearly,
low cost and high reliability of the network are two conflicting objectives. In the
extreme, to maintain costs as low as possible, a network might be designed as a
spanning tree of the underlying graph. Such a network, however, will not survive
even a single edge failure. Even worse, a single node failure in the network might
leave each and every node isolated. Therefore, if the network is operational as
long as it is connected, some redundancy in the set of edges must be present. As
a result, we design the network on two layers: a first layer, where the primary set
of links is activated, in such a way that the cost is minimized, and a secondary
layer of inactive replacement links, a subset of which will switch to active as soon
as a network component fails, so that the network will remain connected. We
call the activated set of replacement links the set of swap edges, given the failed
component, and we call the result of swapping the replacement (swap) network.

Transient failures of edges and nodes play an important role in reliability
considerations: a component that is down is expected to come up again after a
little while. Under this assumption, it may be unlikely that there is more than
one failure at any given time. Therefore, we study the problem of dealing with
the failure of a single edge or node in the network. Since we want to prepare
for the transient failure of an arbitrary component, we precompute all individual
component failures. We aim at a set of swap edges that ideally minimizes the cost
of the replacement network or at least keeps it low. In the extreme, a minimum
cost replacement network might entail the use of many swap edges, at a set-up
cost per edge in a real communication network. For instance, if the network is a
single source shortest paths tree (SPT), then the failure of an edge (node) might
completely change the shortest paths to all the nodes beyond the failed edge
(node), but a change of the network to the new SPT would induce high set-up
costs. After the short duration of the transient failure, the switch back to the old
SPT would again have high set-up costs, and so it might be desirable to avoid
the expensive switch altogether and cope with a worse network for the short
time of the failure. Given that we aim at saving set-up cost, we want to choose
a small set of replacement edges which will provide a low but not minimum cost
replacement network after a failure. In the extreme, for a tree network one could
associate with each edge in the network a single swap edge, so that the resulting
swap network is the best possible among all the networks that can be obtained
by means of a single swap per edge. Similarly, we associate with each node v
having δ(v) adjacent nodes in the network, a set of δ(v) − 1 swap edges that
reconnect the network. This is the problem we study in this paper.

In general, even if we choose the best possible swap edges, this does not
guarantee that the swap network will be the optimum one in the damaged graph,
as the previous example with the SPT shows [10]. A similar example is given
by the MDST [8,9]. However, for some specific network topologies (i.e., for some
specific cost criteria), the swap network is optimal. A very popular network
architecture for which this holds is the MST. In fact, it is easy to see that
when an edge e fails in a MST, then the MST of G − e = (V,E \ {e}) can
be obtained by means of a single replacement edge. Similarly, when a failure

348 Enrico Nardelli et al.

happens to a node v having δ(v) nodes adjacent in the MST, then the MST of
G − v = (V \ {v}, E \ Ev), where Ev is the set of edges incident to v in G, can
be obtained by means of δ(v) − 1 replacement edges. Thus, reliability in MSTs
can be accomplished by using all the best swap edges for both the set of edges
and the set of nodes originally in the network.

Not surprisingly then, the problem of computing efficiently all these best
swap edges has been studied in the past, in the two settings in which either edge
or node failures are considered, starting from different perspectives, though.
Let AER (all edges replacement) and ANR (all nodes replacement) denote the
problem of determining the set of swap edges for all the edges and all the nodes in
the network, respectively. The fastest solution for solving the AER problem runs
in O(m) time [4]. Note that this positively compares with the fastest dynamic
offline algorithm known up to date for maintaining minimum spanning trees,
which requires O(log n) time per update, and O(m) space and preprocessing
time [5]. In fact, one can always find all the best swaps by considering all the
edges of the MST one after the other (and then the algorithm is offline, since
we know in advance which edges need to be considered): when the edge e of
weight w(e) is considered, we increase its weight to an arbitrary large value, we
compute the new MST and we then set back the weight of e to w(e). This will
cost a total of O(m+ n logn) time and O(m) space.

On the other hand, as far as the ANR problem is concerned, and despite
its intrinsic analogy with the AER problem, the best known algorithms are
slower, and run either in O(m logn) time for m = o

(
n2

log n

)
[5], or in O(n2) time

otherwise [2]. Das and Loui [3] have shown that if the edge weights are sorted in
advance, then the ANR can be solved in O(m · α(m,n)) time and space, where
here and in the rest of the paper α(m,n) is the functional inverse of Ackermann’s
function as in [12]. In this way, however, the logarithmic factor is shifted to the
sorting of the edge weights, although there seems to be no evidence that edge
weights must be sorted for solving the ANR problem.

In this paper, we move one step towards a (potential) linear solution of the
ANR problem, by providing an O(min(m ·α(n, n),m+n logn)) time and O(m)
space algorithm. The problem of finding a linear time algorithm (or, alterna-
tively, a superlinear lower bound) for the ANR problem remains a challenging
open problem.

The paper is organized as follows: in Section 2 we define the problem we
are dealing with more precisely and formally, and we give some basic definitions
that will be used throughout the paper, while in Section 3 we describe the
algorithm for solving the problem, and we provide an analysis of both correctness
and complexity of the proposed algorithm. Finally, in Section 4, we present
conclusions and list some open problems.

2 Preliminaries

Let G = (V,E) be an undirected graph, where V is a set of n nodes and E ⊆
V × V is a set of m edges, with a real length w(e) associated with each edge

Maintaining a Minimum Spanning Tree 349

e ∈ E. If multiple edges between nodes are allowed, then the graph is called
a multigraph. A graph H = (V ′, E′) is called a subgraph of G if V ′ ⊆ V and
E′ ⊆ E. If V ′ ≡ V then H is called a spanning subgraph of G.

A simple path (or a path for short) in G is a subgraph P = (V ′, E′) with
V ′ = {v1, v2, . . . , vk|vi
= vj for i
= j} and E′ = {(vi, vi+1)|1 ≤ i < k}, also
denoted as P = 〈v1, v2, . . . , vk〉. Path P is said to go from v1 to vk passing
through v2, v3, . . . , vk−1. If v1 ≡ vk, then P is a cycle. A graph G is connected if,
given any two distinct nodes u, v of G, there exists a path from u to v. A graph
G is 2-node connected (biconnected, for short) if, given any three distinct nodes
u, v, w of G, there exists a path from u to w not passing through v. In other
words, a graph G is biconnected if at least 2 of its nodes must be removed to
disconnect it. A connected, acyclic spanning subgraph of G is called a spanning
tree of G. A spanning tree T = (V,ET) of G is said to be a minimum weight
spanning tree (MST) of G if the sum of all the edge weights w(e), e ∈ ET is
minimum for all the spanning trees of G.

Let T (r) denote a MST of a biconnected graph G rooted at an arbitrary
node r. Let v1, . . . , vk be the children of node v in T (r), and let v0 be its parent.
Let G − v = (V \ {v}, E \ Ev), where Ev is the set of edges incident to v in G.
Note that G− v is connected, since G is biconnected. For any two node-disjoint
subtrees T1 and T2 of T (r), let E(T1, T2) be the set of non-tree edges having one
endpoint in T1 and the other endpoint in T2. Let us denote by T (v) the subtree
of T (r) rooted at v, and by T (v) the tree T (r) with T (v) and the edge (v0, v)
removed. Let Hv = {f ∈ E \ ET |f ∈ E(T (vi), T (vj)), i, j = 1, . . . , k, i
= j},
referred to in the following as the set of horizontal edges of v, and let Vv = {f ∈
E \ ET |f ∈ E(T (vi), T (v)), i = 1, . . . , k}, referred to in the following as the set
of vertical edges of v.

It is easy to see that the MST T�v of G − v can be computed by making
use of the multigraph obtained by contracting to a vertex each subtree of T (r)
created by the removal of v [5]. More precisely, let Wv = {w0, w1, . . . , wk}
be the set of vertices associated with the contraction of the set of subtrees
{T (v), T (v1), . . . , T (vk)}. To compute T�v, we first compute the MST Tv =
(Wv,Rv) of the multigraph Gv = (Wv,Hv∪Vv). Then, we set T�v = (V \{v}, ET \
{(v0, v), (v, v1), . . . , (v, vk)} ∪ Rv). Figure 1 illustrates the used notations.

The set Rv is called the set of best swap (or replacement) edges for v. The all
nodes replacement (ANR) problem asks for finding Rv for every node v ∈ V .

3 Solving the ANR Problem

We first give a high-level description of the algorithm, and we then illustrate it
in details.

3.1 High-Level Description of the Algorithm

A high-level description of our algorithm is the following. We consider all the
non-leaf nodes in T (r) in any arbitrary postorder (if v is a leaf node, then trivially

350 Enrico Nardelli et al.

h3

h4

ν2

ν3

h1

h2

w0

w1 wk

h4

h1

w2

ν1 ν3

ν1
h3

h2

ν2
v0

T (vk)

. . .

Gv

v

. . .

T (v1)

G

v1 v2

r

T (v2)

T (v)

⇒

vk

Fig. 1. Node v is removed from G: subtrees T (v), T (v1), . . . , T (vk) are contracted to
vertices w0, w1, . . . , wk, respectively, joined by vertical edges (dashed) and horizontal
edges (dotted), to form Gv.

Rv = ∅). Let us now fix such a node v, having parent v0 and children v1, . . . , vk
in T (r), and let Wv, Hv and Vv be the corresponding sets of vertices, horizontal
and vertical edges, respectively (notice that if v ≡ r, then Vv = ∅).

Let fvi ∈ E \ET be a selected vertical edge for T (vi), i = 1, . . . , k, defined as
an edge for which w(fvi) = min{w(f)|f ∈ E(T (vi), T (v))}, unless E(T (vi), T (v))
is empty, in which case fvi does not exist. For the sake of avoiding technicalities,
assume that fvi is unique (if it exists). Let V ′

v ⊆ Vv be the set of existing selected
vertical edges associated with v. It is easy to see that Rv corresponds to the set
of edges of the MST of the multigraph Hv = (Wv,Hv ∪V ′

v). It will turn out that
this selection of edges among the vertical edges is vital to get our claimed time
complexity for solving the ANR problem.

It is therefore sufficient to compute the MST of Hv, for all the nodes v of
T (r) in postorder.

3.2 Computing Efficiently the Selected Vertical Edges

The efficiency problem is the computation of the selected vertical edges V ′
v, for all

the nodes v ∈ V . It is clearly prohibitive to simply compute V ′
v from scratch, but

it is just as well too expensive to attack the problem in a bottom-up fashion,
by using mergeable heaps in which each heap contains all the vertical edges
associated with a given subtree of T (r). In fact, it can be proved that Ω

(
k log n

k

)
time is needed for deleting k elements from a heap of n elements, assuming
that insertions, merges and minimum finds are performed in constant time [11].
Then, it is not hard to see that such an approach would require O(m log n) time
for solving the ANR problem, since Θ(m) deletions, spread over Θ(n) heaps
containing O(n) elements at a time, are needed.

To avoid this problem, we adopt a totally different strategy: We find V ′
v by

making use of a transformation of the graph G to a multigraph G′ containing

Maintaining a Minimum Spanning Tree 351

less than 2m edges. After this transformation, we build a transmuter [13], repre-
senting the set of fundamental cycles of G′ with respect to T (r), defined as the
cycles of G′ containing only a single non-tree edge. This will allow us to compute
V ′

v in O(m · α(m,n)) time.
We now describe in detail how the transformation works. Let f = (x, y) ∈

E \ ET denote an arbitrary non-tree edge in G. W.l.o.g., we will assume in
the following that x precedes y in postorder. Let nca(x, y) denote the nearest
common ancestor in T (r) of x and y, and let x′ and y′ denote the children in T (r)
of nca(x, y) on the paths (if any) going from nca(x, y) to x and y, respectively
(see Figure 2).

Depending on nca(x, y), x, y, x′ and y′, edge f is either eliminated or is sub-
stituted by one or two edges having weight w(f). More precisely, we transform
the graph according to the following substitution rules (see Figure 2):

(R1): if nca(x, y) ≡ y, we substitute f by the edge f ′ = (x, x′);
(R2): if x′ ≡ x and y′
≡ y, we substitute f by the edge f ′ = (y, y′);
(R3): if y′ ≡ y and x′
≡ x, we substitute f by the edge f ′ = (x, x′);
(R4): if x′ ≡ x and y′ ≡ y, f disappears;
(R5): otherwise, f is substituted by the two edges f ′ = (x, x′) and f ′′ = (y, y′).

x2 ≡ x4

x5 y5

y4

x′
1 y′

5

y′
2x1

y3

x3 ≡ y2

x′
5 ≡ x′

3

f4

f5

G
r

f ′
2

f ′
3

f ′
1

f ′′
5

Gv

f3

f2

f1

r ≡ y1

⇒
f ′
5

Fig. 2. Substitution of non-tree (dashed) edges fi = (xi, yi), i = 1, . . . , 5, based on
T (r) (solid edges), visited in postorder from left to right: edges f1, f2, f3, f4 and f5 are
substituted according to rules (R1), (R2), (R3), (R4) and (R5), respectively.

The above transformation produces a multigraph G′ = (V,E′), where E′ is
the set of original tree edges plus the set of edges substituting the original non-
tree edges (substituting edges, for short), and therefore |E′| < 2m. The decisive
property of this transformation is the following:

Lemma 1. Let f = (x, y) ∈ E \ ET be a non-tree edge forming a fundamental
cycle in G containing a pair of adjacent tree edges ev = (v0, v) and evi = (v, vi),
where v0 is the parent of v and v is the parent of vi in T (r). If x (resp. y) is a
descendant of v in T (r), then f is a non-tree edge of minimum weight forming

352 Enrico Nardelli et al.

a fundamental cycle in G with ev and evi , if and only if f ′ = (x, x′) (resp.
f ′′ = (y, y′)) is a substituting edge of minimum weight forming a fundamental
cycle in G′ with evi .

Proof. Let f be a non-tree edge of minimum weight among all the non-tree
edges forming a fundamental cycle in G with ev and evi . W.l.o.g., let us assume
that x is a descendant of v in T (r) (the case where y is a descendant of v in
T (r) can be treated similarly). Since f forms a cycle with ev and evi , it follows
that nca(x, y) belongs to the path in T (r) from r to v0. Hence, the substituting
edge f ′, having weight w(f) = w(f ′), is such that x′ belongs to the path in
T (r) from r to v, and therefore f ′ forms a cycle with evi . To show that f ′ is a
substituting edge of minimum weight among all the substituting edges forming a
fundamental cycle in G′ with evi , let us assume that there exists a substituting
edge g′ = (u, u′) forming a cycle with evi , and such that w(g′) < w(f ′). Let
g = (u, z) be the original non-tree edge substituted by g′ (and possibly, by
an additional g′′ = (z, z′)). Since g′ forms a cycle with evi , it follows that u′

belongs to the path in T (r) from r to v, and therefore nca(u, z) belongs to the
path in T (r) from r to v0. Hence, g forms a cycle in G with ev and evi , and
w(g) = w(g′) < w(f ′) = w(f), a contradiction.

Conversely, w.l.o.g. let f ′ (the case with f ′′ can be treated similarly) be a
substituting edge of minimum weight among all the substituting edges forming
a fundamental cycle in G′ with evi . The original edge f substituted by f ′ is
such that either nca(x, y) ≡ v0 (according to rules (R1) and (R3)), or nca(x, y)
is an ancestor of v0 in T (r) (according to rule (R5)). In both cases, f forms a
fundamental cycle in G with ev and evi , and w(f) = w(f ′). To show that f
is a non-tree edge of minimum weight among all the non-tree edges forming a
fundamental cycle in G with ev and evi , let us assume that there exists a non-tree
edge g = (u, z) forming a cycle with ev and evi , with u preceding z in postorder
and such that w(g) < w(f). Two cases are possible: (1) u is a descendant of
vi in T (r); (2) z is a descendant of vi in T (r). In the former case, from the
fact that nca(u, z) belongs to the path in T (r) from r to v0, it follows that u′

belongs to the path in T (r) from r to v, and therefore g′ forms a cycle in G′ with
evi , and w(g′) = w(g) < w(f) = w(f ′), a contradiction. Similarly, in the latter
case, it follows that z′ belongs to the path in T (r) from r to v, and therefore
g′′ = (z, z′) forms a cycle in G′ with evi , and w(g′′) = w(g) < w(f) = w(f ′), a
contradiction. ��

Using the above lemma, we can prove the following result:

Theorem 1. The selected vertical edges V ′
v for all the non-leaf nodes v ∈ V can

be computed in O(m · α(m,n)) time and O(m) space.

Proof. Consider an arbitrary non-leaf node v ∈ V . If v ≡ r, then trivially V ′
v = ∅.

Let then v be a non-leaf node other than r, having parent v0 and children
v1, . . . , vk in T (r). The multigraph G′ can be computed in O(m · α(m,n)) time
andO(m) space: In fact, nca(x, y) can be found inO(α(m,n)) amortized time for
each non-tree edge, using O(m) space [13]. By slightly modifying this algorithm,

Maintaining a Minimum Spanning Tree 353

x′ and y′ can be found in O(α(m,n)) amortized time as well: in fact, assuming
that T (r) is visited in a fixed postorder, x′ can be computed by postponing the
union operations appearing in [13] after all the children and the non-tree edges
of a given node have been examined, while y′ can be computed by reapplying the
modified algorithm, but visiting T (r) in reverse postorder. We omit the details
due to lack of space.

Moreover, from Lemma 1, it follows that a selected vertical edge fvi ∈ E \ET

for the subtree T (vi), that is a vertical edge of minimum weight containing
ev = (v0, v) and evi = (v, vi), corresponds to a substituting edge of minimum
weight in G′ containing evi . Henceforth, we can compute efficiently the set of
selected vertical edges by means of a transmuter D[G′, T (r)] built on G′ with
respect to T (r). Basically, D[G′, T (r)] contains one source node for each tree
edge in G′, one sink node for each substituting edge in G′, and a number of
additional nodes. The fundamental property of a transmuter is that there is a
path from a given source node to a given sink node if and only if the associated
edges form a fundamental cycle in G′. Recall that D[G′, T (r)] can be built in
O(m · α(m,n)) time [13]. To find a selected vertical edge for the subtree T (vi),
we label a sink node with the weight of the corresponding substituting edge,
and we process the transmuter in reverse topological order, labelling each node
with the minimum of the labels of its immediate successors. When the process
is complete, the source node representing evi is associated with a substituting
edge of minimum weight forming a cycle with it, which in its turn is associated
with an original non-tree edge forming a cycle of minimum weight with ev and
evi . Therefore, the edge evi remains associated with a selected vertical edge fvi

for the subtree T (vi), and V ′
v =

k⋃
i=1

{fvi}. This can be done in O(m · α(m,n))

time and O(m) space [13], from which the theorem follows. ��

3.3 Computing All the Best Swap Edges

Once the vertical edges have been selected, to solve the ANR problem we have
to compute the MST of Hv = (Wv,Hv ∪ V ′

v), whose set of edges corresponds to
Rv, for every v ∈ V . This leads to the main result.

Theorem 2. The ANR problem for a minimum spanning tree of a biconnected
graph with n nodes and m edges can be solved in O(min(m ·α(n, n),m+n logn))
time and O(m) space.

Proof. Consider an arbitrary node v ∈ V . If v is a leaf node in T (r), then trivially
Rv = ∅. Let V ′ be the set of non-leaf nodes. From Theorem 1, computing V ′

v

for every v ∈ V ′ costs O(m ·α(m,n)) time and O(m) space. On the other hand,
since Hv = {f = (x, y) ∈ E \ Ev|nca(x, y) = v}, we can associate Hv with each
node v in O(m · α(m,n)) time and O(m) space [13].

It remains to analyze the total time needed to compute, for every v ∈ V ′, the
MST of Hv. Let nv andmv denote the number of nodes and the number of edges
in Hv, respectively. The MST of Hv can be computed in O(mv ·α(mv, nv)) time

354 Enrico Nardelli et al.

and O(mv) space [1]. Notice that each edge in Hv is associated with only a single
node v, and thus it appears just in a single MST computation, while edges in V ′

v

can appear in several MST computations. However,
∑

v∈V ′ |V ′
v| < n−1, since we

can create at most one selected vertical edge for each tree edge (this also holds
for edges leaving the root, with which no selected vertical edges are associated).
Notice that this is exactly the reason why vertical edges are selected. In fact,
since only O(n) vertical edges are considered in total, we avoid to consider (in
the worst case) O(n) vertical edges for each of O(n) failing nodes, i.e., a total of
O(n2) vertical edges.

It follows that the total time needed to compute the MST of Hv for every
v ∈ V ′, is

∑
v∈V ′

O(mv · α(mv , nv)).

Since mv = Ω(nv), from the fact that α(m,n) is a monotonically decreasing
function in m, it follows that

α(mv, nv) = O(α(nv, nv)) = O(α(n, n)).

From this and from the fact that
∑

v∈V ′mv = O(m + n), it follows that the
total time needed to solve the ANR problem is O(m · α(n, n)), by using O(m)
space.

Notice that the above time bound is worse than O(m + n logn) as soon as
m = ω

(
n log n
α(n,n)

)
. Whenever this situation happens, we can use a classic O(mv +

nv lognv) time and O(mv) space algorithm to compute the MST of Hv [6]. This
will require O(m+n logn) time and O(m) space to compute Rv for every v ∈ V ′.
From this, the thesis follows. ��

4 Conclusions

In this paper we have presented an O(min(m · α(n, n),m + n logn)) time and
O(m) space algorithm for solving the ANR problem, improving after several
years the previously known O(m log n) time bound [5].

A natural open problem is how to reduce the time complexity to O(m ·
α(m,n)), which might be doable by exploiting the relationships among the var-
ious MSTs which are computed in postorder. It appears to be much harder to
find a linear time algorithm, at least by using our approach which makes use
of an MST computation subroutine. Finally, we plan to extend our approach to
different network topologies, analyzing the ANR problem for MDSTs and SPTs.

Acknowledgements – The authors would like to thank Gert Stølting Brodal for
helpful discussions on the topic.

Maintaining a Minimum Spanning Tree 355

References

1. B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann time
complexity, TR NECI 99-099, Princeton University, NJ, 1999. 354

2. F. Chin and D. Houck, Algorithms for updating minimal spanning trees, J. Com-
put. System Sci., 16(3) (1978) 333–344. 348

3. B. Das and M.C. Loui, Reconstructing a minimum spanning tree after deletion of
any node, TR UILU-ENG-95-2241 (ACT-136), University of Illinois at Urbana-
Champaign, IL, 1995. 348

4. B. Dixon, M. Rauch and R.E. Tarjan, Verification and sensitivity analysis of min-
imum spanning trees in linear time, SIAM J. Comput., 21(6) (1992) 1184–1192.
348

5. D. Eppstein, Offline algorithms for dynamic minimum spanning tree problem, 2nd
Workshop on Algorithms and Data Structures (WADS’91), Ottawa, Canada, 1991,
Vol. 519 of Lecture Notes in Computer Science, Springer-Verlag, 392–399. A revised
version appeared in J. of Algorithms, 17(2) (1994) 237–250. 348, 349, 354

6. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-
work optimization algorithms, J. of the ACM, 34(3) (1987) 596–615. 354

7. M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks, Handbooks
in OR and MS, Vol. 7, Elsevier (1995) 617–672. 347

8. G.F. Italiano and R. Ramaswami, Maintaining spanning trees of small diameter,
Algorithmica 22(3) (1998) 275–304. 347

9. E. Nardelli, G. Proietti and P. Widmayer, Finding all the best swaps of a mini-
mum diameter spanning tree under transient edge failures, 6th European Symp. on
Algorithms (ESA’98), Venice, Italy, 1998, Vol. 1461 of Lecture Notes in Computer
Science, Springer-Verlag, 55–66. 347

10. E. Nardelli, G. Proietti and P. Widmayer, How to swap a failing edge of a single
source shortest paths tree, 5th Annual Int. Computing and Combinatorics Conf.
(COCOON’99), Tokyo, Japan, 1999, Vol. 1627 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 144–153. 347

11. D.D. Sleator and R.E. Tarjan, Self-Adjusting Heaps, SIAM J. Comput., 15(1)
(1986) 52–69. 350

12. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. of the
ACM, 22(2) (1975) 215–225. 348

13. R.E. Tarjan, Applications of path compression on balanced trees, J. of the ACM,
26(4) (1979) 690–715. 351, 352, 353

	Introduction
	Preliminaries
	Solving the ANR Problem
	High-Level Description of the Algorithm
	Computing Efficiently the Selected Vertical Edges
	Computing All the Best Swap Edges

	Conclusions

