
How to Swap a Failing Edge
of a Single Source Shortest Paths Tree?

Enrico Nardelli1,2, Guido Proietti1, and Peter Widmayer3

1 Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, Via
Vetoio, 67010 L’Aquila, Italy. {nardelli,proietti}@univaq.it.

2 Ist. di Analisi dei Sistemi e Informatica, CNR, V.le Manzoni 30, 00185 Roma, Italy.
3 Institut für Theoretische Informatik, ETH Zentrum, 8092 Zürich, Switzerland.

widmayer@inf.ethz.ch.

Abstract. In this paper we introduce the notion of best swap for a failing
edge of a single source shortest paths tree (SPT) S(r) rooted in r in a
weighted graph G = (V, E). Given an edge e ∈ S(r), an edge e′ ∈ E \{e}
is a swap edge if the swap tree Se/e′(r) obtained by swapping e with e′ in
S(r) is a spanning tree of G. A best swap edge for a given edge e is a swap
edge minimizing some distance functional between r and the set of nodes
disconnected from the root after the edge e is removed. A swap algorithm
with respect to some distance functional computes a best swap edge for
every edge in S(r). We show that there exist fast swap algorithms (much
faster than recomputing from scratch a new SPT) which also preserve
the functionality of the affected SPT.

1 Introduction

Survivability of a communication network means the ability of the network to
remain operational even if individual network components (such as a link or
even a node) fail. In the past few years, several survivability problems have been
studied intensely [4], mainly as a consequence of the advent of sparse fiber optic
networks. For example, a classic survivability problem is that of maintaining the
shortest path between two specified nodes in the network under the assumption
that at most k arcs or nodes along the original shortest path are removed [2].

In the extreme, a network might be designed as a spanning tree of some
underlying graph of all possible links. A sparse network, however, is more likely
to react catastrophically to failures, especially of links, since the density of traffic
through each link is very high. Therefore, it is important for sparse networks to
take survivability into account from the very beginning. Assuming that damaged
links can be restored quickly, the likelihood of having failures that overlap in time
is quite small. Therefore, it makes sense to study the problem of dealing with
the failure of each single link in the network, since we can expect that sooner or
later each link will fail. Moreover, for several practical motivations [6], whenever
? This research was partially supported by the CHOROCHRONOS TMR Program of

the European Community. The work of the third author was partially supported by
grant ”Combinatorics and Geometry” of the Swiss National Science Foundation.

T. Asano et al. (Eds.): COCOON’99, LNCS 1627, pp. 144–153, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

How to Swap a Failing Edge of a Single Source Shortest Paths Tree 145

a link fails, it is important that the number of replacing edges is small. If the
network is a spanning tree, the optimum would be replacing a link with a single
link reconnecting the network. The question is: which is the link that has to be
chosen?

Coping with a failure of a link in a network having the topology of a tree
means, on the theoretical side, to define an interesting family of problems on
graphs. Let G = (V, E) be a biconnected, undirected graph, where V is the
set of vertices and E ⊆ V × V is the set of edges, with a nonnegative real
length |e| associated with each edge e ∈ E. Let n and m denote the number of
vertices and the number of edges, respectively. Let T = (V, ET), with ET ⊆ E
be a spanning tree of G. A swap edge for an edge e = (u, v) ∈ ET is an edge
e′ = (u′, v′) ∈ E \ {e} reconnecting the two subtrees created by the removal of
e. Let in the following Se denote the set of all swap edges for e and let Te/e′ be
the tree obtained by swapping e with e′. Let F [Te/e′] be a functional of Te/e′ . A
best swap for an edge e is an edge f ∈ Se such that F [Te/f] ≤ F [Te/e′], for any
e′ ∈ Se. A swap algorithm finds a best swap for every edge e ∈ ET .

An interesting example arises when T is a minimum spanning tree (MST).
Here, the natural functional to be defined is F [Te/e′] =

∑
g∈ET

e/e′
|g|. In this

case, it is easy to see that f is a swap edge of minimum length. Moreover, Te/f

coincides with T ′, the MST of G − e = (V, E \ {e}). The fastest solution for
finding a best swap for each edge in T runs in O(m · α(m, n)) time [9], where
α(m, n) is the functional inverse of Ackermann’s function [8].

Another interesting problem arises when T is a minimum diameter spanning
tree (MDST). In this case, the natural functional is the diameter of Te/e′ , and
a best swap is a swap edge which makes the diameter of the new spanning tree
as low as possible. The problem of finding a best swap for each edge in T has
been solved by Nardelli et al. in O(n

√
m) time [7]. They also showed that the

diameter of Te/f is at most 5/2 times the diameter of T ′, the MDST of G − e.
However, many network architectures are based on a single source short-

est paths tree (SPT) rooted at a given node r, say S(r) = (V, ES) [1]. This
is especially true for centralized network, where there exists a privileged node
broadcasting messages to all the other nodes. In this case, a best swap policy
for a failing edge is not unique as for the MST and the MDST, and depends on
whatever is of interest from a network management point of view. Therefore, a
rigorous approach to the problem requires the definition of the objective func-
tional F [Se/e′(r)] to be minimized, and the complexity of finding a best swap
for every edge in S(r) will depend on the selected functional. In this paper, we
propose efficient swap algorithms for three functionals of primary importance
in SPTs. Let Sv denote the set of nodes disconnected from the root after the
removal of e = (u, v) ∈ S(r) and reconnected via the swap edge e′ (see Figure 1).

Moreover, let d(v1, v2) (resp., de/e′(v1, v2)) denote the distance between v1
and v2 in S(r) (resp., Se/e′(r)), for any v1, v2 ∈ V . The following functionals are
considered, due to their primary importance in network applications:

1. F [Se/e′(r)] =
∑
t∈Sv

de/e′(r, t);

146 E. Nardelli, G. Proietti, and P. Widmayer

6

(a) (b)

r

1 1
2

4

1

1
u

r

1 1
2

4

4

1

2 3

1

r

1 1
2

4

4

1

2 3

1

8

5
6

6

7

5
2

(c)

7

Sv

v

G S(r)

11

5

Fig. 1. (a) A weighted graph G = (V, E); (b) a SPT S(r) rooted in r; (c) edge e = (u, v)
is removed from S(r): dashed edges are swap edges.

2. F [Se/e′(r)] = max
t∈Sv

{de/e′(r, t)};

3. F [Se/e′(r)] = max
t∈Sv

{de/e′(r, t) − d(r, t)}.

These functionals focus on Sv, since we are interested in studying how the
nodes disconnected from the root are affected by the failure. The swap problems
induced by these functionals will be named the sum-problem, the height-problem
and the increase-problem, respectively. Our analysis shows that there exist fast
swap algorithms for these functionals. These algorithms are much faster than
recomputing from scratch for every edge e ∈ S(r) the SPT S′(r) rooted in r
of G − e, (we say recomputing from scratch since no dynamic solution for this
problem is known which is asymptotically better [3]). Moreover, we compare
Se/f (r) with S′(r), on the basis of the various studied functionals, showing that
with respect to the chosen functionals, Se/f (r) is worse than S′(r) only by a
small constant factor, that is, Se/f (r) is functionally similar to S′(r), in terms of
the studied functionals. Therefore, we conclude that swapping in a SPT is cheap
and effective.

The paper is organized as follows: Section 2 proposes the algorithms for
solving the problems. In Section 3, we present a comparison between the solutions
computed by the various swap algorithms and the respective exact solutions.
Finally, in Section 4, we give conclusions and list some open problems.

2 The swap algorithms

2.1 Solving the sum-problem

Remember that the sum-problem asks for a swap edge minimizing the sum of
the lengths of all the paths from r to each node in Sv. A brute force solution
will consider all the edges in Se, for any e ∈ S(r). Since each edge can be a
swap edge for O(n) edges, and the above sum can be computed in O(n) time, it
follows that such an approach will cost O(n2m) time.

We now propose a more efficient solution. A high-level description of our
algorithm is the following. We consider all the edges e = (u, v) ∈ S(r) in any
arbitrary postorder. Let us now fix such an edge (u, v). For each node t in Sv we

How to Swap a Failing Edge of a Single Source Shortest Paths Tree 147

do the following. We select a swap edge leading from r to t in G − e on a path
as short as possible, and we compute the corresponding sum of all the paths
starting from r, going to t and leading to all the nodes in Sv. To do so efficiently,
during the postorder traversal we keep track of the total length of all paths from
t that stay within Sv and of the number of these paths. Finally, we select the
minimum over these values for all nodes t in Sv and we return the corresponding
best swap edge.

Let us now present a more detailed description of the algorithm. We make
use of the following auxiliary data, for any v ∈ V (see Figure 2):

v

r

v1

v4

S(r)
v5

Sv

3

1

3

1

33

2

2

2

6
5

v3

v2

v6

v7 v8

Fig. 2. A weighted graph and a SPT S(r) (solid edges); non-tree edges are dashed. Sv =
{v, v1, v3, v2}, son(v) = {v1, v3}, size(v) = 4, down(v) = 9, up(v, v4) = 3, up(v, v7) =
14, min path(v, v) = 9, min path(v, v4) = 9, min path(v, v7) = 11, all paths(v, v) =
45, all paths(v, v4) = 57, all paths(v, v7) = 100.

– son(v): list of sons of v in S(r);
– size(v): number of nodes in Sv;
– down(v):

∑
t∈Sv

d(v, t);
– up(v, w):

∑
t∈Sw\Sv

d(v, t), where w is an ancestor of v in S(r), except r;
– min path(v, w): min

(e′=(u′,v)∈E\ES)∧(u′ 6∈Sw)
{d(r, u′) + |e′|}, where w is either v

or an ancestor of v in S(r), except r; if no such edge e′ exists, set min path(v, w) =
+∞;

The algorithm consists of the following steps:

Algorithm SUM PROBLEM(G, S(r));
Input: A weighted graph G = (V, E) and a SPT S(r) = (V, ES);

Output: ∀e = (u, v) ∈ ES , a swap edge f |
∑
t∈Sv

de/f (r, t) = min
e′∈Se

{∑
t∈Sv

de/e′(r, t)

}
.

Step 1: For each node v ∈ S(r) as considered by any postorder visit
Step 2: Compute son(v), size(v), down(v);
Step 3: For each ancestor w 6= r of v (including v) compute min path(v, w);
Step 4: For each edge e = (u, v) ∈ S(r) as considered by any postorder visit
Step 5: For each node vi ∈ son(v)
Step 6: up(vi, v) = down(v) − down(vi) + [size(v) − size(vi) − 1] · |(vi, v)|;
Step 7: For each node t ∈ Svi

Step 8: up(t, v) = up(t, vi) + [size(v) − size(vi)] · d(vi, t) + up(vi, v);
Step 9: For each node t ∈ Sv

Step 10: all paths(t, v) = down(t) + up(t, v) + min path(t, v) · size(v);
Step 11: Compute tmin, where all paths(tmin) = mint∈Sv {all paths(t, v)};
Step 12: Output the edge associated with min path(tmin, v).

148 E. Nardelli, G. Proietti, and P. Widmayer

Theorem 1. Given a graph G = (V, E) with n vertices and m edges, with pos-
itive real edge lengths and a SPT S(r) rooted in r ∈ V , the swap algorithm
SUM PROBLEM(G,S(r)) solves the sum-problem in O(n2) time and space.

Proof. The correctness of the algorithm is a consequence of the fact that it
considers exhaustively at each step all the possible best swap edges. To establish
the time and space complexity of the algorithm, let us analyze it step by step.

Concerning Step 2, we can compute son(v), size(v) and down(v) in O(n)
time and space for each node (and O(1) amortized over all the nodes). Therefore
Step 2 can be accomplished in O(n) time and space for all the nodes.

Step 3 can be accomplished in O(n) time and space for each node in the
following way: let 〈r ≡ w0, w1, . . . , wk ≡ v〉 be the path in S(r) joining r and
v. We start by bucketing the non-tree edges adjacent to v with respect to their
nearest common ancestors. This can be done in O(1) time for each edge [5], that
is, it will cost O(n) time for each node and O(m) time for all the nodes. Let
b(v, wi) be the bucket containing the edges associated with wi, i = 0, . . . , k − 1.
We initially search for the edge in b(v, w0) minimizing the path from r to v.
This can be done in time and space proportional to the number of elements
in b(v, w0). This value defines min path(v, w1). Afterwards, we repeat the step
for b(v, w1): if the found value is less than min path(v, w1), then this becomes
min path(v, w2), otherwise we set min path(v, w2) = min path(v, w1). The pro-
cess goes on iteratively, up to b(v, wk−1). In this way we spend O(n) time and
space for each node, and O(n2) time and space for all the nodes.

Step 6 can be accomplished in O(1) time for each node and in O(n) total
time for all the nodes. Steps 7-11 can be executed in O(n) time, and therefore
require a total O(n2) time for all the nodes. Finally, Step 12 costs O(1) time per
node. Therefore, the overall time and space complexity is O(n2). ut

2.2 Solving the height-problem

Remember that the height-problem asks for a swap edge minimizing the length
of a longest path starting from r and ending in Sv. The following can be proved:

Theorem 2. Given a graph G = (V, E) with n vertices and m edges, with pos-
itive real edge lengths and a SPT S(r) rooted in r ∈ V , there exists a swap
algorithm solving the height-problem in O(n

√
m) time and O(m) space.

Proof. This problem can be solved by slightly modifying the approach used in
[7], where the problem of computing all the best swaps for a minimum diameter
spanning tree has been solved. In fact, as a subroutine of the main algorithm,
the length of a longest path starting from t ∈ Sv and staying within Sv (which is
exactly what we need, once that we add de/e′(r, t)) is there computed, and this
costs O(n

√
m) time and O(m) space. ut

How to Swap a Failing Edge of a Single Source Shortest Paths Tree 149

2.3 Solving the increase-problem

Remember that the increase-problem asks for a swap edge minimizing the max-
imum increase of the distance from r to any node in Sv. The following can be
proved:

Theorem 3. Given a graph G = (V, E) with n vertices and m edges, with pos-
itive real edge lengths and a SPT S(r) rooted in r ∈ V , there exists a swap
algorithm solving the increase-problem in O(m · α(m, n)) time and space.

Proof. A best swap by definition is an edge f such that

max
t∈Sv

{de/f (r, t) − d(r, t)} = min
e′=(u′,v′)∈Se

{
max
t∈Sv

{de/e′(r, t) − d(r, t)}
}

. (1)

For any swap edge e′ and for any node t ∈ Sv we have

de/e′(r, t) − d(r, t) ≤ de/e′(r, v) + de/e′(v, t) − d(r, t) =

= de/e′(r, v) + d(v, t) − d(r, t) = de/e′(r, v) − d(r, v).

Then, (1) becomes de/f (r, v) − d(r, v) = mine′=(u′,v′)∈Se
{de/e′(r, v) − d(r, v)},

and therefore

de/f (r, v) = min
e′=(u′,v′)∈Se

{de/e′(r, v)}.

Hence, to solve the increase-problem it suffices to get a swap edge minimizing
the distance from r to v. To do that efficiently, we make use of a transmuter
[9]. A transmuter DG(T) is a directed acyclic graph that represents the set of
fundamental cycles of a graph G with respect to a spanning tree T . Basically,
DG(T) contains for each tree edge e a source node s(e), and for each non-tree edge
e′ a sink node t(e′), plus a certain number of additional nodes. The fundamental
property of a transmuter is that there is a path from a given source s(e) to a
given sink t(e′) if and only if e and e′ form a cycle in T . It is clear that in S(r),
all and only the edges belonging to Se form a cycle with e. Therefore, we can
build a transmuter having as source nodes all the edges belonging to S(r) and
as sink nodes all the non-tree edges. This can be done in O(m · α(m, n)) time
and space [9]. To associate e with its best swap f , it remains to establish the
value that has to be given to a sink node. If we associate in O(1) time with e′

the length of the (not simple) cycle in S(r) starting from r, passing through e′

and going back to r, that is

c(e′) = d(r, u′) + |e′| + d(r, v′),

we will have de/e′(r, v) = c(e′) − d(r, v) for any edge e′ ∈ Se and therefore, a
shortest cycle is associated with a best swap, and vice-versa. Finally, we can
solve the increase-problem by processing the nodes of the transmuter in reverse
topological order in O(m · α(m, n)) time. This completes the proof. ut

150 E. Nardelli, G. Proietti, and P. Widmayer

3 Swapping versus recomputing from scratch

Since swapping a single edge for a failed one is fast and involves very few changes
in the underlying network (e.g., as to routing information), it is interesting to
see how the tree obtained from swapping compares with a true SPT that does
not use the failed edge. In this section we address this task, comparing the SPT
Se/f (r), obtained by swapping the failed edge e with a best swap edge f , and a
true SPT S′(r) of G − e. While it is natural to study each of the three quality
criteria (functionals) for the algorithms that optimize the corresponding swap,
we go one step further: We also study the effect that a swap algorithm has on
the other criteria (that it does not aim at). Let d′(v1, v2) denote the distance
between v1 and v2 in S′(r). For each swap algorithm, the following ratios in the
two trees will be studied:

σ =

∑
t∈Sv

de/f (r, t)

∑
t∈Sv

d′(r, t)
; ρ =

max
t∈Sv

{de/f (r, t)}
max
t∈Sv

{d′(r, t)} ; δ =
de/f (r, v)
d′(r, v)

. (2)

In the following, h(Sv) will denote the height of Sv, that is the length of a
longest path between v and any node in Sv, while ` will denote the height of
S(r) restricted to Sv, that is the length of a longest path in S(r) between r and
any node in Sv. Similarly, `′ and `e/f will denote the heights of S′(r) and Se/f (r)
restricted to Sv. Note that h(Sv) ≤ `, h(Sv) ≤ `′ and h(Sv) ≤ `e/f .

3.1 Ratios of the swap algorithm for the sum-problem

We can prove the following result:

Theorem 4. For the swap algorithm solving the sum-problem, we have σ ≤ 3,
ρ ≤ 4 and δ unbounded. The bounds are tight.

Proof. Let f = (x, y) be a best swap edge and let f ′ = (x′, y′) be the (only)
swap edge such that f ′ ∈ S′(r) and f ′ is on the shortest path from r to v in
S′(r). Concerning σ, let `e/f and `′ denote the average length of a path from r

to t ∈ Sv in Se/f (r) and S′(r), respectively. Of course, σ = `e/f/`′. We have

`e/f ≤ `e/f ′ ≤ de/f ′(r, y′) + de/f ′(y′, v) +

∑
t∈Sv

d(v, t)

size(Sv)

and given that de/f ′(r, y′) = d′(r, y′) and de/f ′(y′, v) = d(y′, v) = d′(y′, v) (since
the old path from v to y′ was a shortest path), it follows

`e/f ≤ d′(r, v) +

∑
t∈Sv

d(v, t)

size(Sv)
.

How to Swap a Failing Edge of a Single Source Shortest Paths Tree 151

Moreover, we have that for any t ∈ Sv, d′(r, v) ≤ d′(r, t) + d(t, v) ≤ d′(r, t) +
d(r, t) ≤ 2d′(r, t), from which, for any node t in Sv, it follows that d′(r, v) ≤ 2`′.
Furthermore ∑

t∈Sv

d(v, t)

size(Sv)
≤

∑
t∈Sv

d(r, t)

size(Sv)
≤

∑
t∈Sv

d′(r, t)

size(Sv)
= `′.

Therefore, we have that `e/f ≤ 3`′, that is σ ≤ 3. The bound is tight as shown
in Figure 3a.

Concerning ρ, we have `e/f ≤ de/f (r, y)+2h(Sv) ≤ de/f (r, y)+2`′. Moreover,
de/f (r, y) ≤ de/f ′(r, y) ≤ de/f ′(r, v) + de/f ′(v, y), and given that de/f ′(r, v) =
de/f ′(r, y′) + de/f ′(y′, v) = d′(r, v) (since f ′ is on the shortest path from r to v
in S′(r), and this path contains the old shortest path from v to y′) , it follows

de/f (r, y) ≤ d′(r, v) + d(v, y) ≤ `′ + h(Sv) ≤ 2`′

that is, `e/f ≤ 4`′ or ρ ≤ 4. The bound is tight as shown in Figure 3b.
Finally, concerning δ, it is unbounded as shown in Figure 3c. ut

(a) (b) (c)

v

r ≡ u

3ε

. . .

`
0

``

distance ` from v
many nodes at

xy ε

`
the other nodes
and ` + 2ε to all
2` + 2ε to v
edges of length

r ≡ u

x

`v

ε from y

. . .

0

y
ε

` − ε
ε

many nodes at distance

r ≡ u

x

`

y

v

. . .

`

0

`
` − ε

εu′
v′ε ε

`

distance ε from y
many nodes at

the other nodes
in Sv \ {v}

` + 3ε

Fig. 3. In all the pictures, S(r) (solid edges) with the removed edge (u, v); non-tree
edges are dashed and the best swap is f = (x, y). (a) In Se/f (r), `e/f = 3` + ε, while
`′ = ` + 2ε, ε ≥ 0, since in S′(r) we have all the edges of length ` + 2ε from r to
Sv \ {v, y}; then, σ = 3. (b) The distance to node v′ in Se/f (r) (i.e., the height) is
4` − ε, while in S′(r) the height is ` + 3ε, ε ≥ 0, from which ρ = 4. (c) The distance to
node v in Se/f (r) is 2`, while in S′(r) is 3ε, ε ≥ 0, from which δ is unbounded.

3.2 Ratios of the swap algorithm for the height-problem

We can prove the following result:

Theorem 5. For the swap algorithm solving the height-problem, we have σ un-
bounded, ρ ≤ 2 and δ unbounded. The bounds are tight.

Proof. Let f and f ′ be defined as for Theorem 4. Concerning σ and δ, they are
unbounded as shown in Figure 4a. Concerning ρ, we have

`e/f ≤ `e/f ′ ≤ de/f ′(r, v) + h(Sv) = d′(r, v) + h(Sv) ≤ `′ + h(Sv) ≤ 2`′

from which ρ ≤ 2. The bound is tight as shown in Figure 4b. ut

152 E. Nardelli, G. Proietti, and P. Widmayer

(b)

`/2

x

0

ε

`/2 . . .

many nodes at
distance ε from v

r ≡ u

t
`/2

(a)

y

r ≡ ur ≡ u ≡ x

t

v ≡ y

` + ε

`
` + 2εv

0 3ε

ε

Fig. 4. In all the pictures, S(r) (solid edges) with the removed edge (u, v); non-tree
edges are dashed and the best swap is f = (x, y). (a) `e/f = ` + 2ε, while `′ = 4ε, and
the distance to node v in Se/f (r) is ` + ε, while in S′(r) is 3ε, ε ≥ 0, from which σ and
δ are unbounded. (b) The distance to node t in Se/f (r) (i.e., the height) is 2`+ ε, while
in S′(r) the height is ` + 2ε, ε ≥ 0, from which ρ = 2.

3.3 Ratios of the swap algorithm for the increase-problem

We can prove the following result:

Theorem 6. For the swap algorithm solving the increase-problem, we have σ ≤
3, ρ ≤ 2 and δ = 1. The bounds are tight.

Proof. Let f be a best swap edge and let t be any node in Sv. Concerning σ,
from the fact that f is on the shortest path in G − e from r to v, and then
Se/f (r) and S′(r) share that path, we have that de/f (r, t) ≤ de/f (r, v)+d(v, t) =
d′(r, v)+d(v, t) and with d′(r, v) ≤ d′(r, t)+d(v, t) and d(v, t) ≤ d(r, t) ≤ d′(r, t),
it follows that de/f (r, t) ≤ 3d′(r, t), that is σ ≤ 3. The bound is tight as shown
in Figure 5a.

Concerning ρ, we have that `e/f ≤ de/f (r, v) + h(Sv) = d′(r, v) + h(Sv) ≤
`′ + `′ = 2`′, that is ρ ≤ 2. The bound is tight as shown in Figure 5b.

Finally, concerning δ, since de/f (r, v) = d′(r, v), it follows that δ = 1. ut

t

v

x
x

`
`

0
r ≡ u

y ε
. . .

distance ` from v
(a)

many nodes at

edges of length
` + 2ε to all
the nodes in

`

r ≡ u

ε
t

`/2

`
v
0

(b)

edges of length
` + 2ε to all
the nodes in Sv

Sv \ {v}
`

`/2

y

Fig. 5. In all the pictures, S(r) (solid edges) with the removed edge (u, v); non-tree
edges are dashed and the best swap is f = (x, y). (a) `e/f = 3`+ε, while `′ = `+2ε, ε ≥
0, since in S′(r) we have all the edges of length ` + 2ε from r to Sv \ {v}, from which
σ = 3. (b) The distance to node t in Se/f (r) (i.e., the height) is 2` + ε, while in S′(r)
the distance to all the nodes is ` + 2ε, ε ≥ 0, from which ρ = 2.

4 Summary and conclusions

Table 1 summarizes the bounds of the various algorithms for which we have
performed comparisons between Se/f (r) and S′(r). Interestingly, the algorithm

How to Swap a Failing Edge of a Single Source Shortest Paths Tree 153

for the increase-problem, which is the cheapest in terms of time complexity,
is also the best with respect to the measures of quality we have defined. Our
interpretation is that choosing as a best swap edge that one belonging to the
new shortest path from r to v (as does the swap algorithm for the increase-
problem) produces a swap tree topologically similar to the old SPT.

Algorithm
Measure sum-problem height-problem increase-problem
Time O(n2) O(n

√
m) O(m · α(m, n))

Space O(n2) O(m) O(m · α(m, n))
σ 3 unbounded 3
ρ 4 2 2
δ unbounded unbounded 1

Table 1. Time and space complexity and ratios for the studied swap algorithms

After we introduced in this paper the notion of best swap edge for a SPT,
a large amount of work remains to be done. For example, different functionals
F [Se/e′(r)] could be defined. Another open problem is the case of managing
multiple simultaneous link failures. Clearly, it also remains to establish whether
the algorithms we have proposed are optimal or not. Finally, the case of transient
node failures deserves further studies.

Acknowledgements – The authors would like to thank Samir Khuller for helpful
discussions on the topic.

References

1. R.K. Ahuia, T.L. Magnanti and J.B Orlin. Network Flows: Theory, Algorithms and
Applications, Prentice Hall, Englewood Cliffs, NJ (1993).

2. A. Bar-Noy, S. Khuller and B. Schieber, The complexity of finding most vital arcs
and nodes, CS-TR-3539, Dept. of Computer Science, Univ. of Maryland, 1995.

3. D. Frigioni, A. Marchetti-Spaccamela and U. Nanni, Fully dynamic output
bounded single source shortest path problem, in Proc. ACM-SIAM Symposium
on Discrete Algorithms (SODA’96), 1996, 212–221.

4. M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks, in: Hand-
books in OR and MS, Vol. 7, Elsevier (1995) 617–672.

5. D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13(2) (1984) 338–355.

6. G.F. Italiano and R. Ramaswami, Maintaining spanning trees of small diameter,
Proc. 21st Int. Coll. on Automata, Languages and Programming (ICALP’94), 1994,
Lecture Notes in Computer Science, Vol. 820, 212–223.

7. E. Nardelli, G. Proietti and P.Widmayer, Finding all the best swaps of a minimum
diameter spanning tree under transient edge failures, Proc. 6th European Symp. on
Algorithms (ESA’98), 1998, Lecture Notes in Computer Science, Vol. 1461, 55–66.

8. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, Journal of
the ACM, 22 (1975) 215–225.

9. R.E. Tarjan, Applications of path compression on balanced trees, Journal of the
ACM, 26 (1979) 690–715.

	Introduction
	The swap algorithms
	Solving the sum-problem
	Solving the height-problem
	Solving the increase-problem

	Swapping versus recomputing from scratch
	Ratios of the swap algorithm for the sum-problem
	Ratios of the swap algorithm for the height-problem
	Ratios of the swap algorithm for the increase-problem

	Summary and conclusions

