
6 Access Methods and Query Processing
Techniques

Adriano Di Pasquale3, Luca Forlizzi3, Christian S. Jensen1, Yannis Manolopoulos2,
Enrico Nardelli3, Dieter Pfoser1, Guido Proietti3,4, Simonas Šaltenis1, Yannis
Theodoridis5, Theodoros Tzouramanis2 and Michael Vassilakopoulos2

1 Aalborg University, Denmark
2 Aristotle University, Thessaloniki, Greece
3 Universita Degli Studi di L’Aquila, Italy
4 National Research Council, Roma, Italy
5 University of Piraeus, Greece

6.1 Introduction

The performance of a database management system (DBMS) is fundamentally de-
pendent on the access methods and query processing techniques available to the
system. Traditionally, relational DBMSs have relied on well-known access methods,
such as the ubiquitous B+-tree, hashing with chaining, and, in some cases, linear
hashing [52]. Object-oriented and object-relational systems have also adopted these
structures to a great extend.

During the past decade, new applications of database technology—with require-
ments for non-standard data types and novel update and querying capabilities—
have emerged that motivate a re-examination of a host of issues related to access
methods and query processing techniques.

As an example, a range of applications, like cadastral, utilities, shortest path
finding, etc., involve geographic, or spatial, data, which are not supported well by
existing technology, making it not only desirable, but plain necessary to examine
access methods and query processing techniques afresh.

Specifically, Oracle’s Spatial Data Engine uses Linear Quadtrees [2] at a con-
ceptual level, but uses B+-trees as the storage mechanism for the quadtrees at
the implementation level. As another example, R-trees [34] have been implemented
by Oracle. However, R-trees are mapped to B+-trees [75], in order to not change
other system components, such as the transaction manager, the recovery manager,
the buffer manager, etc. Thus, R-trees do not support deletions physically, but only
logically, because this is the practice of Blink-trees [77], which is the brand of B-trees
implemented in commercial systems.

When, as we have seen, DBMSs supporting only the traditional access methods
fall short in supporting spatial data, it is not surprising that new access methods
and query processing techniques are needed if DBMSs are to support the many and
diverse emerging applications that call for the management of spatio-temporal data.
While access methods and techniques exist that support time and, as discussed
above, space, existing proposals are unable to simultaneously support time and
space, either efficiently or at all.

This chapter introduces a number of spatio-temporal access methods (STAMs)
and query processing techniques related to spatio-temporal applications, such as
bitemporal spatial applications, trajectory monitoring, and the processing of evolv-
ing raster images, such as thematic layers or satellite images. These structures are
divided into two categories, according to the spatial methods they extend: R-tree-
based methods versus quadtree-based methods.

Early R-tree-based approaches for indexing spatio-temporal data either treat
time as a spatial dimension or, conceptually, accommodate time by maintaining a

170 Di Pasquale et al.

time-indexed collection of R-trees. The chapter presents more R-tree-based methods
that are customized more comprehensively to accommodate the special properties of
the different kinds of spatio-temporal data considered, and that as a result generally
demonstrate better performance.

Briefly, the quadtree-based methods described in this chapter enhance previous
methods based on Linear Quadtrees by appropriately embedding additional struc-
turing for linking evolving raster images.

The chapter also examines other issues related to the physical database level,
namely benchmarking, data generation, distributed indexing techniques, and query
optimization. Finally, relevant work by other researchers is covered, and an epilog
concludes the chapter.

6.2 R-tree-Based Methods

6.2.1 Preliminary Approaches

The most straightforward way to index spatio-temporal data is to consider time sim-
ply as an additional spatial dimension, along with the other spatial dimensions. As
a result, a two-dimensional rectangle (x1, y1, x2, y2) with an associated time inter-
val [t1, t2) is viewed as a three-dimensional box (x1, y1, x2, y2, t1, t2). Viewing time
as another dimension is attractive because several tools for handling the resulting
multi-dimensional data are already available [30]. The approach of treating time as
just another dimension may have the drawback of excessive dead space [96].

The technique of overlapping offers an alternative solution. In general, overlap-
ping has been used at a number of occasions, where successive data snapshots are
similar. For example, it has been used as a technique to compress similar text files
[8], B-trees and B+-trees [11,50,85], as well as main-memory quadtrees [98,99]. In
the context of STAMs, the technique of overlapping has been adopted in the cases
presented in the sequel.

Thus, most of the proposed STAMs can be characterized as belonging to one of
the following two categories:

• the “time is an extra dimension” approach, and
• the “overlapping trees” approach.

We proceed to present several access methods that follow these approaches and
were developed in the CHOROCHRONOS framework; in Section 6.7, we introduce
methods proposed by other researchers.

3D R-tree
The 3D R-tree proposed in [96] exactly considers time as an extra dimension and rep-
resents two-dimensional rectangles with time intervals as three-dimensional boxes.
Figure 6.1 illustrates an example 3D R-tree storing five boxes (A, B, C, D, and E)
organized in two nodes (R1 and R2). This tree can be the original R-tree [34] or
any of its variants.

The 3D R-tree approach assumes that both ends of the interval [t1, t2) of each
rectangle are known and fixed. If the end time t2 is not known, this approach does
not work well. For instance, in Figure 6.1, assume that an object extends from some
fixed time until the current time, now (refer to [16] for a thorough discussion on the
notion of now). One approach is to represent now by a time instant sufficiently far
in the future. But this leads to excessive boxes and consequent poor performance.
Standard spatial access methods, such as the R-tree and its variants, are not well
suited to handle such “open” and expanding objects. One special case where this

6 Access Methods and Query Processing Techniques 171

Fig. 6.1. The 3D R-tree.

problem can be overcome is when all movements are known a priori. This would
cause only “closed” objects to be entries of the R-tree.

The 3D R-tree was implemented and evaluated analytically and experimentally
[96,100], and it was compared with the alternative solution of maintaining two
separate indices: a spatial (e.g., a 2D R-tree) and a temporal one (e.g., a 1D R-tree
or a segment tree). Synthetic (uniform-like) datasets were used, and the retrieval
costs for pure temporal (during, before), pure spatial (overlap, above), and spatio-
temporal operators (the four combinations) were measured. The results suggest
that the unified scheme of a single 3D R-tree is obviously superior when spatio-
temporal queries are posed, whereas for mixed workloads, the decision depends on
the selectivity of the operators.

2+3 R-tree
One possible solution to the problem of “open” geometries is to maintain a pair of
two R-trees [63]:

• a 2D R-tree that stores two-dimensional entries that represent current (spatial)
information about data, and

• a 3D R-tree that stores three-dimensional entries that represent past (spatio-
temporal) information; hence the name 2+3 R-tree.

The 2+3 R-tree approach is a variation of an original idea proposed in [41,42] in the
context of bitemporal databases, and which was later generalized to accommodate
more general bitemporal data [10].

As long as the end time (t2) of an object interval is unknown, it is indexed by
the (2D) front R-tree, keeping the start time (t1) of its position along with its object
identifier. When t2 becomes known, then:

• the associated entry is migrated from the front R-tree to the (3D) back R-tree,
and

• a new entry storing the updated current location is inserted into the front R-
tree.

Should one know all object movements a priori, the front R-tree would not be used
at all, and the 2+3 R-tree reduces to the 3D R-tree presented earlier. It is also
important to note that both trees may need to be searched, depending on the time
instant with respect to which the queries are posed.

HR-tree
Historical R-trees (HR-trees, for short) have been proposed in [61] and implemented

172 Di Pasquale et al.

and evaluated in [63]. This STAM is based on the overlapping technique. In the HR-
tree, conceptually a new R-tree is created each time an update occurs. Obviously,
it is not practical to physically keep an entire R-tree for each update. Because an
update is localized, most of the indexed data and thus the index remain unchanged
across an update. Consequently, an R-tree and its successor are likely to have many
identical nodes. The HR-tree exploits this and represents all R-trees only logically.
As such, the HR-tree can be viewed as an acyclic graph, rather than as a collection
of independent tree structures.

Fig. 6.2. HR-tree Example.

Figure 6.2 illustrates overlapping trees for successive time instants t0 and t1,
where two subtrees from t0 remain unchanged at t1. With the aid of an array
pointing to the root of the underlying R-trees, one can easily access the desired
R-tree when performing a timeslice query. In fact, once the root node of the desired
R-tree for the time instant specified in the query is obtained, the query processing
cost is the same as if all R-trees where kept physically.

The concept of overlapping trees is simple to understand and implement. More-
over, when the number of objects that change location in space is relatively small,
this approach is space efficient. However, if the number of moving objects from
one time instant to another is large, this approach degenerates to independent tree
structures, since no common paths are likely to be found.

Recently, Nascimento et al. [63] implemented the HR-tree and the 2+3 R-tree
and presented a performance comparison, also including a 3D R-tree implemen-
tation, using synthetic datasets generated by GSTD (the scenarios illustrated in
Section 6.5). They assumed spatio-temporal data specified as follows.

• the data set consisted of two-dimensional points, which were moving in a discrete
manner within the unit square;

• updates were allowed only in the current state of the (hence, chronological)
database;

• the timestamp of each point version grew monotonically following a transaction
time pattern, and

• the cardinality of the data set remained fixed as time evolved.

The HR-tree was found to be more efficient than the other two methods for timeslice
queries, whereas the reverse was true for time interval queries. Also, the HR-tree
usually led to a rather large structure.

6 Access Methods and Query Processing Techniques 173

6.2.2 The Spatio-Bitemporal R-tree

The RST-tree proposed by Šaltenis and Jensen in [80] is capable of indexing spatio-
bitemporal data with discretely changing spatial extents. In contrast to the indexing
structures described previously, the RST-tree supports data that has two temporal
dimensions and two spatial dimensions. The valid time of data is the time(s)—
past, present, or future—when the data is true in the modeled reality, while the
transaction time of data is the time(s) when the data was or is current in the
database [36,76]. Data for which both valid and transaction time is captured is
termed bitemporal.

As mentioned earlier, most of the previously proposed spatio-temporal indices
[96,62] assume only one time dimension and use either the technique of overlapping
index structures or add time as another dimension to an existing spatial index.

The former approaches do not generalize well to two time dimensions, and treat-
ing time as a spatial dimension has certain limitations. In particular, time intervals
associated with data objects can be now-relative, meaning that their end points
track the progressing current time. Consider the recording of addresses. The time
a person resides at a given address may often extend from a known start time (the
valid-time interval begin) to some unknown future time, which is captured by letting
the valid-time interval extend to the progressing current time. The same applies to
transaction time; the time a data object is inserted into the database is known, but
it is unknown when the tuple will be deleted. This notion of now is peculiar to time
and has no counterpart in space.

In order to support these aspects of time together with spatial dimensions, the
RST-tree is based on the R∗-tree [12] and attempts to reuse ideas presented in the
GR-tree [9]. This latter index also extends the R∗-tree and is arguably the best
index for general bitemporal data, which encompasses now-relative data.

Since the index is based on the R∗-tree, the spatial value of an object may be
a point or may have extent. Examples of discretely changing spatio-temporal point
data include demographic data that captures the changing locations of peoples’
residences. Also, cadastral systems exemplify data with spatial extents. Here, the
shapes and locations of land parcels, approximated by rectangles for indexing pur-
poses, are recorded together with the histories of their change. Such histories may
contain now-relative time intervals. We proceed to characterize now-relative data.

The Data and Queries Supported
We adopt the standard four-timestamp format for capturing valid and transaction
time [83], where each tuple is timestamped with four time attributes: VT� and VT�

for valid time; TT� and TT� for transaction time. To represent now-relative time
intervals, VT� can be set to now and TT� can be set to UC (until changed).

Consider the example relation in Table 6.1. Tuple 1 records that the information
“John lived at Pos1” was true from 3/97 to 5/97 and that this was recorded during
4/97 and is still current. Tuple 3 records that “Jane lives at Pos3” from 5/97 until
the current time, that we recorded this belief on 5/97, and that this remains part
of the current state. In the case of Tuple 3, the valid-time end being equal to now
means that we currently do not believe that Jane will live at Pos3 next month
(on 10/97). This assumption can be too pessimistic. For example, there can exist a
restriction that a person can only move with a month notice. We would then believe
Jane to live at Pos3 next month as well. To record this type of knowledge, Clifford
et al. [16] proposed to use now +∆ in the valid-time end attribute. The offset ∆ can
be any integer, positive or negative. The latter is useful when information about
changes in positions is delayed. Tuples 6 and 7 exemplify the usage of positive and
negative offsets.

174 Di Pasquale et al.

Person Position TT� TT� VT� VT�

(1) John Pos1 4/97 UC 3/97 5/97
(2) Tom Pos2 3/97 7/97 6/97 8/97
(3) Jane Pos3 5/97 UC 5/97 now
(4) Julie Pos4 3/97 7/97 3/97 now
(5) Julie Pos4 8/97 UC 3/97 7/97
(6) Ann Pos5 5/97 UC 3/97 now + 1
(7) Scott Pos6 4/97 UC 5/97 now − 2

Table 6.1. The Demographic Relation.

In a bitemporal database, tuples are never physically deleted. Instead, they
are removed from the current state, by changing the TT� value UC to the fixed
value CT–11 (e.g., Tuple 2). A modification is modeled as a deletion followed by an
insertion (e.g., an update led to Tuples 4 and 5).

The temporal aspects of a tuple can be represented by a two-dimensional bitem-
poral region in the space spanned by transaction time and valid time [36] (see Fig-
ure 6.3). A now-relative transaction-time interval yields a rectangle that “grows” in
the transaction-time direction as time passes (Tuple 1). Having both transaction-

Tuple 1

VT

Tuple 2
VT

Tuple 6

VT

CT

VT

Tuple 3
VT

Tuple 7

VT

Tuple 4

3/97 CT TTTT

5/97

9/979/97
8/97

6/97
5/97

3/97

9/97

CT TT

TTCT

5/97

9/979/97

3/97

7/97

4/975/97

5/974/97

3/97 7/97 CT CT TTTT

9/97

7/97

3/97

Fig. 6.3. Bitemporal Regions of Tuples from Table 6.1.

time and valid-time intervals being now-relative yields a stair-shaped region growing
in both the transaction time and valid time as time passes (Tuple 3).

This representation of the bitemporal extents of tuples suggests the use of some
spatial index as the basis for a bitemporal index, which then also facilitates the
incorporation of spatial dimensions into the resulting spatio-bitemporal index.

The queries supported are the well-known intersection queries, where data with
a spatio-bitemporal extent that overlaps with a specified query extent, which is also
spatio-bitemporal.

Index Structure and Algorithms
1 We use closed intervals and let [TT�, TT�] denote the interval that includes TT� and

TT�.

6 Access Methods and Query Processing Techniques 175

Index Structure
The new index has the same overall structure as the R-tree (and the R∗-tree) [34].
As for the R-tree, each internal node is a record of index entries, each of which is a
pair of a pointer to a node at the next level in the tree and a region that encloses all
regions in the node pointed to. As something new, the leaves of the RST-tree record
the exact bitemporal geometries of the spatio-bitemporal regions indexed and allow
regions that grow. The same types of regions are also used as bounding regions in
the non-leaf nodes (see Figure 6.4). The following format is used for index entries.

(TT�, TT�, VT�, VT�/∆, now-flag, 〈spatial part〉, 〈pointer〉)
The first three components were introduced in the previous section and may obtain
the same values as described there. Variable UC is represented as a special, reserved
value from the domain of timestamps. The fourth and fifth components compactly
encode the values of the VT� attribute. A value of the form now + ∆ is captured
by setting the now-flag and storing ∆ in VT�/∆; other values are stored in this
attribute, without the now-flag set.

TT

VT

CT Future

Fig. 6.4. A Sample
Stair-Shaped MBR.

x

y

x

y

a) b)

query query

Fig. 6.5. Different Geometries of MBRs.

Index Algorithms
Since the RST-tree structure is the same as that of the R∗-tree, the R∗-tree search,
deletion, and insertion algorithms can be re-used in the new index, provided that
they employ a suite of new lower-level algorithms that manipulate the new kinds of
regions described above. These new algorithms include an algorithm that determines
whether a pair of regions overlap and algorithms that compute the volume and
margin of a region, the intersection of a pair of regions, and the minimum bounding
region of a node. It should also be noted that a logical deletion is implemented as a
physical deletion of an old region followed by an insertion of a new one with a fixed
TT�.

The insertion algorithm is crucial, because it is responsible for maintaining the
tree in an efficient way. The R∗-tree insertion algorithm is based on heuristics that
minimize the volumes of bounding regions, the overlap among bounding regions
(the volume of their intersection), and the margin of bounding regions.

In the RST-tree, the quantities of volume, overlap, and margin are functions of
time, and the insertion algorithm should consider not only the current values of
these, but also how they evolve. This is achieved in a relatively straightforward and
flexible manner, by introducing a time parameter p in the tree insertion algorithm,
which then computes the areas (and margins) of regions as of p time units into
the future. Other than this, the insertion algorithm follows that of the R∗-tree,

176 Di Pasquale et al.

with only some differences in the splitting of overfull nodes [80]. When using a
sufficiently large time parameter, a prioritization of the types of regions is obtained.
Non-growing regions are naturally preferred over growing, rectangular regions, and
these are preferred over growing, stair-shaped regions. Relaxed prioritizations are
achieved by using smaller time parameter values. Experimental studies show that
the choice of an appropriate time parameter value in an index is not very sensitive
to differences in the data and query workloads.

Prioritizing Space versus Time
The heuristics used in the R∗-tree are based on the assumption that intersection
queries are square on average, i.e., all the dimensions are constrained by intervals
of approximately the same length.

Due to the quite different semantics of the temporal and spatial dimensions,
this may not always be a good assumption for the RST-tree. In some applications,
most queries can be much more restrictive in the spatial dimensions than on the
temporal dimensions. For example, queries in a cadastral system may retrieve the
current knowledge of the full history of ownership of some piece of land. In other
applications, queries can be most restrictive in the temporal dimensions. Specifically,
timeslice queries, which specify time points in the temporal dimensions, have very
natural semantics and are often important. Non-square queries may also be due to
the use of different units of measurement in the spatial and temporal dimensions.

In order to obtain a versatile spatio-temporal index that supports well the full
spectrum queries, it is desirable to introduce a mechanism that allows the RST-tree
to be tuned to support better either spatially or temporally restrictive queries.

In any R-tree-based index, one dimension can be prioritized over the others
by intentionally favoring minimum bounding rectangles that are narrow in this
dimension and long in the other dimensions. In Figure 6.5, a two-dimensional space
is considered. The two sets of minimum bounding rectangles cover the same areas
and do not overlap. Scenario (b) favors queries restrictive in the x dimension and
not in the y dimension.

[80] proposed a simple way to prioritize the dimensions in an R-tree-based index,
which works with the existing tree algorithms. For each n-dimensional rectangle,
weighted extents ((∆x1)α1 , (∆x2)α2 , ..., (∆xn)αn) are used, instead of simply using
the extents (∆x1,∆x2, ...,∆xn). If all αi are equal to one, none of the dimensions
are prioritized. The priority of dimension i is increased by setting αi to a value
greater than 1, and the priority of dimension i lowered by setting αi to a value
smaller than 1. Setting αi to 0 makes the algorithms disregard the dimension.

Following this scheme the RST-tree uses a single parameter α ∈ [−1, 1]. The
volume of a four-dimensional region r is then computed as follows.

volume(r) =
{

bitemporal area(r)1+α · spatial area(r) if α � 0
bitemporal area(r) · spatial area(r)1−α otherwise,

where bitemporal area is the area of the region time-parameterized bitemporal extent
and spatial area is the area of its spatial extent.

According to the criteria for classification of STAMs as proposed by Theodor-
idis et al. [90], the RST-tree supports two-dimensional points and regions; it is
bitemporal; supports now -relative time intervals in both time dimensions; both the
cardinality and the positions of the spatial objects may change over time; the in-
dex is dynamic; and spatial, temporal, and spatio-temporal containment queries are
supported with the ability to adapt the index to spatially or temporally restrictive
queries.

6 Access Methods and Query Processing Techniques 177

6.2.3 The Time-parameterized R-tree

So far, we have mainly considered the indexing of discretely moving spatial objects.
In this section, we proceed to explore the indexing of continuously moving objects.
The rapid and continued advances in positioning systems, e.g., GPS, wireless com-
munication technologies, and electronics in general promise to render it increasingly
feasible to track and record the changing positions of objects capable of continuous
movement.

Continuous movement poses new challenges to database technology. In conven-
tional databases, data is assumed to remain constant unless it is explicitly modified.
Capturing continuous movement with this assumption would entail either perform-
ing very frequent updates or recording outdated, inaccurate data, neither of which
are attractive alternatives.

A different tack must be adopted. The continuous movement should be captured
directly, so that the mere advance of time does not necessitate explicit updates [101].
In other words, rather than storing simple positions, functions of time that express
the objects’ positions should be stored. Updates are then necessary only when the
parameters of the functions change. We use a linear function for each object, with
the parameters being the position and velocity vector of the object at the time the
function is reported to the database.

The Time-parameterized R-tree (TPR-tree, for short) efficiently indexes the cur-
rent and anticipated future positions of moving point objects (or “moving points”,
for short). The technique has been proposed by Šaltenis et al. in [81] and extends
the R∗-tree [12].

Different views of the indexed space distinguish different possible approaches
to the indexing of the future linear trajectories of moving objects. Assuming the
objects move in n-dimensional space (n=1,2,3), their future trajectories can be
indexed as lines in (n+1)-dimensional space, where one dimension is time [91].
As an alternative, one may map the trajectories to points in a 2n dimensional
space, which are then indexed [39]. Queries must subsequently also be transformed
to counter the data transformation. Yet another alternative is to index data in its
native, n-dimensional space, which is possible by parameterizing the index structure
using velocity vectors and thus enabling the index to be “viewed” as of any future
time. The TPR-tree adopts this latter alternative. This absence of transformations
yields a quite intuitive indexing technique.

The Data and Queries Supported
We represent the linear trajectory of a moving point object by two parameters: a
vector of the coordinates of a reference position at some specified time tref , x̄(tref),
and a velocity vector v̄ . Then, object positions at times not before the current time
are given by x̄(t) = x̄(tref) + v̄(t− tref). As will be explained shortly, the same two
vectors of values, the reference position and the velocity, are used in the bounding
rectangles in the TPR-tree nodes.

The TPR-tree supports queries on the future trajectories of points. A query
retrieves all points with trajectories that cross the specified query region in (x̄,
t)-space. We distinguish between three kinds of queries, based on the regions they
specify. Let R, R1, and R2 be three n-dimensional rectangles and t, t�<t�, three
time values that are not less than the current time.

Type 1 timeslice query: Q=(R, t) specifies a hyper-rectangle R located at time
point t.

Type 2 window query: Q=(R, t�, t�) specifies a (n+1)-dimensional hyper-rectangle
that has spatial coordinates specified by R and that spans in time from t� to
t�.

178 Di Pasquale et al.

Type 3 moving query: Q=(R1, R2, t
�, t�) specifies the (n+1)-dimensional trape-

zoid obtained by connecting R1 at time t� to R2 at time t�.

The second type of query generalizes the first, and is itself a special case of the third
type. To illustrate, consider the one-dimensional data set in Figure 6.6, which may
represent temperatures measured at different locations. Here, queries Q0 and Q1
are timeslice queries, Q2 is a window query, and Q3 is a moving query.

1 3 4 52

value

o1

o1

o1

Q0

Q1

Q2

Q3

time

0

o2

o2

o4

o3
o3

o4

o3

-10

-20

-30

-40

10

20

30

40

Fig. 6.6. Query Examples for One-dimensional Data.

Let iss(Q) denote the time when a query Q is issued. The two parameters,
reference position and velocity vector, of an object as seen by a query Q depend on
iss(Q), because objects update their parameters as time goes. Consider object o1:
its movement is described by one trajectory for queries with iss(Q) < 1, another
trajectory for queries with 1 � iss(Q) < 3, and a third trajectory for queries with
3 � iss(Q). For example, the answer to query Q1 is o1 if iss(Q1) < 1, and no object
qualifies for this query if iss(Q1) � 1.

This example illustrates that queries far in the future are likely to yield answers
that are of little use, because the positions predicted at query time will be less
and less accurate as queries move into the future, and because updates not known
at query time may occur in the meantime. Therefore, real-world applications can
be expected to issue queries that are concentrated in some limited time window,
termed the querying window (W), that extends from the current time. We assume
that iss(Q) � t � iss(Q)+W for Type 1 queries, and iss(Q) � t� � t� � iss(Q)+W
for queries of Types 2 and 3.

Index Structure and Algorithms

Index Structure
The TPR-tree is a balanced, multi-way tree with the structure of an R-tree. Entries
in leaves are pairs of the position of a moving-point object and a pointer to the
moving-point object, and entries in internal nodes are pairs of a pointer to a subtree
and a rectangle that bounds the positions of all moving objects or other bounding
rectangles in that subtree.

6 Access Methods and Query Processing Techniques 179

In an entry of a leaf, the position of a moving point is represented by a reference
position at time tref and a corresponding velocity vector. We choose tref to be equal
to the index load time, tl. Other possibilities include setting tref to some constant
value, e.g., 0, or using different tref values in different nodes.

To bound a group of n-dimensional moving points, n-dimensional bounding
hyper-rectangles (“rectangles”, for short) are used that are also time-parameterized,
i.e., their coordinates are functions of time. A time-parameterized bounding rectan-
gle bounds all enclosed points or rectangles at all times not earlier than the current
time.

A tradeoff exists between how tightly a bounding rectangle bounds the enclosed
moving points or rectangles across time and the storage needed to capture the
bounding rectangles. It would be ideal to employ time-parameterized bounding
rectangles that are always minimum, but the storage cost appears to be excessive.

Instead of using such always minimum bounding rectangles, the TPR-tree em-
ploys “conservative” bounding rectangles, which are minimum at some time point,
but possibly (and most likely!) not at later times. Following the representation of
moving points, we let tref =tl and capture a time-parameterized bounding rectangle
as a tuple ([x�

1 , x�
1], [x�

2 , x�
2], ..., [x�

d , x�
d], [v�

1 , v�
1], [v�

2 , v�
2], ..., [v�

d , v�
d]) that con-

tains a minimum bounding rectangle of all the enclosed points or rectangles at
time tl and the minimums and maximums of the coordinates of velocity vectors
of the enclosed objects. The bounding rectangle at time t is then given as follows:
[x�

i (t), x�
i (t)] = [x�

i + v�
i (t − tl), x�

i + v�
i (t − tl)], where i = 1, ..., d.

Figure 6.7 illustrates conservative bounding intervals. The begin of the conserva-
tive interval in the figure starts at the position of object A at time 0 and moves left
at the speed of object B, and the end of the interval starts at object B at time 0 and
moves right at the speed of object A. It is worth noting that conservative bounding
intervals never shrink. In the best case, when all of the enclosed points have the
same velocity vector, a conservative bounding interval has constant size, although
it may move.

B A
t = 3 (= H/2)

t = 0
A B

Fig. 6.7. Conservative (Dashed) vs. Always Minimum (Solid) Bounding Intervals.

Such bounding rectangles are termed load-time bounding rectangles because
they are minimal at tl and bounding for all times not before tl. Because they never
shrink, but are likely to grow too much, it is desirable to be able to adjust them
occasionally. As the index is only queried for times greater or equal to the current
time, it follows that it is attractive to adjust the bounding rectangles every time
any of the moving points or rectangles that they bound are updated.

We call the resulting rectangles update-time bounding rectangles. Each update-
time bounding rectangle is minimal at the time of the last update that “touched”
it, but all bounding rectangles are stored according to the same reference time (tl).
Figure 6.8 illustrates load time and update time bounding intervals.

Algorithms for Querying
Answering a timeslice query using the TPR-tree proceeds as for the regular R-
tree, the only difference being that all bounding rectangles are computed for the
time tq specified in the query before intersection is checked. Thus, a bounding

180 Di Pasquale et al.

o4
o3

o1
o2

x

ttupdlt

Fig. 6.8. Load-Time (Bold) and
Update-Time (Dashed) Bounding
Intervals for Four Moving Points.

Query

Bounding interval

j

j

j

j

j

xj

j

tt tttl t

a

a

x
x

Fig. 6.9. Intersection of a Bounding
Interval and a Query.

interval specified by (x�, x�, v�, v�) satisfies a query (([a�, a�]), tq), if and only if
a� � x� + v�(tq − tl) ∧ a� � x� + v�(tq − tl).

To answer window and moving queries, we need to be able to check if, in the
(x̄, t)-space, the trapezoid of a query (see Figure 6.9) intersects with the trapezoid
formed by the part of the trajectory of a bounding rectangle that is between the
start and end times of the query. With one spatial dimension, this is relatively
simple. For more dimensions, generic polyhedron-polyhedron intersection tests can
be used [35], but due to the restricted nature of this problem, a simpler and more
efficient algorithm was devised for the TPR-tree [81].

Algorithms for Insertion and Bulk Loading
The insertion and bulk loading algorithms of the R∗-tree aim to minimize objective
functions such as the volumes of the bounding rectangles, their margins (perime-
ters), and the overlap among the bounding rectangles (the volume of their inter-
section). In our context, these functions are time-dependent, and we consider their
evolution in the time interval [tl, tl + H], where H is the average length of the time
periods when queries “see” a newly formed bounding rectangle. In particular, given
an objective function A(t), the following integral is minimized:

∫ tl+H

tl

A(t) dt

If A(t) is volume, the integral computes the volume of the trapezoid that represents
part of the trajectory of a bounding rectangle in (x̄, t)-space (see Figure 6.9). Param-
eter H is larger than the querying window W , and H −W is inversely proportional
to the average index update rate. The more frequently that object trajectories are
updated, the shorter a bounding rectangle lives before it is recomputed.

The TPR-tree insertion algorithm is the same as that of the R∗-tree, except
that, instead of measures of volume, intersection volume, margin, and distance,
integrals of these functions are used as in above formula. In addition, the algorithm
for splitting overfull nodes chooses possible distributions of entries into two new
nodes is adjusted.

The TPR-tree bulk loading algorithm attempts to minimize the volume inte-
grals of the tree time-parameterized bounding rectangles across [tl, tl + H]. This is
achieved by choosing an appropriate trade off between packing the moving points
according to their velocities and packing them according to their reference positions.
The former favors relatively large values of H, while the latter is more suitable for

6 Access Methods and Query Processing Techniques 181

small values of H. The algorithm, described in detail in [81], is based on the STR
algorithm [80].

6.2.4 Trajectory Bundle

Similarly to the TPR-tree, the Trajectory Bundle [69] is an R-tree-based access
method, but while the TPR-tree indexes the current and anticipated future positions
of moving objects, the Trajectory Bundle indexes the past trajectories of point
objects capable of continuous movement. The trajectory of an object moving in
two-dimensional space is similar to a “string” in three-dimensional space, where
the third dimension is time. More specifically, the position of an object is sampled,
which leads to a polyline representation of continuous movement (see Figure 6.10).

Fig. 6.10. Moving Object Trajectory.

Several approaches to the indexing of historical spatio-temporal data exist. How-
ever, most assume that the spatial data changes discretely over time and do not
address continuous movement. Although the time dimension of this spatio-temporal
space can be perceived as a spatial dimension, its semantics are different. In par-
ticular, the presence of a time dimension leads to derived information, e.g., speed,
acceleration, traveled distance, etc., which the access method must contend with.
Next, a successful access method must recognize that the individual line segments
it indexes are parts of larger constructs, namely trajectories.

The Data and Queries Supported
The Trajectory Bundle indexes the past trajectories of point objects, which are
assumed to be represented as polylines in the three-dimensional space spanned by
valid time and two spatial dimensions—see Figure 6.10.

The aspects of spatio-temporal data mentioned above result in new types of
queries that an access method must satisfy. We distinguish between two types.

• coordinate-based queries, such as point, range, and nearest-neighbor queries in
the resulting three-dimensional space, and

• semantics-based queries, usually involving trajectory metadata, such as speed
and heading of objects.

Coordinate-based queries are inherited from spatial and temporal databases. The
semantics-based queries are classified in trajectory queries, which rely on parts of
trajectories that go beyond individual segments, and navigational queries.

Trajectory queries stem from spatio-temporal topology and involve predicates
such as “enters,” “leaves,” “crosses,” or “bypasses” [24]. For example, whether an
object enters a given area can be determined only after examining more than one

182 Di Pasquale et al.

segment of its trajectory. An object entered an area with respect to a given time
interval if the start point of its least recent segment is outside the area and the end
point of its most recent segment is inside the given area. Similar definitions hold for
the other predicates.

Navigational queries relate to information derived from the trajectory informa-
tion and include “speed,” “heading,” “area covered,” etc. Such quantities depend
on the time interval considered, e.g., the heading of an object in the last ten min-
utes may have been strictly East, but considering the last hour, it may have been
Northeast.

Further, combined queries are important. Such queries extract information re-
lated to partial trajectories by identifying the relevant trajectories and then the
relevant parts of the trajectories. Trajectories can be selected based on their object
identifier. Alternatively, they can be identified via a spatio-temporal range predi-
cate, by a trajectory query, or by a query using derived information. The relevant
parts of the identified trajectories are again delimited by a spatio-temporal range, a
trajectory query, or derived properties. The example query “What were the trajec-
tories of objects that left Tucson between 7 a.m. and 8 a.m. today during the first
hour after they left?” uses the range “between 7 a.m. and 8 a.m.” to identify the
trajectories, while the temporal range “during the first hour after they left” delim-
its the relevant parts of the trajectories. Along these lines, a variety of combined
queries can be constructed.

Index Structure and Algorithms
Unlike all previous access methods the Trajectory Bundle strictly preserves trajec-
tories. Each leaf contains only segments belonging to one single trajectory. This
clustering of line segments based on their trajectory membership comes at a cost.
Specifically, the R-tree attempts to place segments that are spatially close in the
same leaf. In the Trajectory Bundle, such segments can be in different nodes. This
tends to increase overlap among sibling nodes, which affects the query performance
for conventional range queries. However, as we shall see, the trajectory preservation
is important for answering certain spatio-temporal query types.

Insertion Algorithms
The Trajectory Bundle uses the R-tree structure and algorithms as its basis. It
effectively “cuts” trajectories into pieces consisting of (up to) M line segments,
where M is the number of segments that fit in a leaf. Figure 6.11 illustrates insertion
of a new line segment, which is divided into six steps. First, the leaf that contains
its predecessor segment is found. This node is found by traversing the tree from the
root, stepping into every child node that overlaps with the minimum bounding box
of the new line segment (stage 1 in Figure 6.11). In case the leaf is full, a new leaf
node must be introduced. To obtain trajectory preservation, the new leaf is placed
at the “end” of the tree, meaning that the new leaf is inserted at the right-most
parent node. In Figure 6.11, we step up the tree until we find a non-full parent node
(stages 2 through 4). We choose the right-most path (stage 5) to insert the new
node. If the parent node has space (stage 6), we insert the new leaf as shown in the
figure. In case it is full, we split it by creating a new node at intermediate level 1
that has the new leaf as its only descendent. If necessary, the split is propagated
upwards, i.e., a new “right most” branch is created.

It can be argued that this insertion strategy leads a high degree of overlap in
the index. This would certainly be the case if we were indexing arbitrary three-
dimensional data. However, when indexing spatio-temporal data, we only “neglect”
the two spatial dimensions, with respect to space discrimination. The temporal
dimension offers some discrimination because data is inserted with increasing time
coordinates. The insertion strategy makes use of this property.

6 Access Methods and Query Processing Techniques 183

Fig. 6.11. Insertion.

Trajectory Preservation
The leaves in the Trajectory Bundle each contain a partial trajectory, and a tra-
jectory is contained in a set of “disconnected” leaves. We shall see shortly that it
is necessary to be able to retrieve segments based on their trajectory identity. To
enable this, doubly linked lists are introduced that connect leaves belonging to the
same trajectory. Figure 6.12 shows a partial index structure and a trajectory that
illustrate this approach. For clarity, the trajectory is drawn as a band. The trajec-
tory symbolized by the gray band is fragmented across six leaves, c1, c3, etc., which
form a doubly linked list as symbolized by the two-way arrows. Upon arriving at
an arbitrary leaf, these links allow retrieval of partial trajectories at minimal cost.

Fig. 6.12. Trajectory Bundle Tree Structure.

Algorithms for Querying
The Trajectory Bundle can be used for processing coordinate-based, semantics-based,
and combined queries. The former are well-known and are not discussed further.
Semantics-based queries comprise trajectory and navigational queries. We will show
how to reduce trajectory queries to ordinary range queries. Navigational queries
are special in that they compute results that are not explicitly stored. Since these
computations are not based on indexing, we omit discussion of them. Algorithms
for combined queries are different in that not only a spatial, but also a semantic
search, is performed, i.e., they not only involve range queries, but also retrieve other
segments belonging to trajectories identified in range queries.

Algorithms for Trajectory Queries
Trajectory queries involve relationships such as enters, leaves, crosses, and bypasses.
These relationships can be computed using the algorithm for range queries.

Consider the query “Which taxis left Tucson between 7 a.m. and 8 a.m. today?”
This query specifies a spatio-temporal range, namely “Tucson between 7 a.m. and 8
a.m. today.” The cube in Figure 6.13 represents a spatio-temporal range. Trajectory

184 Di Pasquale et al.

t2 belongs to an object leaving the range, and trajectories t1, t3, and t4 are entering,
crossing, and bypassing the range. To detect a trajectory leaving a range, we have
to examine the segments of the trajectories intersecting the four sides of the spatio-
temporal range as shown in Figure 6.13. If a trajectory leaves or enters a range, we
will only find one segment, and it will be directed inwards or outward depending on
whether it enters or leaves the range. In case a trajectory crosses (t3) we will find
two or more segments. In the case it bypasses (t4), we will not find any segment.
Thus, we can use modified range queries to evaluate the topological predicates of
trajectory queries.

Fig. 6.13. Trajectory Queries.

Algorithms for Combined Queries
The first step in processing combined queries is to retrieve an initial set of segments
based on some spatio-temporal range. We can apply the standard range-search
algorithm used in the R-tree. In Figure 6.14, we search the tree using the cube c1

and retrieve two segments of trajectory t2 (labeled 1 and 2), and four segments of
trajectory t1 (labeled 3 through 6). The six segments are shown in dark gray and are
contained in cube c1. In the second step, we make use of the doubly linked lists in the
Trajectory Bundle and retrieve for segments 1 and 2 of t2 and segments 3 through
6 of t1 the partial trajectories contained in range c2. We have two possibilities: a
connected segment can be in the same leaf or in another leaf. If it is in the same,
finding it is trivial. If it is in another node, the doubly linked list is used.

Fig. 6.14. Stages in Processing Combined Spatio-temporal Queries.

When retrieving partial trajectories, care must be taken not to retrieve the
same trajectory more than once. Once a partial trajectory is retrieved, we store
its object identifier, and, for each retrieved trajectory, we check whether it was
retrieved already.

6 Access Methods and Query Processing Techniques 185

6.3 Quadtree-Based Methods

All methods of this section assume binary images of S × S unit squares termed
pixels, where a pixel associated with the foreground (background) is assumed to
be black (respectively, white). Without loss of generality, let S=2m, where m is an
integer used to decompose the image. More specifically, at level m, which is stage
0 of the decomposition, there is the whole image, of side length S. At the first
stage of decomposition, the image consists of four quadrants of side length S/2.
At the second stage, each quadrant is then subdivided into four quadrants of side
length S/22. The decomposition stops when a quadrant is wholly black or wholly
white. The decomposition can be represented as a tree of outdegree 4, where the
root (at level m) corresponds to the whole image, and each node (at level �, where
1 � � � m) corresponds to a quadrant of side length S/2m−�. The sons of a node are
labeled from left to right NW (North-West), NE (North-East), SW (South-West)
and SE (South-East). Leaves are black or white (also termed homogeneous), and
non-leaf nodes are gray (termed non-homogeneous).

6.3.1 The MOF-tree

Description of the MOF-tree
The MOF-tree has been proposed in [57,51] for indexing multiple overlapping fea-
tures, but it can also be used as a STAM. The MOF-tree is based on a recursive space
decomposition into four quadrants of equal size, in the same way as in quadtrees.
Assume that a set 〈I1, I2, . . . , IN 〉 of images of size S × S is given. Image Ij corre-
sponds to the j-th layer of the image I =

⋃
j=1,N Ij . In the following, we will use

the term feature to refer to a specific layer of I. The space decomposition stops only
when a quadrant is either fully covered by all the features in it, or is completely
uncovered. In both cases, the quadrant is homogeneous.

The decomposition can be represented as a tree of outdegree 4, as described in
the introductory paragraph above. Internal nodes are associated with non-homoge-
neous quadrants, while homogeneous quadrants correspond to leaves. In Figure 6.15,
an example of a MOF-tree in a 22×22 image space representing two images is given,
in which features partially covering a quadrant are depicted inside a circle, while
features totally covering a quadrant are depicted inside a square. Note that internal
nodes can be fully covered by some feature and partially covered by others (for
example, see the SE son of the root, which is fully covered by the vertical feature
and partially covered by the horizontal feature).

Implementing a MOF-tree in Secondary Memory
A linear MOF-tree version can be obtained by coding all its nodes (except the
leaves associated with empty quadrants) by means of a base-5 locational key (l-key,
for short) of length m, that can be recursively defined as follows: let the root of the
MOF-tree have l-key 0; a node q′ at level � whose father q has l-key L(q) will have
l-key [28]:

L(q′) = L(q) + s · 5�

where s = 1, 2, 3, 4 if q′ is a NW, NE, SW, SE child of q, respectively. This allows
the use of a conventional index such as the B+-tree to efficiently support random
access to every MOF-tree node [2].

For a large class of operations to be executed on the MOF-tree, we need to know,
when accessing an internal node, which features are contained in and fully cover the
associated quadrant. Hence, an internal node is represented by means of a record
containing an N -bit vector FEATURE, whose j-th bit is set to 1 if and only if the
j-th feature is contained in the associated quadrant, and an N -bit vector COVER,

186 Di Pasquale et al.

NE SW

SENW

I I I I1 2 1 2

Fig. 6.15. Two overlapping features and the corresponding MOF-tree.

whose j-th bit is set to 1 if and only if the j-th feature fully covers the associated
quadrant. Records associated with leaves lack the COVER vector. To distinguish
between the two kinds of records, we also associate with each of them a LEAF bit,
whose value is 1 if and only if the corresponding node is a leaf.

The obtained list of records can be sorted according to increasing values of the
l-keys. For example, the MOF-tree in Figure 6.15 has the following sequence, where
the structure of internal records is (LEAF, l-key, FEATURE, COVER), while for
leaf records (shown in italics for readability), we have a structure (LEAF, l-key,
FEATURE):

(0,00,11,00), (0,10,01,00), (1,13,01), (1,14,01), (1,20,11),
(0,30,10,00), (1,32,10), (1,33,10), (1,34,10), (0,40,11,10),

(1,41,11), (1,42,11), (1,43,10), (1,44,11).

Spatio-Temporal Queries
Traditional spatial queries for two-dimensional spatial data can be naturally ex-
tended to spatio-temporal queries over the set I of two-dimensional images. Let
Ij(x, y) denote the pixel in Ij having coordinates (x, y), and let assume Ij(x, y) = 1
if the pixel is black, Ij(x, y) = 0 otherwise. Here, we consider only the exist(P (x0, y0,
t0),∆x,∆y,∆t) query, which must return true if and only if there exists at least
an image Ij ∈ I, with t0 � j < t0 + ∆t such that Ij(x, y) = 1 and x0 � x <
x0 + ∆x, y0 � y < y0 + ∆y.

Let w = {(x, y) ∈ N
2|x0 � x < x0 + ∆x, y0 � y < y0 + ∆y} denote the so-called

window query, that is, the image space spanned by the given query. As shown by
Proietti in [72], the query is solved by initially decomposing in O(∆x +∆y) time the
window into its constituting maximal blocks, that is, the black blocks that would be
generated by applying the quadtree decomposition process to the window. Dyer has
shown that the number of maximal quadtree squares inside w is O(∆x + ∆y) [23].
Afterwards, we associate with each maximal block p its respective l-key L(p) and
we sort these l-keys in increasing order. For each maximal block p, we have to know
whether or not p contains at least one black pixel associated with Ij , t0 � j < t0+∆t.
To do that, we search the B+-tree with the l-key L(p). One of the following can
happen:

6 Access Methods and Query Processing Techniques 187

1. L(p) appears in the B+-tree. Then, we check whether the FEATURE vector has
at least one bit in the interval [t0, t0 + ∆t − 1] equal to 1: if so, we return true;
otherwise, we examine the next maximal block, if any.

2. L(p) does not appear in the B+-tree. In this case, we check the record associated
with the l-key immediately smaller than L(p). Let x be such l-key. Two cases
are possible:

2.1. x is associated with a quadrant p′ containing p. This happens if and only
if the string obtained from x by discarding all the zeros after the rightmost
non-zero digit is a prefix of L(p). In this case we say that p′ is an ancestor of
p and that p is a descendant of p′. Then, we check whether the FEATURE
vector of x has at least one bit in the interval [t0, t0 + ∆t − 1] equal to 1: if
so, we return true; otherwise, we examine the next maximal block, if any.

2.2. Otherwise, x is associated with a block p′ disjoint from p. In this case, p is
fully uncovered, and we examine the next maximal block, if any.

The following theorem is from [51].

Theorem 1. Let us consider a sequence of two-dimensional binary images 〈I1, I2,
. . . , IN 〉 in a S × S image space, represented by using a MOF-tree stored in a B+-
tree of order r. Then, an exist(P (x0, y0, t0),∆x,∆y,∆t) query can be solved with
O((∆x + ∆y) · logr n) accesses to secondary memory, where n is the number of
elements in the MOF-tree.

Proof. Knuth [40] showed that the height h(r, n) of a B+-tree of order r with n
elements is:

h(r, n) � 1 + logr

(
n + 1

2

)
.

From the algorithm described above, it follows that for each maximal block O(logr n)
accesses to secondary memory occur in case (1). Concerning case (2), we note that,
apart from the initial descent of the B+-tree, which has a cost of O(logr n) accesses,
we can at most execute an additional access to secondary memory to check the
elements preceding the one accessed. As the number of maximal blocks is O(∆x +
∆y), the theorem follows.

Note that by using a multiple Linear Quadtrees representation, the query can be
performed by applying the algorithm proposed by Nardelli et al. in [58] ∆t times,
thus obtaining an O

(
(∆x + ∆y) · ∑t0+∆t−1

j=t0
logr nj

)
= O(∆t · (∆x + ∆y) · logr n)

time complexity, where nj is the number of elements in the MOF-tree associated
with Ij . Hence, the improvement obtained by using an MOF-tree is linear in the
number of queried features.

6.3.2 The MOF+-tree

Description of the MOF+-tree
An interesting variant of the MOF-tree, named the MOF+-tree, was proposed by
Proietti in [71]. This variant can be obtained by means of a particular coding tech-
nique of the FEATURE vector, which eliminates the need for the COVER vector.

This coding technique depends on both the feature distribution and the refine-
ment process. To illustrate the coding, we analyze how the pointer version of the
MOF+-tree is built. The underlying idea in the building process is that we can
describe the distribution of a given feature by simply marking the changing from a
non-homogeneous to a homogeneous state. More precisely, let us focus on a specific
feature Ij of I, associated with the j-th bit of the FEATURE vector. At the root
level, if Ij covers (either partially or fully) the image space, we set FEATURE[j]=1;

188 Di Pasquale et al.

otherwise, we set FEATURE[j]=0. In this latter case, the j-th bits of the FEATURE
vectors of all the root descendants down to the leaf level are set to 0 as well. In the
former case, two situations are possible:

1. The image space is fully covered by Ij : in this case, the j-th bits of the FEA-
TURE vectors of all the root descendants down to the leaf level are set to 1;

2. Otherwise, the j-th bits of the FEATURE vectors of all the root children are
set to 0, thus introducing an alternation in the j-th bit values. The process goes
on recursively with alternations in the j-th bit value until a quadrant q homo-
geneous (i.e., either fully covered or uncovered) with respect to Ij is reached:
in this case, the j-th bit of the FEATURE vector of q is copied into the corre-
sponding j-th bits of all its non-leaf children2, thus introducing a persistence in
the j-th bit values. Afterwards, the j-th bits of the FEATURE vectors of all the
descendants of q down to the leaf level are set to 1 if Ij covers q, and otherwise
to 0.

Since the sequence of values of the j-th bits of the FEATURE vectors along any
path from the root to a leaf is tied to the refinement process, the three possible
states (i.e., absence, partial presence, or total presence of a given feature) can be
represented using only one bit. More precisely, suppose we want to know the distri-
bution of Ij with respect to a non-leaf node q. For the sake of generality, suppose
that q has a non-leaf child q′, having in turn a non-leaf child q′′. This is the most
general case, since if q does not have any non-leaf nephew, then we can establish
the distribution of Ij in q by simply looking to all its (at most 16) leaf descendants.
Depending on the values of the j-th bits of the FEATURE vectors of q, q′, and q′′,
the cases reported in Table 6.2 are possible.

q q′ q′′ Distribution of Ij with respect to q

0 0 0 fully uncovered
0 0 1 fully covered
0 1 0 partially covered
0 1 1 if the parent of q has the j-th bit of the FEATURE vector set

to 0, then q is fully covered; otherwise, it is partially covered
(if q is the root, this configuration is not admissible)

1 0 0 if the parent of q has the j-th bit of the FEATURE vector set
to 0, then q is partially covered; otherwise, it is fully uncovered
(if q is the root, then it is partially covered)

1 0 1 partially covered
1 1 0 fully uncovered
1 1 1 fully covered

Table 6.2. Distribution of Ij with respect to q.

Implementing a MOF+-tree in Secondary Memory
Differently from the MOF-tree, a linear MOF+-tree version can be obtained by
making use of a unique record structure, that is (LEAF, l-key, FEATURE). This
allows up to 30% space savings [71]. For example, for the image in Figure 6.15, we
have the following sequence (leaf records are shown in italics):

(0,00,11), (0,10,00), (1,13,01), (1,14,01), (1,20,11), (0,30,00), (1,32,10),

2 Notice that, by definition, a leaf q has the j-th bit of the FEATURE vector set to 1 if
and only if Ij covers q.

6 Access Methods and Query Processing Techniques 189

(1,33,10), (1,34,10), (0,40,00), (1,41,11), (1,42,11), (1,43,10), (1,44,11).

It is easy to verify that by using a MOF+-tree, any spatio-temporal query can be
solved with at most a constant number of additional accesses on secondary storage
with respect to a MOF-tree. The exist query can be solved by making use of the
algorithm described in the previous section, with case (1) rewritten as follows:

1.1. L(p) appears in the B+-tree and the LEAF bit is set to 1. Then, we check
whether or not the FEATURE vector has at least one bit in the interval [t0, t0 +
∆t−1] equal to 1. If so, we return true; otherwise, we examine the next maximal
block, if any.

1.2. L(p) appears in the B+-tree and the LEAF bit is set to 0. Then, to determine
whether at least one feature in the interval [t0, t0 + ∆t − 1] covers p, we check
the children and the nephews of p, and we apply the rules from Table 6.2, which
entails at most a constant number of additional descents of the index.

Therefore, it can be proved that the exist(P (x0, y0, t0),∆x,∆y,∆t) query can be
solved with O((∆x + ∆y) · logr n) accesses to secondary memory, where n is the
number of elements in the MOF+-tree.

6.3.3 Overlapping Linear Quadtrees

Description and Implementation of OLQ
The Overlapping Linear Quadtrees (OLQ, for short), proposed by Tzouramanis et
al. [92,93], is a structure suitable for storing consecutive binary raster images ac-
cording to transaction time. This corresponds to a database of evolving images
(e.g., satellite meteorological images). This structure saves considerable space with-
out sacrificing query performance in accessing every single image. Moreover, it can
be used for answering efficiently window queries for consecutive images (spatio-
temporal queries).

If a sequence of N images has to be stored in a Linear Quadtree, each im-
age having a unique timestamp ti (for i=1, 2, ..., N), then updates will overwrite
old versions, and only the most recently inserted images are retained. However, in
applications where spatial queries refer to the past, all past versions also need to
be accessible. OLQ converts the ephemeral Linear Quadtree to a persistent data
structure, where past states are also maintained [22].

In this subsection, we present this structure and five temporal window queries:
strict containment, border intersect, general border intersect, cover, and fuzzy cover.
Experiments with the OLQ based on synthetic pairs of evolving images (random
images with specified aggregation) have shown [85] considerable storage savings in
comparison to a group of independent Linear Quadtrees. Moreover, the I/O perfor-
mance of different queries has been studied based on the same synthetic data as well
as on real images [93]. It has been shown that using algorithms that take advantage
of the special properties of OLQ, in comparison to staightforward algorithms, leads
to significantly better I/O performance.

In the sequel, we present how overlapping is applied to Linear Region Quadtrees
(the most widely used variations of Region Quadtrees for secondary memory). A
Linear Quadtree representation consists of a list of values where there is one value for
each black node of the pointer-based quadtree. The value of a node is an address
describing the position and size of the corresponding block in the image. These
addresses can be stored in an efficient structure for secondary memory (such as a
B-tree or any of its variations). The most popular linear implementations are the
FL (Fixed Length), the FD (Fixed length – Depth) and the VL (Variable Length)
linear implementations [78]. As justified in [92], the FD implementation was the

190 Di Pasquale et al.

most appropriate choice for OLQs. In this implementation, the address of a black
quadtree node has two fixed size parts: the first part denotes the path (directional
code) to this node (starting from the root) and the second part the depth of this
node. The right part of Figure 6.16 presents a quadtree which corresponds to the
binary image shown on the left of the same figure. In the left part of the figure,
also, the directional code of each black node of the depicted tree can be seen.

000

030 032 322 323

330

Fig. 6.16. An image, its quadtree and the linear codes of black nodes.

Each quadtree, in a sequence of quadtrees modeling time evolving images, can
be represented in secondary memory by storing the linear FD codes of its leaves
in a Linear Quadtree (in reality, in a B+-tree). The OLQ structure is formed by
overlapping consecutive Linear Quadtrees, that is by storing the common subtrees
of the two trees only once [92]. Since in the same quadtree, a pair of black ancestor
and descendant nodes cannot occur, two FD linear codes that coincide at all the di-
rectional digits cannot occur, either. This means that the directional part of the FD
codes is sufficient for building Linear Quadtrees at all the levels. At the leaf-level,
the depth of each black node should also be stored so that images are accurately rep-
resented and that overlapping can be correctly applied. The top part of Figure 6.17
depicts the Linear Quadtrees that correspond to two Region Quadtrees, and the
bottom part depicts the resulting overlapping linear structure. Note that with the
OLQ structure, there is no extra cost for accesses in a specific Linear Quadtree.

All nodes of the OLQ structure have an extra field, StartTime, that can be
used to detect whether a node is being shared by other trees. We assign a value to
StartTime during the creation of a node. There is no need for future modification
of this field. In addition, leaf-nodes have one more field, EndTime, that is used to
register the transaction time when a specific leaf changes and becomes historical.

In order to keep track of the image evolution (in other words, the evolution of
quadcodes) and efficiently support spatio-temporal queries over the stored raster
images, we embed additional “horizontal” pointers in the OLQ leaves. This way
there will be no need to top-down traverse consecutive tree instances to search for a
specific quadcode, thus avoiding excess page accesses. In particular, we embed two
forward and two backward pointers in every OLQ leaf to support spatio-temporal
queries. The F-pointer of a node points to the first of a group of leaves that belong to
a successive tree and have been created from this node after a split/merge/update.
The FC-pointers chain this group of leaves together. The B- and BC-pointers play
analogous roles when traversing the structure backwards.

Figure 6.18 shows the chaining of the leaves of three successive Linear Quadtrees.
The leaf on the left-top corner of the figure corresponds to the first time instant, t=1,
and contains 3 quadcodes. Suppose that during time instant t=2, 8 new quadcodes
are inserted. In such a case, we have a node split. During time instant t=3, a set of
5 quadcodes is deleted. Thus, two nodes of the tree corresponding to time instant
t=2 are merged to produce a new node as depicted in the figure.

6 Access Methods and Query Processing Techniques 191

322

032 330

000

030

032 322

323

330

322

032 330

000

031

032 322

323

330

033

322

032 330

000 032 322 330

322

032

000 032

030 323 031 033

Fig. 6.17. Two B+-trees storing Linear Quadtree codes and the corresponding OLQ struc-
ture.

t=1

B BC

C1 C2 C3 -

FC F

t=2

INS C4-C11

C1 C2 C4 C5

C6 C7 C8 C3

C9 C10 C11 -

DEL C6-C8

& C10-C11
C3 C9 - -

�

� �

�

�
t=3

�

�

Fig. 6.18. Forward and backward chaining for the support of temporal queries.

Spatio-Temporal Query Processing
In this subsection, we present five different temporal window queries for evolving
regional data that can be answered efficiently by using the OLQ structure. Given
a window belonging in the area covered by our images and a time interval, the
following spatio-temporal queries can be expressed:

The Strict Containment Window Query. Find the black regions that totally fall
inside the window (including the ones that touch the window borders from
inside), at each time point within the time interval.
Figure 6.19 depicts a raster image corresponding to a specific time point, par-
titioned in quadblocks, and a query window. The Strict Containment Window
Query for this time point would return quadblocks 2 and 4.

The General Border Intersect Window Query. Find the black regions that com-
pletely fall inside the window or intersect a border of the window (including the

192 Di Pasquale et al.

ones that touch a border of the window from inside or outside), at each time
point within the time interval.
The General Border Intersect Window Query for the time point corresponding
to Figure 6.19 would return quadblocks 1, 2, 3, 4, and 5.

The Border Intersect Window Query. Find the black regions that intersect a border
of the window (including the ones that touch a border of the window from inside
or outside), at each time point within the time interval.
The Border Intersect Window Query for the time point corresponding to Fig-
ure 6.19 would return quadblocks 1, 3, 4, and 5.

The Cover Window Query. Find out whether or not the window is totally covered
by black regions at each time point within the time interval.
The Cover Window Query returns YES/NO answers. For the time point corre-
sponding to Figure 6.19, it would return No as an answer.

The Fuzzy Cover Window Query. The Cover Window Query algorithm can be
extended so as to work for partially black windows, where the black percentage
exceeds a specified threshold. That is, we could answer a query of one of the
following two forms.
• Find out whether or not the percentage of the window area that is covered

by black regions is larger than a given threshold, at each time point within
the time interval.

• Find out the percentage of the window area that is covered by black regions,
at each time point within the time interval.

The second kind of Fuzzy Cover Window Query for the time point corresponding
to Figure 6.19 would return 80% as its answer. The first kind would return YES
or NO depending on the comparison of 80% with the threshold given.

For such queries, [95] presented algorithms that take into account the horizontal
pointers. Extensive experiments showed remarkable improvements of the response
times of these sophisticated algorithms in comparison to those of the corresponding
straightforward algorithms. All the presented algorithms can easily be transformed
to work forward or backward: by starting from the beginning or the end of the
time interval and by using the F- and FC-pointers or the B- and BC-pointers,
respectively.

6.3.4 Multiversion Linear Quadtree

Description and Implementation of MVLQ
As proposed by Tzouramanis et al. [85], the technique for transforming Overlap-
ping B+-trees to a STAM can also be applied to other classical temporal access
methods [84], especially to those that are modifications of the B-tree family. In this
section, we present the Multiversion Linear Quadtree (MVLQ, for short) [94], which
is based on hierarchical decomposition of space and adapts ideas from the Linear
Region Quadtrees [28,79] and the Multiversion B-tree (MVBT) [7].

..

..

..
................

....................
............1
2

3 4
5

6

Fig. 6.19. The quadblocks of a binary raster image and a query window (thick lines).

6 Access Methods and Query Processing Techniques 193

MVLQ associates time intervals with spatial objects in each node. Data records
residing in leaves contain records of the form 〈(C,L), T 〉, where (C,L) is the FD
code of a black node of the Region Quadtree and T represents the time interval when
this black node appears in the image sequence. Non-leaf nodes contain entries of the
form 〈C ′, T ′, P tr〉, where Ptr is a pointer to a descendent node, C ′ is the smallest
C recorded in that descendent node and T ′ is the time interval that expresses the
lifespan of the latter node. For reasons explained in [94], the FD implementation
was chosen for the linear representation of the black nodes of a quadtree (the same
choice as for the OLQ).

In each MVLQ node, we added a new field, StartTime, to hold the time instant
when it was created. This field is used by the manipulation algorithms, which will
be examined in the sequel. In addition, in each leaf we add a field EndTime that
registers the transaction time when a specific leaf changes and becomes historical.
The structure of the MVLQ is accompanied by two additional main memory sub-
structures:

• The root* table: it is built on top of the MVLQ structure. MVLQ hosts a number
of version trees and has a number of roots in such a way that each root stands
for a time/version interval T ′′=[Ti, Tj), where i, j ∈ {1, 2, ..., N} and i < j.
Each record in the root* table represents the root of a MVLQ and has the form
〈T ′′, P tr′〉, where T ′′ is the lifespan of that root and Ptr′ is a pointer to its
physical disk address.

• The Depth First-expression (in short DF-expression, [37]) of the most recently
inserted image: its usage is to keep track of all the black quadblocks of the
most recently inserted image, and to be able to know at no I/O cost the black
quadrants that are identical between this image and the one that will appear
next. Thus, given a new image, we know beforehand which exactly are the FD
code insertions, deletions, and updates. The DF-expression is a compacted array
that represents an image based on the preorder traversal of its quadtree.

Manipulation Algorithms
As stated earlier, the basis for the new access method is the MVBT. However, its
algorithms of insertion, deletion, and update processes are significantly different
from the corresponding algorithms in the MVBT.

Insertion
If during a quadcode insertion at time point ti, the target leaf is already full, a node
overflow occurs. Depending on the StartTime of the leaf, the structural change can
be triggered in two ways:

• If StartTime = ti, then a key split occurs and the leaf splits. Assuming that b is
the node capacity, after the key split the first �b/2� entries of the original node
are kept in this node and the rest are moved to a new leaf.

• Otherwise, if StartTime < ti, a copy of the original leaf must first be allocated,
since it is not acceptable to change past states of the spatio-temporal structure.
In this case, we remove all non-present (past) versions of quadcodes from the
copy node. This operation is called version split [7], and the number of present
versions of quadcodes after the version split must be in the range [(1+ e)d, (k−
e)d], where k is a constant integer, d = b/k and e > 0. If a version split leads
to less than (1 + e)d quadcodes, then a merge is attempted with a sibling or a
copy of that sibling containing only its present versions of quadcodes (the choice
depends on the StartTime of the sibling). If a version split leads to more than
(k − e)d quadcodes in a node, then a key split is performed.

194 Di Pasquale et al.

Deletion
Given a “real world” deletion of a quadcode at time point tj , its implementation
depends on the StartTime of the corresponding leaf:

• If StartTime = tj , then the appropriate entry of the form 〈C,L, T 〉 is removed
from the leaf. After this physical deletion, the leaf is checked to see whether
it holds enough entries. If the number of entries is above d, the deletion is
completed. If the number is below, the node underflow is handled as in the
classical B+-tree, with the one difference that if a sibling exists (preferably the
right one), then we have to check its StartTime before proceeding to a merge
or a key redistribution.

• Otherwise, if StartTime < tj then the quadcode deletion is handled as a logical
deletion, by updating the temporal information T of the appropriate entry from
T = [ti, ∗) to T = [ti, tj), where ti is the insertion time of that quadcode. If an
entry is logically deleted in a leaf with exactly d present quadcode versions, then
a version underflow [7] occurs that causes a version split of the node, copying
the present versions of its quadcodes into a new node. Evidently, the number
of present versions of quadcodes after the version split is below (1 + e)d, and a
merge is attempted with a sibling or a copy of that sibling.

Update
Updating (i.e., changing the value of the level L of) an FD code leaf entry at time
point tj is implemented by:
(i) the logical deletion of the entry, and
(ii) the insertion of a new version of that entry; this new version of the entry has
the same quadcode C, but a new level value L′.

Example
Consider the two consecutive images (with respect to their timestamps t1=1 and
t2=2) on the left of Figure 6.20. The MVLQ structure after the insertion of the
first image is given in Figure 6.21(a). At the MVLQ leaves, the level L of each
quadcode should also be stored, but for simplicity only the FD-locational codes
appear. The structure consists of three nodes: a root R and two leaves A and B.
The node capacity b equals 4 and the parameters k, d, and e equal 2, 2, and 0.5,

3

19

3

17

18 19

3

1917 18

191817

3

020

102 333

300120

002

020

103

300

18
17

9

11

12

21

10

15 16

13

4

14

7

5

13 146 7

10
12

16

4

1 2

5

4

6 7 8

9 10 11

12

13 14 15

16

16

15

1412

111098

765

421

13

11
91 2

5 6
8

8

15

(a)

(b)

Fig. 6.20. Two similar binary raster images and their corresponding Region Quadtrees.

6 Access Methods and Query Processing Techniques 195

respectively. The second version of the structure is constructed based on the first
one, by inserting the FD code 〈002, 0〉 (in the form 〈C,L〉), the deletion of 〈102, 0〉,
the insertion of 〈103, 0〉, and the deletion of FD codes 〈120, 1〉 and 〈333, 0〉.

R

300 [1, *)

000 [1, *)

StartTime = 1

C StartTime = 1D B StartTime = 2E

333 [1, *)

300 [1, *)

StartTime = 1A

020 [1, *)

002 [2, *)

StartTime = 2

020 [1, *)

002 [2, *)

300 [1, *) 333 [1, *)

300 [1, *)

StartTime = 2

102 [1, 2)

120 [1, *)

103 [2, *)

CC

300 [1, 2)

StartTime = 1R

000 [2, *)

000 [1, 2)

103 [2, *)

300 [1, *)

StartTime = 1R

000 [2, *)

000 [1, 2)

103 [2, *)

(c)

R

StartTime = 1 StartTime = 1 StartTime = 1A StartTime = 2

120 [1, *)

020 [1, *)

102 [1, *)

A B

333 [1, *)

300 [1, *)

D

020 [1, *)

002 [2, *)

020 [1, *)

002 [2, *)

120 [1, *)

103 [2, *)

StartTime = 1B

333 [1, *)

300 [1, *)

StartTime = 2

102 [1, 2)

120 [1, *)

C

(a) (b)

Fig. 6.21. (a) The MVLQ structure after the insertion of the first image (b) a preliminary
result during the insertion of the second image, and (c) the final result after the insertion
of the second image.

Figure 6.21(b) shows the intermediate result of the insertion of FD code 〈002, 0〉,
the deletion of 〈102, 0〉, and the insertion of FD code 〈103, 0〉. When we attempt to
insert the quadcode 103 in the leaf A of Figure 6.21(b), the leaf overflows, and a
new leaf C is created after a version split. All present versions of quadcodes of leaf
A are copied into leaf C, and the parent R is updated for the structural change.
Leaf C holds now more than (k − e)d = 3 entries, and a key split is performed
producing a new leaf D. Again, the parent R is updated.

The final status of MVLQ after the insertion of the second image is illustrated
in Figure 6.21(c). The quadcode 120 is deleted from leaf D of Figure 6.21(b) and
a node underflow occurs (the number of entries is above d), which is resolved by
merging this node with its right sibling B or a copy of it, containing only its present
versions of quadcodes. After finding that the StartTime of leaf B is smaller than
t2, a version split on that leaf is performed, which is followed by a merge of the
new (but temporary) leaf E and leaf D, in leaf D. The process terminates after the
physical deletion of quadcode 333 from leaf D. The final number of entries in leaf
D equals d. Both versions of MVLQ (Figure 6.21(a) and Figure 6.21(c)) have the
same root R, although in general, more than one roots may exist.

196 Di Pasquale et al.

Comments on Insertion, Deletion, and Update Algorithms
Generally, insertion of a new image occurs in two stages. The first stage is to sort the
quadcodes of the new image and compare this sequence against the set of quadcodes
of the last inserted image, using the binary table of its DF-expression. Thus, there is
no I/O cost for black quadrants that are identical between the two successive images.
During the next stage, we use the root* table to locate the root that corresponds
to the most recently inserted image. Then, following ideas of the approach of [45],
we build the new tree version by performing all the quadcode insertions, updates,
and deletions in a batched manner, instead of performing them one at a time. (We
did not follow this approach in the example of Figure 6.21 for simplicity reasons). It
is obvious that after a batch operation with insertions, deletions, and updates at a
specific time point, we may have conceptual node splittings and mergings. Thus, a
specific leaf may split in more than two nodes, and, similarly, more than two sibling
leaves may merge during FD code deletions.

Spatio-Temporal Query Processing
The new indexing structure of MVLQ is based on transaction time and it is an
extension of MVBT and Linear Quadtree for spatio-temporal data. In order to im-
prove spatio-temporal query processing over the stored raster images, we added four
horizontal pointers in every MVLQ leaf. Their names, roles, and functions are the
ones that were presented in Section 6.3.3, and they are described in full detail in [95].
The structure supports all the well-known spatial queries for quadtree-based spatial
databases (spatial joins, nearest neighbor queries, similarity and spatial selection
queries, etc.) without taking into account the notion of time. It can also support
efficiently all the typical temporal queries for transaction-time databases (most of
which have been examined in [7,14]) without considering issues of space. However,
the major feature of the MVLQ is that it can efficiently handle all the special types
of spatio-temporal window queries for quadtree-based spatio-temporal databases,
described in Section 6.3.3 and analyzed further in [94,95].

6.4 Data Structures and Algorithms for the Discrete Model

The discrete model for spatio-temporal data types [26] presented in Section 4.4
offers a precise basis for the implementation of data structures for a spatio-temporal
database management system; it is in fact a high-level specification of such data
structures. In this section, we briefly explain how these definitions translate into
data structures and present a couple of algorithms on the data structures that
implement operations specified in Section 4.4.

6.4.1 Data Structures

Two general issues need to be considered in the translation from data type specifi-
cations to physical data structures. First, some requirements arise because the data
structures are to be used within a DBMS and must serve to represent attribute
data types within some given data model. This means that values are placed under
control of the DBMS into memory, which in turn implies that: (i) one should not
use pointers, and (ii) representations should consist of a small number of memory
blocks that can be moved efficiently between secondary and main memory. One way
to fulfill these requirements is to implement each data type by a fixed number of
records and arrays; arrays are used to represent the varying size components of a
data type value and are allocated to the required size. All pointers are expressed as
array indices.

6 Access Methods and Query Processing Techniques 197

The Secondo extensible DBMS (see Section 7.4), in which we are implementing
this model, offers a specific concept for the implementation of attribute data types.
Such a type has to be represented by a record (called the root record), which may
have one or more components that are (references to) the so-called database arrays.
Database arrays are basically arrays with any desired field size and number of fields;
additionally, they are automatically either represented “inline” in a tuple, or outside
in a separate list of pages, depending on their size [19]. The root record is always
represented within the tuple. In our subsequent design of data structures we will
apply this concept. Each data type will be represented by a record and possibly
some (database) arrays. In other DBMS environments, one can store the arrays
using the facilities offered there for large-object management.

On the other hand, many of the data types presented in Section 4.4 are set-
valued. Sets will be represented in arrays. We always define a unique order on the
set domains and store elements in the array in that order. This way, we can enforce
that two set values are equal if and only if their array representations are equal,
which enables efficient comparisons.

Non-Temporal Data Types
For the discrete base types and the time type, the implementation is straightforward:
they are represented as a record consisting of the given programming language
value3 plus a Boolean flag indicating whether the value is defined. Type point is
represented similarly by a record with two reals and a flag.

A points value is represented as an array containing records with two real fields,
representing points. Points are in lexicographic order. The root record contains the
number of points and the (database) array.

The data structures for line and region values are designed similar to corre-
sponding structures reported in [29]. A line value is a set of line segments. This
is represented as a list of halfsegments. The idea of halfsegments is to store every
segment twice: once for the left end point and once for the right end point. These
are called the left and right halfsegment, respectively, and the relevant point in the
halfsegment is called the dominating point. The purpose is to support plane-sweep
algorithms, which traverse a set of segments from left to right and have to perform
an action (e.g., insertion into a sweep status structure) on encountering the left and
another action on meeting the right end point of a segment. A total order is defined
on halfsegments, which is the lexicographic order extended to treat halfsegments
with the same dominating point (see [29] for a definition).

Hence, we represent the line value as an array containing a sequence of records,
each of which represents a halfsegment (four reals plus a flag to indicate the dom-
inating point); these are ordered as just mentioned. The root record manages the
array plus some auxiliary information such as the number of segments, total length
of segments, bounding box, etc.

A region value can be viewed as a set of line segments with some additional
structure. This set of line segments is represented by an array of halfsegments con-
taining the ordered sequence of halfsegment records, as for line. In addition, all
halfsegments belonging to a cycle and to a face are linked together (via extra fields
such as next-in-cycle within halfsegment records). Two more arrays, cycles and
faces, represent the structure. The array cycles contains records representing cycles
by a pointer4 to the first halfsegment of the cycle and a pointer to the next cycle of
the face. The latter is used to link together all cycles belonging to one face. Array
faces contains for each face a pointer into the cycles array to the first cycle of the
face. A unique order is defined on cycles and faces, but is not described here.
3 For string we assume an implementation as a fixed length array of characters.
4 From now on, by “pointer” we mean an integer index of a field of some array.

198 Di Pasquale et al.

The root record for region manages the three arrays and has additional in-
formation such as bounding box, number of faces, number of cycles, total area,
perimeter, etc. Algorithms constructing region values generally compute the list of
halfsegments and then call a close operation offered by the region data type, which
determines the structure of faces and cycles and represents it by setting pointers.
More details on the representation strategy can be found in [29], although some
details are different here.

Intervals (s, e, lc, rc) are represented by corresponding records. A value of type
range(α) is represented as an array of interval records ordered by value (all inter-
vals are disjoint, hence there exists a total order). A value of type intime(α) is
represented by a corresponding record.

Unit Types
We have to distinguish between units that can be represented in a fixed amount of
space, called fixed size units, and those that cannot, variable size units. Fixed size
units are const(int), const(string), const(bool), ureal, and upoint5. Variable size
units are upoints, uline, and uregion.

Fixed size units can be represented simply in a record that has two compo-
nent records to represent the time interval and the unit function, respectively. For
example, for ureal the second record represents the quadruple (a, b, c, r).

For the representation of variable size units, we introduce subarrays. Conceptu-
ally, a subarray is just an array. Technically it consists of a reference to a (database)
array together with two indices identifying a subrange within that array. The idea
is that all units within a mapping (i.e., a sliced representation) share the same
database arrays. Variable sized units are also all represented by a record whose
first component is a time interval record. In the sequel we only describe the second
component.

A upoints unit function is stored in a subarray containing a sequence of records
representing MPoint quadruples, in lexicographic order on the quadruples. The
upoints unit is represented in a record whose second component record contains a
subarray reference and a three-dimensional bounding “box” (the number of points
can be inferred from the subarray indices).

A uline unit function is stored similarly in a subarray containing a sequence
of records representing MSeg pairs, which in turn are MPoint quadruples. Pairs
are ordered lexicographically by their two component quadruples on which again
lexicographic order applies. Again the uline unit is represented in a record whose
second component consists of a subarray reference and a bounding cube.

A uregion unit function is basically a set of MSeg values (moving segments,
trapeziums in 3D) with some additional constraints. We store these MSeg records
in the same way and order in a subarray msegments as for uline. In addition,
each record has two extra fields that allow for linking together all moving segments
within a cycle and within a face. Furthermore, uregion has two additional subarrays
mcycles and mfaces identifying cycles and faces, as in the region representation.
The second component record of a uregion unit contains the three subarrays and
a bounding cube for the unit.

For both uline and uregion one might add further summary information in the
second component record, such as the (a, b, c, r) quadruples for the time-dependent
length (for uline) or for perimeter and size (for uregion).

Sliced Representation
The data structure associated with the mapping type constructor organizes a collec-
tions of units (slices) as a whole. This data structure is parameterized by the unit
5 We omit the other const(α) types, as they are not so relevant here.

6 Access Methods and Query Processing Techniques 199

data structures. We observe that all unit data structures are records whose first
component represents a time interval, and whose second component may contain
one or more subarrays.

The mapping data structure is illustrated in Figure 6.22. It is basically a (database)
array units containing the unit records ordered by their time intervals. If the unit
type uses k subarrays, then the mapping data structure has k additional database
arrays. The database arrays mentioned in the unit subarray references will be the
database arrays provided in the mapping data structure. The main array units as
well as the k additional arrays are referenced from a single root record for the
mapping data structure. Note that the structure has the general form required for
attribute data types.

time interval function

root record

units

Fig. 6.22. A mapping data structure containing three units, for a unit type with one
subarray, such as upoints.

6.4.2 Two Example Algorithms

We proceed to briefly describe two algorithms thereby illustrating the use of the
data model described in Section 4.4 and of the data structures just defined. The
first one implements the atinstant operation on a moving region, i.e., it determines
the region value at a given time instant. The second one implements the inside
operation on a moving point and a moving region, hence it returns a moving Boolean
capturing when the point was inside the region.

Algorithm atinstant
The moving region is represented as a value of type mapping (uregion). The idea
of the algorithm is to perform binary search on the array containing the region
units to determine the unit u containing the argument time instant t. Then, a
subalgorithm is called that evaluates each moving segment within the region unit
at time t resulting in a line segment in two dimensions. These are composed to
obtain the region value returned as a result.

algorithm atinstant (mr, t)
input: a moving region mr as a value of type mapping(uregion), and an

instant t
output: a region r representing mr at instant t
method:

determine u ∈ mr such that its time interval contains t;
if u exists then return uregion atinstant(u, t) else return ∅ endif

end atinstant.

algorithm uregion atinstant(u, t)
input: a moving region unit ur (of type uregion) and an instant t
output: a region r, the function value of ur at instant t

200 Di Pasquale et al.

method:
let ur = (i, F); r := ∅;
for each mface (c,H) ∈ F do

c′ := {ι(s, t)|s ∈ c};
H ′ := ∅;
for each h ∈ H do

h′ := {ι(s, t)|s ∈ h}; H ′ := H ′ ∪ {h′}
endfor;
r := r ∪ {(c′,H ′)}

endfor;
return r

end uregion atinstant.

In the second algorithm the ι function defined in Section 4.4 is used to evaluate a
moving segment at an instant of time to get a line segment.

The time complexity of this algorithm is basically O(log n + r), where n is the
number of units in mr, and r is the size of the region returned (the number of
segments). This is so because in the first step of atinstant, the unit can be found by
binary search in O(log n) time, and because the traversal of the unit data structure
takes linear time. However, to construct a proper region data structure as described
in Section 6.4.1, one has to produce the list of halfsegments in lexicographic order,
and hence needs to sort the r result segments. This results in a time complexity of
O(log n + r log r). Note that if the region value is just needed for output (e.g., for
display on a graphics screen) then O(log n + r) is indeed sufficient.

The above algorithm works assumes instant t to be internal to the unit time
interval. For simplicity, we have ignored the problem of possibly degenerated region
values in the end points of the unit time interval. This necessitates a more complex
cleanup after finding the line segments, as sketched at the end of Section 4.4. This
problem can be avoided altogether if we spend a little more storage space, and
represent a unit with a degenerated region at one end instead by two units, one
with an open time interval, and the other with a correct region representation for
the single instant at the end.

Analogous implementations of the atinstant operation can be obtained for all
other moving data types. The first algorithm atinstant is in fact generic; one only
needs to plug in other subalgorithms for the other data types.

Algorithm inside
Here the arguments are two lists (arrays) of units, one representing a moving point,
the other a moving region. The idea is to traverse the two lists in parallel, computing
the refinement partition of the time axis on the way (see Figure 6.23).

Fig. 6.23. Two sets of time intervals on the left, their refinement partition on the right.

For each time interval i in the refinement partition, an inside algorithm is invoked
on the point and region units valid during that time interval. A set of Boolean units
results, which capture when the point was inside the region. Note that even a linearly

6 Access Methods and Query Processing Techniques 201

moving point within a single upoint unit can enter and leave the region of the region
unit several times.

algorithm inside (mp,mr)
input: a moving point mp (of type mapping(upoint)), and a moving region

mr (of type mapping(uregion))
output: a moving Boolean mb, as a value of type mapping(const(bool)),

representing when mp was inside mr
method:

let mp = {up1, . . . , upn} such that the list 〈up1, . . . , upn〉 is ordered by
time intervals;

let mr = {ur1, . . . , urm} such that the list 〈ur1, . . . , urm〉 is ordered by
time intervals;

mb := ∅;
scan the two lists 〈up1, . . . , upn〉 and 〈ur1, . . . , urm〉 in parallel, determin-
ing in each step a new refinement time interval i and from each of the
two lists either a unit up or ur, respectively, whose time interval contains
i, or undefined, if there is no unit in the respective list overlapping i:

for each refinement interval i do
if both up and ur exist then

ub:=upoint uregion inside(up, ur);
mb:=concat(mb, ub)

endif
endfor;
return mb

end inside.

The operation concat on two sets of units is essentially the union, but merges ad-
jacent intervals with the same unit value into a single unit. On the array or list
representations, as given in the mapping data structure, this can be done in con-
stant time (comparing the last unit of mb with the first unit of ub).

algorithm upoint uregion inside(up, ur)
input: a upoint unit up, and a uregion unit ur
output: a set of moving Boolean units, as a value of type

mapping(const(bool)), representing when the point of up was inside the
region of ur during their intersection time interval

method:
let up = (i′,mpo) and ur = (i′′, F) and let i = (s, e, lc, rc) be the inter-
section time interval of i′ and i′′; 6

if the 3d bounding boxes of mpo and F do not intersect then return ∅

else
determine all intersections between mpo and msegments
occurring in (the cycles of faces of) F . Each intersection is
represented as a pair (t, action) where t is the time instant of
the intersection, and action ∈ {enter, leave};7
sort intersections by time, resulting in a list 〈(t1, a1), . . . , (tk, ak)〉
if there are k intersections. Note that actions in the list must be
alternating, i.e., ai 	= ai+1;
let t0=s and tk+1=e;

6 For simplicity, the remainder of the algorithm assumes the intersection interval is closed.
It is straightforward, but lengthy, to treat the other cases.

7 The action can be determined if we store with each msegment (trapezium or triangle in
3D) a face normal vector indicating on which side is the interior of the region.

202 Di Pasquale et al.

if k=0 then
if mpo at instant s is inside F at instant s then

return {((s, e, true, true), true)}
else return {((s, e, true, true), false)}
endif

else
if a1=leave then

return {((ti, ti+1, true, true), true)|i ∈ {0, . . . , k}, i is even}
∪{((ti, ti+1, false, false), false)|i ∈ {0, . . . , k}, i is odd}

else
return {((ti, ti+1, true, true), true)|i ∈ {0, . . . , k}, i is odd}

∪{((ti, ti+1, false, false), false)|i ∈ {0, . . . , k}, i is even}
endif

endif
endif

end upoint uregion inside.

Here, the moving point mpo is a line segment in 3D that may stab some of the
moving segments of F , which are trapeziums in 3D. In the order of time, with each
intersection the moving point alternates between entering and leaving the moving
region represented in the region unit. Hence a list of Boolean units is produced
that alternates between true and false. In case no intersections are found (k = 0),
one needs to check whether at the start time of the time interval considered the
point was inside the region. This can be implemented by a well-known technique
in computational geometry, the “plumbline” algorithm, which counts how many
segments in 2D are above the point in 2D.

The first algorithm inside requires time O(n+m), where n,m are the numbers of
units in the two arguments, except for the calls to algorithm upoint uregion inside.
This second algorithm requires O(s) time for finding all intersections, with s the
number of msegments in F . Furthermore, O(k log k) time is needed to sort the k
intersections, and to return the k + 1 Boolean units. If no intersections are found,
the check whether mpo is inside F at the start time s requires O(s) time. The total
time for all calls to upoint uregion inside is O(S + K log k′), where S is the total
number of msegments in all units, K is the total number of intersections between
the moving point and faces of the moving region, and k′ is the largest number of
intersections occurring in a single pair of units. In practical cases, k′ is likely to be
a small constant, and K log k′ will be dominated by S, hence the total running time
will be O(n + m + S). If the moving point and the moving region are sufficiently
far apart, so that not even the bounding boxes intersect, then the running time is
O(n + m).

This algorithm illustrates nicely how algorithms for binary operations on moving
objects can generally be reduced to simpler algorithms on pairs of units. Again, the
first algorithm is generic; one only needs to plug in algorithms for specific operations
on pairs of units.

6.5 Benchmarking and Data Generation

6.5.1 Benchmarking

As already presented, spatio-temporal data management concerns the design and
implementation of access methods that aim at reducing query response time. The
performance of an access method depends on the setting it is subjected to, which can
be characterized by, e.g., the type of the dataset (points, rectangles, line segments),

6 Access Methods and Query Processing Techniques 203

the distribution of the dataset, the available buffering strategy, the disk page size,
and the queries.

A benchmark is composed of a dataset, an access method, and a set of queries.
The output of a benchmark is a set of values describing the performance of the ac-
cess method for the given dataset and queries. Often, the values describe separately
the I/O time and CPU time needed to compute the queries. In order to run bench-
marks and thus observe the behavior of access method under varying settings, is is
advantageous to have available a flexible benchmarking environment that enables
the experimentation with differing (i) datasets, (ii) access methods and (iii) query
types.

In order to compare different spatial join strategies, the authors of [32] propose
the exploitation of a spatial data generator that is capable of producing datasets of
rectangles in two-dimensional space with different characteristics such as rectangle
size, data distribution, and dataset size. Datasets are specified by means of so-
called models that consist of a set of parameter settings. Models can be reused and
modified to generate similar datasets. Often, the objective is to simulate real-life
datasets by synthetic ones. The comparison of spatial join techniques is achieved by
executing each algorithm on the same datasets and by collecting the results (query
response time).

The generator proposed in [32] is limited to spatial datasets. However, a spatio-
temporal dataset generator has been proposed in [89]. This generator is capable of
producing datasets consisting of moving points that simulate, e.g., the movement
of airplanes or ships.

In addition to a data generator, a benchmarking environment needs implemen-
tations of access methods and execution of queries. Based on preliminary work [33],
a benchmarking environment for spatial query processing is proposed by Gurret et
al. in [31]. The system is called BASIS (A Benchmarking Approach for Spatial Index
Structures). The application of the system for spatial join processing strategies is
studied in [73].

The main parts of the system are depicted in Figure 6.24 and are explained
below.

• Buffer Manager. It is used to manage the buffers defined for each argument file.
The user can control the buffer size.

• File Manager. It is used to manage the files stored in the system. A file can
be either a dataset file or an access method file. Each BASIS file has a specific
internal representation. External files containing datasets must be transformed
into this representation before use.

• Access Methods. Many access methods can be implemented and integrated into
the system. Currently, the system supports R-trees, R∗-trees, B-trees, and Grid-
files. However, new access methods can be implemented using the API provided.

• Query Processor. This component provides the tools needed for executing spa-
tial queries. The query processor is based on iterators. Each complex query
is decomposed into a set of more primitive queries, and each primitive query
is assigned to an iterator. The complex query is composed by combining the
iterators together as a tree. Currently, the system supports range, point, and
spatial join queries. However, one can build new iterators in order to compare
the access methods.

• Datasets: The BASIS system uses either real-life datasets (e.g., from TIGER
or Sequoia 2000) or synthetic ones. The dataset generators that have been de-
scribed previously can be used for this purpose. The only requirement is that
these datasets must be transformed to the BASIS internal representation.

204 Di Pasquale et al.

UNIX I/O system calls

File Management

Buffer Management
Dataset

Generation

Query Processing

�

�

�

��

��

��

�
�

Access Method
Support

Fig. 6.24. The main components of the BASIS architecture.

Although a lot of work has been performed for spatial benchmarking, spatio-
temporal benchmarking must also be investigated thoroughly. STAMs can be imple-
mented using BASIS, thus enabling the execution of spatio-temporal benchmarks.

6.5.2 Data Generation

In order for the user of a benchmarking environment to conduct an extensive se-
ries of experiments under a variety of conditions, one should be able to generate
a variety of datasets. A fundamental issue in the generation of synthetic spatio-
temporal datasets is the availability of a rich set of parameters that control the
data generation.

The GSTD Rationale
Theodoridis et al. proposed the GSTD (“Generate Spatio-Temporal Data”) algo-
rithm for building sets of moving point or rectangular objects [89]. For each object
o, GSTD generates tuples of the format (id, t, pl, pu, f), where id is the object iden-
tifier, t is the object timestamp, pl and pu are the lower-left and upper-right corners,
respectively, of the object spacestamp (an MBR, assuming a two-dimensional sce-
nario), and f is a flag denoting whether the spacestamp is (spatially) valid or not.

In the GSTD algorithm, three parameters are available.

• duration of an object instance; involving change of timestamps between consec-
utive instances,

• shift of an object; involving change of spatial location (in terms of center point
shift), and

• resizing of an object; involving change of an object size (only applicable to
non-point objects).

The GSTD methodology is as follows. Initially, all objects are given starting lo-
cations, such that their center points are distributed in the workspace with respect
to a chosen distribution, and their extents are either set to zero (in case of point
data) or calculated according to the desired density of the data. After the initializa-
tion phase, each new instance of an object is generated as a function of the current

6 Access Methods and Query Processing Techniques 205

instance and the values of the three parameters, which are calculated according to
a desired distribution.

In this scenario, it is possible that a coordinate may fall outside the workspace
[90]; GSTD manipulates invalid instances according to one among three alternative
approaches:

• the “radar” approach, where coordinates remain unchanged, although falling
beyond the workspace,

• the “adjustment” approach, where coordinates are adjusted (according to linear
interpolation) to fit the workspace, and

• the “toroid” approach, where the workspace is assumed to be toroidal, so that
when an object leaves at one edge of the workspace, it enters back at the “op-
posite” edge.

In the first case, the output instance is appropriately flagged (f=0 in the gen-
erated tuple) to denote its invalidity, although the subsequent instance is still cal-
culated with respect to it. In the other two cases, it is the modified instance that
is stored in the resulting data file and used for the generation of the subsequent
instance. Notice that in the “radar” approach, the number of objects present (i.e.,
valid) at each time may vary. The three alternative approaches are illustrated in
Figure 6.25. For the sake of simplicity, only centers of spacestamps are illustrated;
black (gray) locations represent valid (invalid) instances. In the example of Fig-
ure 6.25(a), the “radar” fails to detect s3, hence s3 is invalid, although the next
location s4 is based on that. Unlike for “radar”, the other two approaches always
calculate a valid instance s′3 to be stored in the data file which, in turn, is used by
GSTD for the generation of s4.

Fig. 6.25. GSTD manipulation of invalid instances.

Through the careful use of the different distributions for the above parameters,
GSTD may simulate a variety of interesting scenarios. For instance, using a ran-
dom distribution for duration and shift, all objects move equally fast (or slow) and
uniformly in the workspace. In contrast, using a skewed distribution for duration, a
relatively large number of slow objects moving randomly results.

Examples of Generated Datasets
Figure 6.26 presents six different scenarios that illustrate the GSTD capability at
simulating desired headings (scenarios 1 through 3) and speeds of objects (scenarios
4 through 6) [90]. Moreover, scenarios 1 and 2 follow the “toroid” and “radar” ap-
proach, respectively, while scenarios 3 through 6 follow the “adjustment” approach.

More specifically, scenarios 1 and 2 illustrate points with initial Gaussian spa-
tial distribution moving towards the East and Northeast, respectively. In the former
case, where the “toroid” approach was adopted, the points that leave at the right
side re-enter on the left side of the workspace. Scenario 3 illustrates an initially
skewed distribution of points and their movement towards the Northeast. Since the

206 Di Pasquale et al.

Scenario 1: points moving from the center to the East (“toroid approach”)

Scenario 2: points moving from the center to the Northeast (“radar approach”)

Scenario 3: points moving from the Southwest to the Northeast

Scenario 4: rectangles moving and resizing randomly

Scenario 5: points moving randomly at low speed

Scenario 6: points moving randomly at high speed

Fig. 6.26. Example files generated by GSTD.

“adjustment” approach is used, the points concentrate around the upper-right cor-
ner. In Scenario 4, rectangles initially located around the middle of the workspace
are moving and being resized randomly. The randomness of shift and resizing are
obtained by applying a uniform distribution to these. Finally, scenarios 5 and 6 ex-
ploit the speed of objects as a function of the GSTD input parameters. By increasing
(in absolute values) the minimum and maximum values of shift, users can generate
“faster” objects while the same behavior could be achieved by decreasing duration.
Similarly, the heading of objects can be controlled, as in scenarios 1 through 3.

6.6 Distribution and Optimization Issues

6.6.1 Distributed Indexing Techniques

A novel architectural choice for obtaining acceptable performance of spatio-temporal
DBMSs subjected to huge volumes of data and high frequencies of updates is the so-
called network computing: many powerful and inexpensive workstations connected
through a fast communication network.

Several characteristics make this environment attractive. The most important
one is that a set of sites has more computing power and resources than a single site,
independently from the equipment of a site. Moreover, the network offers a transfer

6 Access Methods and Query Processing Techniques 207

speed that is not comparable with those of magnetic or optical disks. Hence, in
this framework it is possible and realistic to efficiently implement main memory
applications using the main memory of distributed machines. This solution has
performances that are not comparable with the traditional centralized ones.

In this paradigm of Scalable Distributed Data Structures (SDDSs) data objects
are distributed among a variable number of servers and accessed by a set of clients.
Both servers and clients are distributed among the nodes of the network. Clients
and servers communicate by sending and receiving messages using point-to-point or
multicast protocols8. Servers store objects uniquely identified by a key. Every server
stores a single block (called bucket) of at most b data items, for a fixed number b.

A critical aspect of this solution is to accommodate the dynamic growth of a data
file with scalable performance. The key to scalability is to be able to dynamically
distribute data across multiple servers of a distributed system. This redistribution
of objects should take place continuously as the numbers of objects and requests in
the system grow.

An SDDS has to satisfy the following properties:

1. A file expands to new servers only if the used servers are loaded enough. This
ensures an efficient use of resources.

2. There is no distinguishable server acting as a centralized controller. This avoids
that a server becomes a bottleneck with the increase of the size of the file.

3. No operation involves the execution of an action on more than one client. This is
required since clients are autonomous but not continuously available in general.

Efficiency in SDDSs is evaluated with respect to the communication network. This
means that performance is measured in terms of the overall number of messages on
the network.

Since there is no centrally located address structure that binds keys of all objects
into one or more server locations, each client as well as each server is required to
have a local index. This index is the client’s or server’s version of the address struc-
ture and represents its viewpoint on the latest information about object locations.
Consequently, clients can make addressing errors, and mechanisms to cope with and
to recover them have to be introduced. The goal of a distributed access method is
to minimize the number of client and server address errors, as well as the number
of local index correction messages between servers and clients.

Litwin et al. were the first to define an SDDS, by proposing a distributed version
of linear hashing, namely LH* [47], supporting insert and exact search of one-
dimensional objects. Other proposals have been advanced for SDDSs supporting also
range-queries on one-dimensional objects, namely RP* [48], DRT [43], RBST [13],
BDST [20], and the distributed B+-tree [15].

To be useful for the management of spatio-temporal data, though, an SDDS
has to be able to deal with k-dimensional data. The first SDDS for managing k-
dimensional points over a network where multicast is available was proposed by
Nardelli in [53] and analyzed in [54,55]. The solution was based on a data structure,
named lazy k-d-tree, for managing a collection of k-d-trees. The solution featured
optimal algorithms for exact, partial, and range search. Distributed k-d-trees are
also able to operate in a network where multicast is not available, like in other
proposals [46].

In the SDDS model, the split of a server is the typical way to scale up when the
number of objects grows. Whenever a server s is in overflow, meaning that (due to
insertions) it manages a number of objects greater than its capacity b, half of its
objects is transferred to a new server s′. The split of a server is a local operation, and

8 Multicast is a restricted version of broadcast, where only a subset of all machines on the
network are collectively addressed.

208 Di Pasquale et al.

clients and other servers are not kept, in general, up-to-date with the evolution of
the structure. This means that it is possible for client requests to be sent to a wrong
server s because the clients local index does not contain the latest object location
information. This address error is managed by s by forwarding the received request
to the server s′ that is the pertinent server in the viewpoint of s. But s′ can be a
wrong server as well. The process then continues until the actual pertinent server s∗

is found. This server manages the request and sends also local index updates back
to the client and to the involved server (see Figure 6.27).

Client s

a)

Client sks2s1

b)
request

forwards

Informationanswer+Information

request

answer

Fig. 6.27. Requests (a) without and (b) with address errors.

Due to the impossibility of carrying over to the distributed environment both
a balancing technique and a monotonic search process, the worst case number of
messages for search in distributed search trees has a lower bound of Ω(

√
n) [44].

But in [13] a slight relaxation of these requirements allowed to introduce the first
distributed data structure with a poly-logarithmic search time for point and range
queries while supporting both the insertion and deletion of elements. This was
further improved in [20].

In a more recent proposal [21], amortized analysis of the performance of dis-
tributed searching for both one-dimensional and multi-dimensional data has been
considered. The result is the definition of an SDDS, namely DRT*, representing a
variant of DRT [43] for the one-dimensional case and a variant of the distributed
k-d-tree [53] for the multi-dimensional case. In [21] it was proved that both for
the one-dimensional and the k-dimensional case, inserts and exact searches have in
DRT* an amortized cost of O

(
log(1+m/n) n

)
messages, where m is the number of

requests and n is the total number of servers of the structure. This was obtained by
showing that the way local indices change during the evolution of the DRT* struc-
ture is similar to the structural changes happening in the set union problem [49], and
that request management and splits are strictly related to operations used in the set
union problem. Moreover, since in an SDDS m and n are related, inserts and exact
searches in DRT* have an amortized almost constant costs, namely O

(
log(1+A) n

)

messages, while a range query has an amortized cost of O
(
log(1+A) n + �k/b�

)
mes-

sages, where k is the number of items returned by the search, b is the capacity of
each server, and A = b/2. Considering that in real application environments, A is
a large value, of the order of thousands, we can assume to have a constant cost for
exact searches in practical cases. Only worst case analysis was previously considered
and the result of an almost constant cost for the amortized analysis of the general
k-dimensional case appears to be very promising in the light of the well known
difficulties in proving optimal worst case bounds for k-dimensions.

Since one of the approaches to obtain efficient indexing techniques for spatio-
temporal data is to consider time as a ’spatial’ dimension, DRT* offers a very
efficient and promising technique for efficient spatio-temporal indexing.

6 Access Methods and Query Processing Techniques 209

6.6.2 Query Optimization

Query optimization, the task of selecting a suitable strategy for executing an oper-
ation, e.g., a query, is an essential task for any DBMS. This is even more true for
a spatio-temporal DBMS, due to the huge volumes of data involved. Initial steps
towards spatio-temporal query optimization have been taken, but much research
remains to be done.

An important part of query optimization is to have available an accurate sta-
tistical model enabling concise descriptions of datasets with few parameters. This
is useful in spatio-temporal DBMSs for analyzing STAM characteristics (e.g., how
many nodes there are in a MOF-tree), which is an essential ingredient to estimate
cost and selectivity of spatio-temporal queries. This task is performance critical: for
instance, query optimizers use query result size estimates to select query execution
strategies. In the following, we briefly review some of the results achieved in recent
years with respect to query optimization for spatial data; many of these results need
to be extended to spatio-temporal data.

Concerning selectivity estimation queries, an analytical formula to compute the
selectivity of a window query as a function of the underlying data morphology and
distribution has been given in [38,74]. When formula parameters are unknown,
one typically makes uniformity and independence assumptions. Unfortunately, these
assumptions do not hold for real datasets and generally lead to pessimistic results
[17]. For one-dimensional data, some non-uniform distributions have been applied
with success, but difficulties remain for multi-dimensional data. In fact, some of
the proposed non-uniform models (e.g., the Gaussian distribution [60] or clustering
ad-hoc methods [64,12]), show their limitations for data having a different nature
from the data they were designed for.

The recent introduction of the concept of fractal dimension has allowed to better
describe the statistical properties of data, thus enhancing selectivity estimation
in several contexts. For point-data, using the fractal dimension, it is possible to
accurately estimate the selectivity of (self) spatial joins [5] and nearest-neighbor
queries [70].

Next, novel results for region data have been proposed in [65], where a realistic
statistical model was proposed: more precisely, they showed that the complementary
cumulative distribution function9 (CCDF) of the region areas follow a power law,
and this observation is used to compute the selectivity of window queries. When
the enclosed spatial objects are lines (e.g., roads, rivers, and utilities), it has been
observed that the CCDF of the lengths, obeys to an exponential law [66], and once
again this result is useful in predicting query performances [59].

Finally, a recent paper by Acharya et al. [3] presents a novel technique based
on the notion of spatial skew of rectangular data. Using this technique, the authors
partition the input rectangles into subsets and approximate each partition, thus
obtaining an accurate selectivity estimation over a broad range of spatial queries.

Concerning the analysis of SAMs, we briefly review results that relate to R-trees
[34]. An early result was related to the optimal packing for R-trees construction [38],
based on data distribution. More recently, the fractal dimension of a set of point
has been used to estimate the performance of R-trees for range queries [27]. In [88],
a model for the prediction of I/O cost of spatial queries is given, using the concept
of density of data. In [67], the node distribution of an R-tree storing region data
has been studied: the authors showed that the area distribution of the regions is
recursively propagated up to the root. Based on this observation, the authors were

9 Remember that the cumulative distribution function of f(x) : � → � is defined as
F (x) =

∫ x

−∞ f(t)dt, while the complementary cumulative distribution function is defined

as F (x) =
∫ +∞

x
f(t)dt.

210 Di Pasquale et al.

able to accurately estimate the search effort for range queries and to predict the
selectivity of a self spatial join posed on the dataset [68].

Finally, we mention another application of fractal theory to spatial data: the
estimation of the number of quadtree blocks needed to store a spatial dataset con-
sisting of a single region, once that the fractal dimension of the periphery of the
region is known [25].

6.7 Related Work

We divide the work related to access methods and query processing in spatio-
temporal databases into two categories: the ones related to general STAMs and
those related to indexing moving points.

One of the first results in STAMs is reported in [102]. Specifically, the authors
propose MR-trees. These structures are very similar to the HR-trees of [61], which
were presented earlier in the chapter. The authors also an R-tree-based structure,
termed RT-trees, which is quite different from the presented structures up to now.

RT-trees index objects in two-dimensional space and view time as complemen-
tary information that is incorporated as time intervals inside a two-dimensional
R-tree structure. More specifically, each RT-tree node contains entries of the form
(S, T, P), where S is the spatial information (i.e., the covering MBR), T is the tem-
poral information (i.e., the covering interval), and P is a pointer to either a subtree
or the detailed description of an object. Let T = [ti, tj), where i � j, lettj be the
current timestamp, and let tj+1 be the successor of tj . If an object does not change
its spatial location from tj to tj+1, then the spatial information S remains the same,
and the temporal information T is updated to T ′, by increasing the interval upper
bound, i.e., T ′=[ti, tj+1). When an object changes its spatial location, a new entry
with temporal information T=[tj+1, tj+1) is created and inserted.

The insertion strategy makes RT-trees efficient data that is mostly static. If
the number of updates is large, many entries are created and the RT-tree grows
considerably. It should also be observed that the RT-tree node construction depends
primarily on the spatial information S, while T only plays a secondary role. Hence
the RT-tree is not able to support efficiently temporal queries (e.g., “find all objects
that exist in the database within a given time interval”).

Several structures similar to MOF- and MOF+-trees have also appeared in the
literature. Cheiney at al. [18] have proposed a Region Quadtree-based structure,
called Fully Inverted Quadtrees (FI-quadtrees, for short) to index an image database.
FI-quadtrees are suitable for answering queries on image content (exact and fuzzy
search). Vassilakopoulos et al. [97] have proposed Dynamic Inverted Quadtrees (DI-
quadtrees, for short) which improved FI-quadtrees, since it requires far less disk
space, image pattern is performed more efficiently, an it is dynamic since there is no
demand for obligatory reorganization. Along the same line, lately in [87] Tourir has
proposed Multi-layer Quadtress, a new access method based on PM1-quadtrees [79]
to represent thematic layers with line segments. All these structures are designed for
use in spatial applications, however, they could be used for spatio-temporal appli-
cations equally well. In particular, the later one could be used to index trajectories.

The recent work by Zimbrao et al. [104,103] is similar to RT-trees, as they pro-
pose another R-tree variant, the structure of Temporal R-tree (TR-tree, for short),
which uses features from the MVBT structure (e.g. version split and block copy
mechanism) [7]. Although TR-trees, like the MVLQ structure, are based on the
MVBT structure, they differ since they are designed for vector data rather than
raster data. Manipulation algorithms are given in [104] and performance evaluation
results against 2+3 R-trees, HR-trees, and RT-trees can be found in [103]. In the
latter paper, it is reported that for mixed sets of queries (i.e., time instant and time
interval queries), TR-trees outperform their opponents.

6 Access Methods and Query Processing Techniques 211

In [86], a preliminary effort is descibed that aims to establish a STAM based
on k-d-trees. The proposed structure is called Multi-dimensional Persistent tree
(MP-tree) and implements the idea of partial persistence as do all the previously
examined structures. This work is limited in that the structure is not an external
balanced multi-way tree, but rather an main-memory resident unbalanced ternary
tree. However, their approach can be accommodated in other structures beyond
main-memory k-d-trees.

In [82] the Adaptive tree structure (AT structure) is put forward. This hybrid
method consists of a pair of a spatial (i.e., k-d-trees) and a temporal (i.e. ternary
trees) structure. Then, according to the demand, the method selects the data struc-
ture that is expected to perform most efficiently. In [56], the AT structure is used
to index moving points. These works assume main-memory environments.

Related work on indexing the current and future positions has concentrated
mostly on points moving in one-dimensional space. The authors in [91] use PMR-
quadtrees [79] for indexing the future linear trajectories of one-dimensional moving
point objects as line segments in (x, t)-space. The segments span the time interval
that starts at the current time and extends horizon time units into the future. A
tree expires after U time units, and a new tree must be made available for querying.
This approach introduces data replication in the index; a line segment is usually
stored in several nodes.

Kollios et al. [39] employ the dual data transformation where a line x = x(tref)+
v(t−tref) is transformed to the point (x(tref), v), enabling the use of regular spatial
indices. It is argued that indices based on k-d-trees are well suited for this problem
because these best accommodate the shapes of the (transformed) queries on the
data. Kollios et al. suggest, but do not investigate in detail, how this approach can
be extended to two and higher dimensions. They also propose two other methods
that achieve better query performance at the cost of data replication. These methods
do not seem to apply to more than one dimension.

The authors in [6] propose to use the notion of kinetic main-memory data struc-
tures for mobile objects. The idea is to schedule future events that update a data
structure so that necessary invariants hold. Agarwal et al. [1] apply these ideas to
external range trees [4]. Their approach may possibly be applicable to R-trees or
time-parameterized R-trees where events would fix MBRs, although it is unclear
how to contend with future queries that arrive in non-chronological order. Agarwal
et al. address non-chronological queries using partial persistence techniques and also
show how to combine kinetic range trees with partition trees to achieve a trade-off
between the number of kinetic events and query performance.

Within the direction of indexing the past positions of moving objects, most
approaches deal with spatial data changing discretely over time and do not take
continuous changes into account.

6.8 Conclusions

The present chapter has described a significant number of STAMs and related query
processing techniques. The chapter also examines other issues related to the phys-
ical database level, namely benchmarking, data generation, distributed indexing
techniques, and query optimization. These contributions have appeared in the lit-
erature mostly during the last five years. The proliferation and diversity of access
methods seen here stem from the very different requirements of the many practical
applications involving spatio-temporal data.

Perhaps the nature of the data supported is the most fundamental characteristic
that may be used to categorize the proposed access methods. For instance, spatial
data can be of vector or raster type. To support these different kinds of data, a

212 Di Pasquale et al.

structure based on R-trees or on quadtrees, respectively, should be selected as most
appropriate.

It appears that the access methods now available are able to contend with most
static spatio-temporal data, which is spatial data that remains unchanged for a time
interval. Much more work is necessary to support applications that involve the past
and present positions of continuously moving objects.

It is evident that formal mathematical analysis of the many new access methods
is not an easy task. More work, e.g., on parametric complexity analysis, is needed in
the area of analytical studies. Because of the shortcoming of mathematical analyses,
performance comparisons based on empirical experiments with real or synthetic
data also play a significant role in the design and evaluation of access methods and
query processing techniques. Better infrastructure for empirical studies and more
comprehensive comparisons of ranges of access methods are desirable.

For all the access methods proposed for spatio-temporal data, several manip-
ulation algorithms have been reported. Mostly, these algorithms concern standard
operations, i.e., insertion, deletion, bulk loading, and fairly simple types of queries,
such as window queries based on time intervals, space intervals, or both. There has
only been presented little work on more sophisticated algorithms, e.g., for spatio-
temporal nearest neighbor queries and spatio-temporal join. Finally, query opti-
mization largely remains a terra incognita in relation to spatio-temporal data. Very
few papers have appeared that address this topic, which should be investigated in
the future, e.g., with the objective of obtaining cost models, heuristics, and algebraic
transformation rules.

References

1. L. Arge, P. Argawal, and J. Erickson. Indexing moving points. In Proceedings 19th
ACM PODS Symposium (PODS’00), pages 175–186, 2000.

2. D.J. Abel. A B+-tree structure for large quadtrees. Computer Vision, Graphics and
Image Processing, 27(1):19–31, 1984.

3. S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial databases.
In Proceedings ACM SIGMOD Conference on Management of Data, pages 13–24, 1999.

4. L. Arge, V. Samoladas, and J.S. Vitter. On two-dimensional indexability and optimal
range search indexing. In Proceedings 19th ACM PODS Symposium (PODS’00), pages
346–357, 1999.

5. A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries using the
correlation fractal dimension. In Proceedings 21st Conference on Very Large Data Bases
(VLDB’95), pages 299–310, 1995.

6. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. In Proceedings
8th ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 747–756, 1997.

7. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically
optimal multiversion B-tree. The VLDB Journal, 5(4):264–275, 1996.

8. F.W. Burton, M.W Huntbach, and J. Kollias. Multiple generation text files using
overlapping tree structures. The Computer Journal, 28(4):414–416, 1985.

9. R. Bliujūtė, C.S. Jensen, S. Šaltenis, and G. Slivinskas. R-tree based indexing of now-
relative bitemporal data. In Proceedings 24th Conference on Very Large Data Bases
(VLDB’98), pages 345–356, 1998.

10. R. Bliujūtė, C.S. Jensen, S. Šaltenis, and G. Slivinskas. Light-weight indexing of
bitemporal data. In Proceedings 9th Conference on Statistical and Scientific Database
Management Systems (SSDBM’00), pages 125–138, 2000.

11. F.W Burton, J.G Kollias, and D.G. Matsakis. Implementation of overlapping B-trees
for time and space efficient representation of collection of similar files. The Computer
Journal, 33(3):279–280, 1990.

12. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: an efficient and
robust method for points and rectangles. In Proceedings ACM SIGMOD Conference on
Management of Data, pages 322–331, 1990.

6 Access Methods and Query Processing Techniques 213

13. F. Barillari, E. Nardelli, and M. Pepe. Fully dynamic search trees can be balanced
in O(log2 n) time. Technical Report 146, Università di L’Aquila, 1997. Accepted in
Journal of Parallel and Distributed Computing.

14. J. Bercken and B. Seeger. Query processing techniques for multiversion access meth-
ods. In Proceedings 22nd Conference on Very Large Data Bases (VLDB’96), pages
168–179, 1996.

15. Y. Breitbart and R. Vingralek. Addressing and balancing issues in distributed B+-
trees. In Proceedings 1st Workshop on Distributed Data and Structures (WDAS’98),
1998.

16. J. Clifford, C.E. Dyreson, T. Isakowitz, C.S. Jensen, and R.T. Snodgrass. On the
semantics of “now”. ACM Transactions on Database Systems, 22(2):171–214, 1997.

17. S. Christodoulakis. Implications of certain assumptions in database performance eval-
uation. ACM Transactions on Database Systems, 9(2):163–186, 1984.

18. J.P. Cheiney and A. Tourir. Fi-quadtree - a new data structure for content-oriented re-
trieval and fuzzy search. In Proceedings 2nd Symposium on Spatial Databases (SSD’91),
pages 23–32, 1991.

19. S. Dieker and R.H. Güting. Efficient handling of tuples with embedded large ob-
jects. Technical Report Informatik-236, FernUniversität Hagen, 1998. Also in Data and
Knowledge Engineering, 32:247-268, 2000.

20. A. Di Pasquale and E. Nardelli. Balanced and distributed search trees. In Proceedings
2nd Workshop on Distributed Data and Structures (WDAS’99), pages 73–90, 1999.

21. A. Di Pasquale and E. Nardelli. Distributed searching of k-dimensional data with
almost constant cost. In Proceedings 4th East European Conference on Advances in
Databases and Information Systems (ADBIS’00), volume 1884 Lecture Notes in Com-
puter Science, pages 239–250, 2000.

22. J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38:86–124, 1989.

23. C.R. Dyer. The space efficiency of quadtrees. Computer Graphics and Image Process-
ing, 19(4):335–348, 1982.

24. M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-temporal data
types: an approach to modelling and querying moving objects in databases. GeoInfor-
matica, 3(3):269–296, 1999.

25. C. Faloutsos and V. Gaede. Analysis of n-dimensional quadtrees using the Haus-
dorff fractal dimension. In Proceedings 22nd Conference on Very Large Data Bases
(VLDB’96), pages 40–50, 1996.

26. L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A data model and data
structures for moving objects databases. In Proceedings ACM SIGMOD Conference on
Management of Data, pages 319–330, 2000.

27. C. Faloutsos and I. Kamel. Beyond uniformity and independence: Analysis of R-trees
using the concept of fractal dimension. In Proceedings 13th ACM PODS Symposium
(PODS’94), pages 4–13, 1994.

28. I. Gargantini. An effective way to represent quadtrees. Communications of the ACM,
25(12):905–910, 1982.

29. R.H. Güting, T. de Ridder, and M. Schneider. Implementation of the ROSE algebra:
Efficient algorithms for realm-based spatial data types. In Proceedings 4th Symposium
on Spatial Databases (SSD’95), pages 216–239, 1995.

30. V. Gaede and O. Günther. Multidimensional access methods. ACM Computer Surveys,
30(2):170–231, 1998.

31. C. Gurret, Y. Manolopoulos, A. Papadopoulos, and P. Rigaux. BASIS: a benchmark-
ing approach for spatial index structures. In Proceedings Workshop on Spatiotemporal
Database Management (STDBM’99), pages 152–170, 1999.

32. O. Günther, V. Oria, P. Picouet, J.-M. Saglio, and M. Scholl. Benchmarking spatial
joins a la carte. In Proceedings 7th Conference on Statistical and Scientific Database
Management Systems (SSDBM’98), pages 32–41, 1998.

33. C. Gurret and P. Rigaux. An integrated platform for the evaluation of spatial query
processing strategies. In Proceedings 9th Conference on Database and Expert Systems
Applications (DEXA’98), pages 757–766, 1998.

34. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings
ACM SIGMOD Conference on Management of Data, pages 47–57, 1984.

214 Di Pasquale et al.

35. O. Günther and E. Wong. A dual approach to detect polyhedral intersections in
arbitrary dimensions. BIT, 31(1):3–14, 1991.

36. C.S. Jensen and R. Snodgrass. Semantics of time-varying information. Information
Systems, 21(4):311–352, 1996.

37. E. Kawaguchi and T. Endo. On a method of binary picture representation and its
application to data compression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2(1):27–35, 1980.

38. I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings 2nd Conference on
Information and Knowledge Management (CIKM’93), pages 490–499, 1993.

39. G. Kollios, D. Gunopoulos, and V.J. Tsotras. On indexing mobile objects. In Pro-
ceedings 18th ACM PODS Symposium (PODS’99), pages 261–272, 1999.

40. D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

41. A. Kumar, V.J. Tsotras, and C. Faloutsos. Access methods for bi-temporal databases.
In Proceedings Workshop on Temporal Databases, pages 235–254, 1995.

42. A. Kumar, V.J. Tsotras, and C. Faloutsos. Designing access methods for bi-temporal
databases. IEEE Transactions on Knowledge and Data Engineering, 10(1):1–20, 1998.

43. B. Kröll and P. Widmayer. Distributing a search tree among a growing number of
processor. In Proceedings ACM SIGMOD Conference on Management of Data, pages
265–276, 1994.

44. B. Kröll and P. Widmayer. Balanced distributed search trees do not exists. In Pro-
ceedings 4th Int. Workshop on Algorithms and Data Structures (WADS’95), volume
995 Lecture Notes in Computer Science, pages 50–61, 1995.

45. S.D. Lang and J.R. Driscoll. Improving the differential file technique via batch oper-
ations for tree structured file organizations. In Proceedings 2nd IEEE Conference on
Data Engineering (ICDE’86), pages 524–532, 1986.

46. W. Litwin and M.A. Neimat. k-RP∗
s - a high performance multi-attribute scalable

data structure. In Proceedings 4th Conference on Parallel and Distributed Information
System (PDIS’96), pages 120–131, 1996.

47. W. Litwin, M.-A. Neimat, and D.A. Schneider. LH∗ - linear hashing for distributed
files. In Proceedings ACM SIGMOD Conference on Management of Data, pages 327–
336, 1993.

48. W. Litwin, M.-A. Neimat, and D.A. Schneider. RP∗: a family of order preserving
scalable distributed data structures. In Proceedings 20th Conference on Very Large
Data Bases (VLDB’94), pages 342–353, 1994.

49. J. Van Leeuwen and R.E. Tarjan. Worst-case analysis of set union algorithms. Journal
of the ACM, 31:245–281, 1984.

50. Y. Manolopoulos and G. Kapetanakis. Overlapping B+-trees for temporal data. In
Proceedings 5th Jerusalem Conference on Information Technology (JCIT’90), pages
491–498, 1990.

51. Y. Manolopoulos, E. Nardelli, A. Papadopoulos, and G. Proietti. MOF-tree: a spa-
tial access method to manipulate multiple overlapping features. Information Systems,
22(8):465–481, 1997.

52. Y. Manolopoulos, Y. Theodoridis, and V. Tsotras. Advanced Database Indexing.
Kluwer Academic Publishers, 1999.

53. E. Nardelli. Distributed k-d trees. In Proceedings 16th Conference of Chilean Computer
Science Society (SCCC’96), pages 142–154, 1996.

54. E. Nardelli, F. Barillari, and M. Pepe. Design issues in distributed searching of multi-
dimensional data. In Proceedings 3rd International Symposium on Programming and
Systems (ISPS’97), 1997.

55. E. Nardelli, F. Barillari, and M. Pepe. Distributed searching of multi-dimensional
data: a performance evaluation study. Journal of Parallel and Distributed Computing,
49(1):111–134, 1998.

56. S. Nishida, H. Nozawa, and N. Saiwaki. Proposal of spatio-temporal indexing methods
for moving objects. In Proceedings Entity-Relationship Workshop (ER’98), pages 484–
495, 1998.

57. E. Nardelli and G. Proietti. Managing overlapping features in spatial database appli-
cations. In International Computer Symposium (ICS’94), pages 1297–1302, 1994.

6 Access Methods and Query Processing Techniques 215

58. E. Nardelli and G. Proietti. Efficient secondary memory processing of window queries
on spatial data. Information Sciences, 84:67–83, 1995.

59. E. Nardelli and G. Proietti. Size estimation of the intersection join between two
line segment datasets. In Proceedings 4rd East-European Conference on Advances in
Databases and Information Systems (ADBIS’00), pages 229–238, 2000.

60. R. Nelson and H. Samet. A population analysis of quadtrees with variable node size.
Technical Report CAR-TR-241, University of Maryland, Computer Science Depart-
ment, 1986.

61. M.A. Nascimento and J.R.O. Silva. Towards historical R-trees. In Proceedings 13th
ACM Symposium on Applied Computing (ACM-SAC’98), 1998.

62. M.A. Nascimento, J.R.O. Silva, and Y. Theodoridis. Access structures for moving
points. Technical Report TR-33, TimeCenter, 1998.

63. M.A. Nascimento, J.R.O Silva, and Y. Theodoridis. Evaluation for access structures
for discretely moving points. In Proceedings Workshop on Spatio-Temporal Database
Management (STDBM’99), pages 171–188, 1999.

64. J. Orenstein. Spatial query processing in an object-oriented database system. In
Proceedings ACM SIGMOD Conference on Management of Data, pages 326–336, 1986.

65. G. Proietti and C. Faloutsos. Accurate modeling of region data. Technical Report
98-137, Carnegie-Mellon University, 1998. Also in IEEE Transactions on Knowledge
and Data Engineering, 13(6):874-883, November/December 2001.

66. G. Proietti and C. Faloutsos. Selectivity estimation of windows queries for line segment
datasets. In Proceedings 7th Conference on Information and Knowledge Management
(CIKM’98), pages 340–347, 1998.

67. G. Proietti and C. Faloutsos. I/O complexity for range queries on region data stored
using an R-tree. In Proceedings 15th IEEE Conference on Data Engineering (ICDE’99),
pages 628–635, 1999.

68. G. Proietti and C. Faloutsos. Analysis of range queries and self spatial join queries
on real region datasets stored using an R-tree. IEEE Transactions on Knowledge and
Data Engineering, 12(5):751-762, September/October 2000.

69. D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel approaches in query processing for
moving objects. In Proceedings 26th Conference on Very Large Data Bases (VLDB’00),
pages 395–406, 2000.

70. A. Papadopoulos and Y. Manolopoulos. Performance of nearest neighbor queries in
R-trees. In Proceedings 6th International Conference on Database Theory (ICDT’97),
pages 394–408, 1997.

71. G. Proietti. The MOF+-tree: A space efficient representation of images containing
multiple overlapping features. Journal of Computing and Information, 2:42–56, 1996.

72. G. Proietti. An optimal algorithm for decomposing a window into its maximal blocks.
Acta Informatica, 36(4):257–266, 1999.

73. A. Papadopoulos, P. Rigaux, and M. Scholl. A performance evaluation of spatial
processing strategies. In Proceedings 6th Symposium on Spatial Databases (SSD’99),
pages 286–307, 1999.

74. B. Pagel, H. Six, H. Toben, and P. Widmayer. Towards an analysis of range query
performance. In Proceedings 12th ACM PODS Symposium (PODS’93), pages 214–221,
1993.

75. S. Ravada and J. Sharma. Oracle8i spatial: Experiences with extensible databases. In
Proceedings 6th Symposium on Spatial Databases (SSD’99), pages 355–359, 1999.

76. R.T. Snodgrass and T. Ahn. A taxonomy of time in databases. In Proceedings ACM
SIGMOD Conference on Management of Data, pages 236–246, 1985.

77. Y. Sagiv. Concurrent operations on B∗-trees with overtaking. Journal of Computer
and System Sciences, 3(2):275–296, 1986.

78. H. Samet. Applications of Spatial Data Structures. Addison-Wesley, 1990.

79. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

80. S. Šaltenis and C.S. Jensen. R-tree based indexing of general spatio-temporal data.
Technical Report TR-45 and Chorochronos CH-99-18, TimeCenter, 1999.

81. S. Šaltenis, C.S. Jensen, S. Leutenegger, and M. Lopez. Indexing the positions of con-
tinuously moving objects. In Proceedings ACM SIGMOD Conference on Management
of Data, pages 331–342, 2000.

216 Di Pasquale et al.

82. N. Saiwaki, A. Naka, and S. Nishida. Spatio-temporal data management for highly
interactive environment. In Proceedings 6th IEEE Workshop on Robot and Human
Communication (ROMAN’97), pages 571–576333, 1997.

83. R.T. Snodgrass. The temporal query language TQuel. ACM Transactions on Database
Systems, 12(2):247–298, 1987.

84. B. Salzberg and V. Tsotras. A comparison of access methods for time evolving data.
ACM Computing Surveys, 31(2):158–212, 1999.

85. T. Tzouramanis, Y. Manolopoulos, and N. Lorentzos. Overlapping B+-trees: an imple-
mentation of a temporal access method. Data and Knowledge Engineering, 29(3):381–
404, 1999.

86. T. Teraoka, M. Maruyama, Y. Nakamura, and S. Nishida. The MP-tree: a data struc-
ture for spatio-temporal data. In Proceedings 14th IEEE Annual Phoenix Conference
on Computers and Communications, pages 326–333, 1995.

87. A. Tourir. A multi-layer quadtree: a spatial data structure for multi-layer processing.
Geoinformatica, 2001.

88. Y. Theodoridis and T. Sellis. A model for the prediction of R-tree performance. In
Proceedings 15th ACM PODS Symposium (PODS’96), pages 161–171, 1996.

89. Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the generation of spatiotem-
poral datasets. In Proceedings 6th Symposium on Spatial Databases (SSD’99), pages
147–164, 1999.

90. Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos. Specifications for
efficient indexing in spatiotemporal databases. In Proceedings 7th Conference on Statis-
tical and Scientific Database Management Systems (SSDBM’98), pages 123–132, 1998.

91. J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree based dynamic attribute indexing
method. The Computer Journal, 41(3):185–200, 1998.

92. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping linear
quadtrees: a spatio-temporal access method. In Proceedings 6th ACM Symposium on
Advances in Geographic Information Systems (ACM-GIS’98), pages 1–7, 1998.

93. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Processing of spatio-
temporal queries in image databases. In Proceedings 3rd East-European Conference on
Advances in Databases and Information Systems (ADBIS’99), pages 85–97, 1999.

94. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Multiversion linear
quadtrees for spatio-temporal data. In Proceedings 4rd East-European Conference on
Advances in Databases and Information Systems (ADBIS’00), pages 279–292, 2000.

95. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping linear
quadtrees and window query processing in spatio-temporal databases. The Computer
Journal, 43(4):325–344, 2000.

96. Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for large mul-
timedia applications. In Proceedings 3rd IEEE Conference on Multimedia Computing
and Systems (ICMCS’96), pages 441–448, 1996.

97. M. Vassilakopoulos and Y. Manolopoulos. Dynamic inverted quadtrees - a structure
for pictorial databases. Information Systems, 20(6):483–500, 1995.

98. M. Vassilakopoulos, Y. Manolopoulos, and K. Economou. Overlapping for the repre-
sentation of similar images. Image and Vision Computing, 11(5):257–262, 1993.

99. M. Vassilakopoulos, Y. Manolopoulos, and B. Kröll. Efficiency analysis of overlapped
quadtrees. Nordic Journal of Computing, 2:70–84, 1995.

100. M. Vazirgiannis, Y. Theodoridis, and T. Sellis. Spatio-temporal composition and
indexing large multimedia applications. Multimedia Systems, 6(4):284–298, 1998.

101. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases: Issues
and solutions. In Proceedings 10th Conference on Scientific and Statistical Database
Management, pages 111–122, 1998.

102. X. Xu, J. Han, and W. Lu. RT-tree - an improved R-tree index structure for
spatiotemporal databases. In Proceedings 4th Symposium on Spatial Data Handling
(SDH’90), pages 1040–1049, 1990.

103. G. Zimbrao, J. Moreira de Souza, R. Chaomey Wo, and V. Teixeira de Almeida.
Efficient processing of spatiotemporal queries in temporal geographical information
systems. In Proceedings 4th Multiconference on Systemics, Cybernetics and Informat-
ics, 6th Conference on Information Systems, Analysis and Synthesis (SCI/ISAS’2000),
Vol.8, Part.II, pages 46–51, 2000.

6 Access Methods and Query Processing Techniques 217

104. G. Zimbrao, J. Moreira de Souza, and V. Teixeira de Almeida. The temporal R-tree.
Technical Report ES-429/99, Federal University of Rio de Janeiro, Computer Science
Department, 1999.

