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Abstract

In this paper we give a thorough presentation of a model proposed by Tononi et al. for
modeling integrated information, i.e. how much information is generated in a system tran-
sitioning from one state to the next one by the causal interaction of its parts and above and
beyond the information given by the sum of its parts. We also provides a more general for-
mulation of such a model, independent from the time chosen for the analysis and from the
uniformity of the probability distribution at the initial time instant. Finally, we prove that
integrated information is null for disconnected systems.

Keywords: integrated information, effective information, information theory, neural networks, proba-
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1 Introduction

The term integrated information (denoted φ, for short) has been introduced by Giulio Tononi [5,6,10] to

characterize the capacity of a system to integrate information acquired by its parts. Informally speaking,

the integrated information owned by a system in a given state can be described as the information (in the

Theory of Information sense) generated by a system in the transition from one given state to the next one

as a consequence of the causal interaction of its parts above and beyond the sum of information generated

independently by each of its parts.

Such a theory was first introduced as a linear model [6,9–12], then reformulated as a discrete one [1,

2, 7] and was aimed at trying to formally capture what is consciousness in living beings [3, 7, 8]. Its

description is not always clear from a mathematical point of view, and to best of our knowledge this is

the first formal description where all steps of the model are presented in detail using the framework of

probabilistic boolean networks.

In our presentation we also provides a more general formulation of the model, which can be used for

analyzing the system at a generic time instant, and which does not require the assumption of uniformity

of the probability distribution at the initial time instant.

We also formally prove here, for the first time in the literature to the best of our knowledge, that

integrated information is null for a disconnected system, that is a system made up by independent com-

ponents.
∗Contact Author: Enrico Nardelli, nardelli@mat.uniroma2.it

1



Version 1.2.1 — Last Revision: 30 December 2009 2

The characterization of integrated information is based on another concept, always defined by Tononi

and coauthors, named effective information and modeling how much information is gained by an external

observer on the previous state of a system from checking which is its current state, with respect to what

can "a priori" be deduced on the previous state from the known dynamics of the system itself. Given

this emphasis on the experimental side of the knowledge acquisition process, we suggest here to use the

terms "experimental information" or "Galileian information" as synonyms for "effective information".

Effective information is zero for static systems or uniformly random systems, which is consistent

with everyday scientist’s experience. And, similarly, integrated information is also zero for disconnected

systems, independently from their kind.

2 Probabilistic Boolean Networks

Let X = (V, E) be a directed graph with n boolean nodes, i.e. taking values in {0, 1}. The value taken

by a node is called also its state. Edge (u, v) ∈ E models the fact that node v gets in input the state of

u. We assume time runs in discrete steps or instants, and nodes may change their value with the flow of

time depending on (the value of) the states of their input nodes.

Temporal evolution of state of node i is given by a law fi : {0, 1}ni → {0, 1} computing state of i

at the next time instant as a function only of the current state of its ni ≤ n input nodes. Self loops are

admitted. Nodes can all have the same law f or each node can have its specific law. In any case laws are

constant with time.

We call X as defined above a Deterministic Boolean Network. To put things into context, Random

Boolean Networks have been defined in the literature since many years, differing from the deterministic

version only in the fact that each fi is randomly chosen when building the network. Random boolean

networks have been widely studied as model for gene expression in biological systems.

Various probabilistic versions of Boolean Networks have also been defined, different from ours, for

example [4], where each node at each time instant randomly chooses, according to a given probability

distribution, the law to be used from a finite domain of admissible laws.

Our version of Probabilistic Boolean Network (PBN, for short) assumes the probabilistic law ri :

{0, 1}ni → [0, 1] associated to node i provides for each configuration of the states of the ni input nodes

the probability ri that at the next time instant node i has (equivalently, is in) state 1 (being then 1− ri the

probability i is in state 0). It can be shown that this model can describe every network defined according

to the model introduced in [4]. In the following we use interchangeably the terms system and network.

At each time instant t a PBN can be in any of its 2n states, we assume are provided of some arbitrary

enumeration {xi}. State of network X at time t is denoted Xt. A PBN can also be considered as a

Markov chain with a finite space state.
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A PBN is completely described by its state transition matrix S, whose elements sij are:

sij $ p(Xt+1 = xj |Xt = xi)

that is, element sij is the probability that at time t+1 the network is in state xj conditioned to the fact that

at time t the network was in state xi. Note that since the probabilistic law associated to each node is time

constant, state transition matrix S is also time constant, hence we can speak of an homogeneous Markov

chain. A square matrix of real numbers is a state transition matrix if 0 ≤ sij ≤ 1 e
∑n

i=1 sij = 1.

Values of sij can be easily computed by means of the rk values for each node k as it follows. Let

i = σnσn−1 . . . σ1 be the bit string representing the network state at instant t, where σk represent state

of node k at instant t. The network state at the next instant t + 1 is j = σ′nσ′n−1 . . . σ′1 where σ′k is the

state of node k computed by law rk for instant t+1. It is σ′k = 1 with probability rk(σnσn−1 . . . σ1) and

σ′k = 0 with probability 1− rk(σnσn−1 . . . σ1). Then

sij =
n∏

k=1

ρk

where ρk = rk(σnσn−1 . . . σ1) if σ′k = 1 and ρk = 1− rk(σnσn−1 . . . σ1) if σ′k = 0.

Let us denote with pt(i) = p(Xt = xi) probability that network is in state xi at instant t. State distribu-

tion probability at t + 1 is given by:

pt+1(xi) =
2n∑

j=1

pt(xj)sji

Note that, even if S is time constant (i.e., stationary), state probability distribution is not necessarily so.

Let pt be the row vector with elements pt(i). Previous formula can be written in a matrix form as

pt+1 = pt · S

and, denoting with Si the i-th column of S, it is

pt+1(i) = pt · Si

If for some t it is pt+1(·) = pt(·) then we say the network is in the stationary regime. It is then

p = p · S

that is p is an eigenvector of S with eigenvalue 1. Note that not every eigenvector of S can be a stationary

probability distribution, since it has to fulfill probability distribution constraints. For example, the null

eigenvector is never a stationary probability distribution.

Row Si of the state transition matrix provides the conditional probability distribution p(Xt+1 |Xt =

xi) describing network state at the instant next to the one the network is in state xi.
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Network dynamics can also be analyzed backwards in time. Let us assume that we have observed or

measured that network at instant t is in a given state. We can then compute state distribution probability

for instant t − 1, that is we can compute the law by which states at instant t − 1 might have caused the

state actually observed or measured at instant t. This is provided by defining a state backward-transition

matrix B, describing probabilities obtained inverting through Bayes rule the relations between events.

Its elements bij are:

bij(t) $ p(Xt−1 = xj |Xt = xi)

that can be written as

bij(t) =
p(Xt−1 = xj , Xt = xi)

p(Xt = xi)
and applying again Bayes rule we have

bij(t) =
p(Xt = xi |Xt−1 = xj)p(Xt−1 = xj)

p(Xt = xi)
=

sjip(Xt−1 = xj)
p(Xt = xi)

=
pt−1(j)sji

pt(i)
=

pt−1(j)sji

pt−1 · Si

If at instant t− 1 state probability distribution is uniform then last formula becomes

bij(t) =
sji∑
k ski

(1)

Note that if state probability distribution is uniform then state backward-transition matrix B is a kind of

transpose of the state transition matrix S. Note also that while S is time constant, B is not so, in general.

Row Bi(t) of the state backward-transition matrix B provides the conditional probability distribution

p(Xt−1 |Xt = xi) describing network state at the instant previous to the one the network is in state xi.

3 Effective Information

3.1 Introduction

Effective information can be informally described as the quantity of information on possible predecessors

of current states acquired additionally from actually measuring the current network state with respect to

what can be acquired from the knowledge of state transition matrix only. We propose calling it exper-

imental information or Galileian information, given the emphasis it gives to experimentally acquired

knowledge with respect to purely theoretical knowledge. Here quantity of information is intended in the

standard sense of the Shannon’s Information Theory.

The main question effective informations answers to is: if network observation finds that its current state

is xi, which is the additional knowledge provided by this measure with respect to what can be known

on the network by its state transition matrix only, i.e. without knowing which is the current state of the

network?

Still remaining at the informal level this additional knowledge can be described as the reduction in

uncertainty provided by the actual measurement with respect to the uncertainty existing on the basis of

the state transition matrix only.
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On one side there are those systems whose regime trajectory in the space state is a deterministic

cycle. For such systems the observation provides an effective information of log2 k bits1 (where k is the

number of the nodes on the cycle, i.e. its length). Since a deterministic closed trajectory of length k in

the state space corresponds to a suitable subset of k rows of the state transition matrix each containing

exactly one value 1, and since before measuring the system the uncertainty is maximum – given that the

system can be in any of these k states – while after measuring the systems it is univocally known the

predecessor of the current state, the information acquired through observation is maximum and equal,

according to the standard way of measuring information, to log k bits.

On the other side there are those systems whose behavior in the state space is uniformly random,

that is those systems where each state can be, with equal probability, the predecessor of the current state.

Measuring the actual current state in these systems provides an effective information of 0 bits since no

reduction in uncertainty is provided through the observation (complete uncertainty both before and after

the measurement). Also for completely static systems, that is systems whose state is constant while time

runs there is no reduction in uncertainty provided through the observation (no uncertainty either before

or after the measurement).

3.2 Formal definition

We define the effective information obtained by observing that system X is in state xi at instant t as

ei(t, xi) $ DKL(Bi(t) ||Xt−1) (2)

where DKL is the Kullback-Leibler divergence2. Then

ei(t, xi) =
∑

j

bij(t) log
bij(t)

p(Xt−1 = xj)

= −H(Bi(t))−
∑

j

bij(t) log p(Xt−1 = xj)

Our definition is a generalization of the one provided by Tononi and coauthors (cfr. equations 1A and

1B of [1]). Ours in fact allows to study system behavior for each time instant and for each probability

distribution X0, while in [1] the time instant under investigation is always t = 1 and it is always assumed

probability distribution X0 is the uniform one. Our formulation hence allows to model both the transient

and the stationary regime of a system.

For the case when the state probability distribution Xt−1 is uniform the formula above becomes:

ei(t, xi) = −H(Bi(t))−
∑

j

bij(t) log
1
2n

= −H(Bi(t)) + n
∑

j

bij(t)

= n−H(Bi(t))
1from now on all logarithms are to the base 2
2The Kullback-Leibler divergence (or distance) of probability distribution q(x) from probability distribution p(x) is defined

as DKL(p||q) $
∑

x∈Ωx
p(x) log p(x)

q(x)
=

〈
log p(x)

q(x)

〉
p

and note it is asymmetric.
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Effective information in the regime phase of a system is provided by considering equation (2) in the limit

for the instant t tending to infinity

ei(xi) $ DKL(Bi ||X∞)

where Bi ed X∞ are the stationary probability distributions defined by the limits, if they exist, of the

probability distributions for instant t, which describe the regime phase of the system. That is:

p(X∞ = xi) $ lim
t→∞ p(Xt = xi) $ pi

and

p(Bi = xj) $ p(X∞ = xj |X∞ = xi) =
sjipj

pi

hence

ei(xi) =
∑

j

bij log
bij

p(X∞ = xj)
= −H(Bi)−

∑

j

bij log pj

A system which has a uniformly random behavior in the regime phase has H(Bi) = n, since state

probability distribution p(Xt−1|Xt) is p(xj) = 1
2n , hence

ei(xi) = −n−
∑

j

1
2n

log
1
2n

=
∑

j

n

2n
− n = n− n = 0

A system completely static in the regime phase, i.e. which remains fixed in a single attraction state xi,

has H(Bi) = 0 since the unique possible predecessor is xi itself and p(xj) = 0 if i 6= j from which we

have

ei(xi) = log 1 = 0

Note that sum is computed only on observable states (i.e. where p(xj) 6= 0), to avoid the undeterminate

form 0 log 0
0 .

A system having in the regime phase a single cyclic attractor containing all states, i.e. a deterministic

closed trajectory in the space state walking through all states, has H(Bj) = 0 since each state has exactly

one predecessor while p(xj) = 1
2n and hence

ei(xi) = 0− log
1
2n

= n

The same holds, assuming the stationary state space distribution is uniform, when the system has more

cyclic attractors partitioning all the space state.

If the system has a single cyclic attractor with k < 2n states (or more cyclic attractors partitioning a

subset of size k < 2n of all states, still assuming a uniform stationary state space distribution) then it is

ei(xi) = log k.

The analysis in [1] assumes the maximum uncertainty and uniformity on the initial systems conditions

and is focused on computing effective information in the instant right after the initial state. The formula-

tion of effective information in [1] is therefore the following particular case of ours:

ei1(xi) = DKL(Bi(1) ||X0)
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Note also that since for this particular case the assumptions used for the derivation of (1) hold, it can be

written

bij(1) =
sji∑
k ski

3.3 Effective information of subsets

For the definition of integrated information it is required to define how to measure effective information

for subsets of a given network X . Let A ⊆ X . When X is in state xi we denote with πA(xi) = Axi the

state of A. Let At be the random variable representing state of A at instant t. We can define for A state

transition matrix AS and state backward-transition matrix AB in analogy with the general case as

Asij $ p(At+1 = aj |At = ai)

and
Abij(t) $ p(At−1 = aj |At = ai)

Both can be obtained from S e p(·) after some long but straightforward computations. Intuitively and

informally speaking, the computation is based on summing transition probabilities over all states of X

which are equivalent with respect to subset A, averaged with their state probabilities.

Now, all definitions introduced for a network X can be applied to any of its subset of nodes A by

substituting in the previous formulas S, B, and X respectively with AS, AB, and A. We then obtain

ei(t, A, ah) $ DKL(ABh(t)||At−1) (3)

4 Integrated Information

We are now ready to formally define integrated information, that is the quantity of information generated

in a system transitioning from one state to the next by the causal interaction of its parts, above and beyond

the quantity of information generated independently by each of its parts.

Given a system X let V ⊆ X and {Mk} a partition of V in m subsets. Let Mk(t) be the random

variables describing the state of the k-th component of the partition at instant t. Let X be in state xi

at instant t. Then V at the same instant is in state Vxi and the k-th component is in state Mkxi. In the

following we use vh and µk as a shorthand for Vxi and Mkxi, respectively.

Partition-dependent integrated information is first defined for a subset V as a function of partition

{Mk}, time instant t, and current state vh as

φ(t, V, {Mk}, vh) $ ei(t, V, vh)−
m∑

k=1

ei(t,Mk, µk) (4)

Value computed by this formula clearly depends on the considered partition. Tipically, an unbalanced

partition produces a lower value of φ (see [1]). Hence the following normalization function is introduced

N(t, V, {Mk}, vh) $ (m− 1)min
k
{H(Mk(t))}
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Then, the Minimum Information Partition (MIP) is defined as the partition providing the minimum value

for the integrated information after the normalization process, that is

PMIP(t, V, vh) $ arg min
P

{ φ(t, V, P, vh)
N(t, V, P, vh)

}

The above formula has been defined by Tononi for generic partitions, but in all of its papers and here it

is only discussed the case of bi-partitions, i.e. partitions in two subsets.

Integrated information φ for subset V , in state vh at instant t, is now formally defined as the value of the

partition-dependent integrated information computed on MIP, that is

φ(t, V, vh) $ φ(t, V, PMIP(t, V, vh), vh)

And it is now possible to formally define the value of integrated information for the whole system X . A

subset V ⊆ X having φ > 0 is called complex. If it is not a proper subset of another subset with a larger

φ it is called main complex. The value of integrated information of X , in state xi at instant t, is defined

as the value of integrated information of its main complex of maximum value.

φ(t, xi) $ max
V⊂X

φ(t, V, PMIP(t, V, vh), vh)

The value of integrated information averaged over all states of the system is provided through the state

distribution probability pt(·), that is

φ(t) $
∑

xi∈X

φ(t, xi) pt(i)

5 Integrated information in disconnected systems

Intuitively, any system having a partition in two independent subsets, i.e. that can be partitioned in two

subsets such that no node in a subset affects the state value of nodes in the other subset, should have zero

as value of its integrated information.

We now give a formal proof of this property, to the best of our knowledge never appeared in the

literature. We consider the value of integrated information assuming at instant t − 1 the system has a

uniform state probability distribution, consistently with discussion in [1]. Remember that for a subset V

of the system X in state xh we use vh as a shorthand for Vxh, the restriction of xh to nodes in V .

Theorem 1 (Integrated information in a disconnected network) Let A′ and A′′ be two disjoint sub-

sets of a network X , A′ ∪ A′′ = V ⊆ X . Let us denote with vh the current state of V , and with a′h e a′′h
the current states of subsets A′ and A′′, respectively.

For each state vh and time instant t it is

φ(t, V, {A′, A′′}, vh) = 0
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Proof. From the definition (4) of partition-dependent integrated information and the definition (3) of the

effective information for a subset it is

φ(t, V, {A′, A′′}, vh) = ei(t, V, vh)− ei(t, A′, a′h)− ei(t, A′′, a′′h)

= DKL(VBh(t) ||Vt−1)−DKL(A′Bi(t) ||A′t−1)−DKL(A′′Bj(t) ||A′′t−1)(5)

From the definition of the Kullback-Leibler divergence it is

DKL(VBh(t) ||Vt−1) = −H(VBh(t))−
∑

j

Vbhj(t) log p(Vt−1 = vj)

Remember that VBh(t) is a conditional probability distribution for the state preceding the current one

p(VBh(t) = vj) = p(Vt−1 = vj |Vt = vh)

= p(A′t−1 = a′j ∧A′′t−1 = a′′j |Vt = vh)

Applying the chain rule of entropy it is

H(VBh(t)) = H(A′t−1 |Vt = vh) + H
(
(A′′t−1 |Vt = vh)

∣∣A′t−1

)

and given the independence between A′′ and A′ it follows that

H(VBh(t)) = H(A′t−1 |Vt = vh) + H(A′′t−1 |Vt = vh)

= H(A′t−1 |A′t = ah′) + H(A′′t−1 |A′′t = ah′′)

= H(A′Bh′(t)) + H(A′′Bh′′(t))

From the assumption of uniform state probability distribution at t− 1 it is

DKL(VBh(t) ||Vt−1) = −H(VBh(t)) + |V |
DKL(A′Bh(t) ||A′t−1) = |A′| −H(A′Bh(t))

DKL(A′′Bh(t) ||A′′t−1) = |A′′| −H(A′′Bh(t))

and substituting the above right members for the left ones in equation (5) and considering that |V | =

|A′|+ |A′′| we obtain

φ(t, V, {A′, A′′}, vh) = |V | − |A′| − |A′′| −H(VBh(t)) + H(A′Bh′(t)) + H(A′′Bh′′(t)) = 0

2

6 Conclusions

In this paper we have given a thorough presentation of a model proposed by Giulio Tononi [5, 6, 10]

for modeling integrated information, i.e. how much information is generated in a system by causal

interaction of its parts and above and beyond the information given by the sum of its parts. The model
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was aimed at trying to formally capture what is consciousness in living beings [3, 7, 8] and the reader is

referred to Tononi’s papers for detailed motivations of the model.

We have considered the discrete version of the model [1, 2, 7]. The original papers describing the model

are not always fully clear in their mathematical formulation and here we have given the first formal

description of such a model where all steps are detailed presented.

In doing so we have provided a more general formulation of such a model, which is independent

from the time chosen for the analysis and from the uniformity of the probability distribution at the initial

time instant.

Finally, we have also given here the first formal proof that a system made up by independent parts

has a value of integrated information equal to zero.
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