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Abstract

Traditional random models for spatial two-dimensional data
proposed in literature show their limits in generating in a
satisfactory way instances of regions having a desired ag-
gregation level. This is because none of them is really ori-

ented to this aim. Rather, they are thought to model the
behaviour of the constituting elements of the spatial data

(so loosing sight of the context), or, alternatively, to model
particular data structure for their representation, underes-
timating the fact that there is in general no semantic link
between a region data and its representation. This means
from one hand, the impossibility to produce meaningful the
oretical results on time and space average performances of
different data structures used to represent spatial regions,
and, on the other hand, in an applicative context, the diffi-
culty to generate instances of spatial regions having a statis-
tical behaviour close to that of real data. To overcome this
trouble, we introduce in our paper a new random model that
provides the possibility to generate spatial regions having a
desired aggregation.

1 Introduction

Two dimensional binary region data (simply spatial regions

in the following) can be considered as art n x n array of con-
stituting elements (termed points or cells), each of which be

longs or not to the region itself. Many difFerent approaches
have been proposed in the literature to represent regions:
array representation (raster-based), run-length codes, poly-
gons (vector-based), bounding boxes, mapping to higher or
lower dimensional spaces, region quadtrees and so on; an
interested reader may refer to [6] for a survey.
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Depending from the applicative context, one representa-
tion is preferred to the others. This is because the “morphol-
ogy” of the spatial regions is strongly tied to the applica-
tion so, for example, landuse maps generally store pseudo-
rectangular regions, while topographic maps are a mixture
of geometric shapes and lines, since they have to represent
buildings and networks as the electric or the dreinage nets;
on the contrary, pebble maps appear the most of times as
the spots of a leopard. Then, the choice of the optimal rep
resentation (in the sense of the best compromise between
time and space effiaency) requires a preliminary work in
which we test the efficiency of the various approaches on a

large number of cases. From a diRerent perspective, the in-
troduction of a new data representation should be justified
exploiting its qualities with respect to the state of the art
and the CIXS of data under consideration, and this can be
made properly only performing statistics on a big enough
number of cases. This means the need to have at disposal
a random generator of spatial regions, good enough to pro-
duce instances with the morphological peculiarities of the
considered class of data. In fact, this avoids the irksome task
of finding suitable data among the large volumes of spatial
data having different and often unknown nature which can
be obtained from sites scattered around the world. We have
then to overcome the not easy problem to give a random

model describing in a satisfactory way the intrinsic ‘struc-
ture” of a spatial region. This has led in the literature to the

definition of a number of random models aiming to perform
such a task [3, 4, 5, 7, 8].

The first and most famous random model for regions is
the conventional pizel based model [4, 7], so called since it

is designed to describe regions in terms of representing im-
ages, given the large use that is made of pictures to store
two-dimensional spatial data set. In this model, each point
of the region is associated to a pixel in the image and eaeh
of these pixels is assumed to be statistically independent
from any other pixel; if p is the probability for a generic
point to belong to the region and then for a pixel to be
black, then a level-i quadrant (i.e., a quadrant of width 2:)

is completely black with probability B, = p4’, completely
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spatial region. The problem with the pixel based model is
that it assumes independence among pixels, while the real
case in spatial data sets is that a point’s value is typically
related to that of its neighbors. So, even if the probability
for a pixel to be black is high, the image tends always to be
sparse and consequently to be far from typical instances of

most of classes of spatial regions (e.g., landuse maps, ge-
graphical maps and also sets of geometrical objects). This
implies that, in spite of its usefulness in a image processing
context, the pixel based model is from a practical point of
view useless to work on spatial regions.

A very popular alternative approach that overcomes this
disadvantage is the so called tree based model [4, 5], that
aims to model the quadtree representing the spatial data
set. In this model, given a non increasing sequence ~ =

(p.,... ,/%) of m + 1 reals such that O < /3i < 1/2 but

PO = 1/2, a random quadtree Q~ of height m is built by
using a branching process, such that the quantity 2~i is the

probability for a level i node to be a leaf (and so by definition
2~o = 1, i.e., at level O all nodes are leaves with probability
1 as they should), and then G, = 1- 2~i is the probability
for a level i node to be internal. Once a node is known to be
a leaf, it can indifferently contain or not the spatial region.

This tree based model allows to generate very “compact”
quadtrees, and then regions having a high degree of aggre-
gation, also in spite of a small regions area with respect to
the background. Nevertheless, this approach has a big defi-
ciency too, residing in the fact that it models the data struc-
ture and not the spatial region! Even if it is generally true
that dense quadtrees are associated to aggregated regions,
it is not true the viceversa, that is very aggregated regions
could be represented (depending by their spatial position)
by very “bushy” quadtrees. This happens because the same
spatial data set moved inside the image space can generate
quadtrees having completely different structures [1]. In [2]
exact formulae are derived for the estimation. of the average
number of quadtrees nodes required by a rectangle aligned
with the axes. So, if we are interested in studying a partic-
ular class of spatial data sets that we know in advance to
have a high degree of aggregation, it will not be sufficient
to define a branching sequence aiming to generate compact

quadtrees, since a large class of instances will be at last cut
off. Figure 1 shows how the same region moved inside the

image space can generate completely different quadtrees.
A further problem with the tree based model is that it

creates non-condensed quadtrees (a node may have four chil-
dren that are all white or all black). This specific problem

has been overcome in [8], where an extension of the tree
based model that only creates condensed quadtrees is given.

To solve on the contrary the problem of linking the building
of the quadtree to the desired shape of the region, we should
mould the branching process on the basis of a probability
function describing the distribution of the region in the im-
age space. A first attempt in this sense has been made in
[3], but the process there suggested can be efficiently applied

only when the morphology of the region can be described by

a probabiiit y function, and this is not a very frequent case.

Then, current random models for spatial data cannot be

efficiently applied to work on spatial regions, since they do

not adequately represent, as previous examples shows, the

investigated class of data. Hence, it is clear that a novel

approach is needed. We then provide a new random model
able to take directly into account the degree of aggregation

inside a region. Starting from the traditional pixel irtdepen-
dent model, we mould the generated set of points until a
desired level of aggregation is reached. We show how the

flexibility of this new model is useful in an applicative con-
text, especially whenever it is needed to focus on subclasses
of homogeneous spatial data sets, as for example hnduse or
topographical maps.

The paper proceeds as follows: in section 2 we give nec-
essary definitions and introduce the new model; in section 3
we provide the algorithm to generate random regions using
the new approach; in section 4 we show how much flexible
the new model is, presenting experimental results; finally
section 5 contains conclusions and open problems.

2. The new model

By using the term aggregation of spatial regions, we refer
to an overall measure deriving from the adjacency- mong
the black cells composing the spatiai region. The adjacency
between two black cells can be isothetic, if it happens in the
horizontal or vertical direction, or it can be diagonal, if the
two cells touch each other in a corner. In what follows we
will not distinguish between the two kinds of adjacency, and
we will say that two cells are adjacent if they are isotethically
or diagonally adjacent, while we will call disjoint two cells

that are not adjacent. A black cell wdl be called single-point

if itdoes not have any adjacent black cell.
The question is now the foIlowing:

Given an integer k, which is the spatial region ~k
made up of k black cells to consider as the one
having the maximal degree of aggregation?

To answer to this question, we have to introduce some defi-

nitions. Given a black cell p belonging to ~k, we associate to

it an adjacency number adj(p) = b/8, where b is the number
of black cells adjacent to p. This value is minimum (i.e.,
adj(p) = O) when p is a single-point, while it is maximum

(i.e., adj(p) = 1) when P is surrounded by only black cells. It
is obvious that the greater is the sum over all the black cells
of the respective adjacency number, the more the spatial re-
gion is aggregated. We therefore introduce the aggregation
jactoc

a99(~k ) = ~ ad~(p)

vPG?k

The problem is that this number depends on the number of
bIack cells constituting the spatial region itself. To overcome
this problem, we normalize the value with respect to the
maximal obtainable value of agg(%~ ) for every spatial region
~k that is made up of k black cells. once we individuate such
a spatial region, that we indicate with ~;, we will define the
coefficient Of U(JCJrSCJdiOtI CY(~k ) of a Sprdid @OII ~k made

up of exactly k cells as:

This number expresses the normalized degree of adjacency
on each black cell belonging to the spatial region; it is clearly
0< C@) <1.

To find the normalization factor agg(~~ ) we could pr-
teed by generating all spatial regions made up of k black
cells and calculating for each one of them the respective ag-
gregation factor, but of course this is not practical, given
that the number of such spatial regions is exponential in k.

We start then by observing that the spatial region hav-
ing maximal aggregation factor has to be 8-connected. In

fact, it is obvious that if the spatial region is composed by,
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for example, two disconnected components, then the aggre-
gation factor grows joining regions, since at least one cell in
each region will have its adjacency number increased and no
cell in any region will have its adjacency number decressed.

Aftrewards, to obtain a more precise indication on the
value of agg (X:) we follow the approach used in the eu-

clidean plane to solve the xninimal perimeter problem (hav-
ing in mind that this is not a formal correspondence, given
the dramatic differences between the two frameworks). In
fact, in the euclidean plane one wants to find, among all
figures having the same area, the one which maximizes ad-
jacency among points. This is the one having minimum
perimeter, since points on the boundary are adjacent to ex-
ternal points. To find the minimum perimeter figure, an
argument based on symmetry can be used. Divide the fig-
ure in two parts with an axis such that the are= of the two

parts are equal. Take the part having a larger perimeter
(or choose arbitrarily one of them if the two perimeters are
equal), delete it and take the mirror spatial region of the re-
maining part with respect to the considered axis. The figure
thus obtained has the same area, a shortest total perimeter
and is symmetric with respect to the considered axis. Since
the axes can be chosen, in the euclidean plane, with an ar-
bitrary orientation, the minimum perimeter figure has to be

symmetric with respect to any axis cutting it into two equal
area parts, whichever is its orientation. The only figure sym-
metric with respect to an axis cutting it into two equal area
parts, independently from its orientation, is the circle.

Now, note that in our discrete framework the concept of
axis becomes that of an infinite sequence of cells each one
adjacent to its predecessor along the same adjacency direc-
tion. Thw means that there exist only four directions with
respect to which to consider the symmetry: the horizontal,
the vertical and the two 45 degrees diagonal axes. There
fore, the spatial region with maximum aggregation hiw to
be almost symmetric with respect to these four directions.
‘Almost’ is due to the fact that it is easy to see that for
some number of cells there not exist any spatial region that
is symmetric with respect to all the four directions, as the
simple example in Figure 2 shows.

It is therefore useful to consider those regular polygons
definable in our discrete framework, which have the above
discussed symmetries. The ones with smaller number of
sides are the square, the rhomb and the octagon. An example
of these figures drawn on an 8 x 8 grid is given in Figure 3.

Let us denote with k the number of black cells composing

a given region. To build a regular square S$ of side s it hw

to be:

k=s2 (1)

while to build a regular rhomb R, of side s it has to be:

k = 2s2 -2s+1 (2)

and to build a a regular octagon 0, of side s it has to be:

k=732–los+4 (3)

with the assumption that corner cells count one for the two

sides to which they belong. It is not hard to see that for
such regular figures, the aggregation factor holds:

8s2 - 12s + 4
agg(s$ ) =

8

16s2 - 32s + 16
ag9(R, ) =

8

56s2 – 108s +52
U99(OS) =

8

We can now explicit k with respect to s in formulae (l)-

(3) and substitute it in the corresponding formulae (4). We

thus obtain the aggregation factor for the three figures with

k black C&: ‘- -

aggSQUARE(k)

aggRHOMB (~)

aggOCTAQON(~)

which hold for those integer

8k–12fi+4
=

8
(5)

8k – 8d-
=

8
(6)

8k – 4~~=
8

(7)

values of k for which in formulae
(1)-(3) s is integer. N-irnely, we have that it has to be

kC{zl~CN}for(5),kG{zld= EN, zEN}

for (6), and k E {z I <~ IS N,z C N} for (7). If we

assume for continuity that for all k E N the above relations
hold, then it can be shown that:

a990cT.@o~(k) > a99R~ohf~(k) > agg=WA~E(k)

We can then conclude that the octagon has the property to
be the most aggregated figure among the three proposed.

The average adjacency number of a cell belonging to an
octagon made up of k black cells is:

-
ad~ocTAao~(k) = 8k - 48?

that tends rapidly to 1 as soon as k increases. For typi-

cal values of percentage of black in a standard image space
1024 x 1024, that is for values of k ranging from 200,000 to
500,000 (i.e., existence probabdity comprised approximately
between 0.2 and 0.5), the respective average adjacency of a
cell belonging to the octagon ranges in:

0.9999975< UggoC2-A@o~(k) <0.999999

and this means that from a practical point of view it will
be good enough simply to no~malize the aggregation factor
with respect to the number of black cells belonging to the
spatial region to obtain a meaningful meumre.

Resuming, we redefine the coefficient of aggregation a(Z~)
of a spatial region Z made up of exactly k ceils as:

(@) = w
Note that with this simplified definition of ~(~k ), no spatial

region having a finite number of cells with a(Z~ ) = 1 can be
produced. From such a definition, the following immediately
descends:

1.

2.

3.

(4)

If ~k is constituted of k single-points, then of course
each one of these cells has an adjacency number equal
to zero, and so it will be agg(Zk ) = O, from which

CS(~k) = ();

cr(~k ) has a maximum whenever ~k coincides with ~;,
that is the most aggregated spatial region for the num-
ber of black ceh constituting ~k;

a (Zk ) does not depend by the spatial position of the
spatiid region &, which is obvious, since of course
agg(~k ) does not change in consequence of transla-
tions.



3 Generating spatial regions with the new model

We are now ready to define the new random model. Given

an n x n space, a random spatial region Z is generated with

respect to two distinct parameters: o(T), representing the

coefficient of aggregation of the spatial region and p(%), rep

resenting the probability for a cell to be black. An algorith-

mic way to produce such an expected spatial region is the

following: as first step, we give the colour black to each cell

belonging to the spatial region (starting for example from

the left uppermost cell and proceeding row by row) with

probability p(~). After that, we calculate the coefficient of

aggregation of the generated spatial region and we compare

It with a(~). Then we randomly adjust the spatial region

moving its black cells in a way that aims to decrease or

to increase the coefficient of aggregation, tending towards

a(~). This can be done in the following way: we choose at

random a black cell b and a white cell w, counting the num-

ber of their adjacent black cells (without considering b as an

adjacent black cell for w in the case b and w are adjacent).
There are three possibilities:

adj(ur) < adj(b) : in this cue a swap between the cells will
reduce the coefficient of aggregation of the spatial re
gion;

affj(w) = adj(b) : in this case a swap between the ceils will

not change the coefficient of aggregation of the spatial
region;

adj(w) > adj(b) : in this case a swap between the cells will
increase the coefficient of aggregation of the spatial
region.

Note that if we are trying to produce a spatial region
with higher coefficient of aggregation and we swapped cells

only in the case adj(w) > adj(b), we could reach a point
where no cell could be further moved but the desired cr(z)
is not reached. This happens since each ‘island’ of cells

large enough behaves like an ‘attractor’ tending to assume
a stable configuration having a locally maximal degree of

aggregat@. Therefore we swap cells even if their adj acencY
number IS the same. We will stop the moulding process
as soon as the expected a(~) is reached by the coefficient of

aggregation of the generated spatial region. Note that it maY
be possible that the requested value of cr(~) is not reachable
with the number of cells produced. This may happen in two

cases:

1.

2.

the requested value of a(~) is greater than the cur-

rent one and cannot be reached given the simplified
definition of the coefficient of aggregation;

the requested value of a(~) is lower than the current
one and cannot be reached due to the limited n x n
space available to arrange the given number of cells.
Note that in a limited n x n space the cells on the cor-
ners of the image space can reach at most an adjacency
number adj(p) = 3/8, while the cells along the sides
can reach at most an adjacency number adj(p) = 5/8.
This is correct since if we gave to a cell in a corner of
the space with three adjacent black cells an adjacency
number equal to 1, this would make the coefficient of

a~gregatlon not invariant with respect to translations,
and furthermore the cells along the border of the space
would result attractive during the moulding process of
the spatial region.

However, these are only theoretical limitations, since in
an applicative context interesting values of the coefficient of
aggregation are far from to the above two bounds. In the
foliowmg, a pseudo-Pascal version of the algorithm is given:

CREATESPATIAL~EGION( RHO, ALPHA)
/“ Construct a spatial region having existence probability

RHO and coefficient of aggregation ALPHA ●/
cell array REGION[l..N][l.. N];

/* REGION contains the array of cells */

float AGG;
cell B, W; /*a cell type is a couple of coordinates ●/

begin
GENERATEREGION( RHO, REGION);

/’ create a random region where each cell
has existence probability RHO ●/

AGG:=CALCULATEAGGREGATION(REGION);
/8 determine the coefficient of aggregation

of the generated region ●/

if (ALPHA>AGG) then /“ region has to be aggregated “/

while (ALPHA>AGG) begin
repeat

B:= RANDOMJ3LACK(REGION);
/* choose at random a black cell*/

W:= RANDOM.WHITE(REGION):
/* choose at random a white cell*/

until adj(B)~adj(W);
EXCHANGE(B,W,REGION):

/*swap colour of cells B and W “/

AGG:=CALCULATEAGGREGATION(REGION);
end

else /“ region has to be disaggregate ●/

while (ALPHA<AGG) begin
repeat

B:= RANDOMJ3LACK(REGION);
W= RANDOM-WHITE(REGION):

until adj(B)~adj(W);

EXCHANGE(B,W,REGION):
AGG:=CALCULATEAGGREGATION(REGION);

end
return(REGION);

end.

Note that proceeding in this way we separate the prob-
ability for a cell to be black from the degree of aggregation.
For example, a low P(Z) matched with a high a(Z) will gen-
erate few aggregated regions inside the n x n space, while
on the contrary a high P(Z) matched with a low a(~) will .
generate a noisy spatial region.

4 Experimental results

In this section we provide a gallery of examples showing

how the generator of aggregated images works. We limit our
attention to meaningful values for the existence probability,
as derived from the experience. For graphical reasons, image
srace is limited to 64 x 64. Table 1 contains summarisiwr
p-ammeters for the examples shown in Figures 4-10:

Number ~nitid Final Number
Fig. P(Z) a(Z) ~lo~k value of value of of ●x-

a(Z) a(~) changes
cells

4 0.2 0.$3 736 0.165761 0.1300611 4192
5 0.2 0.9 2.30 0.205723 0.900000 6553

6 0.2 0.95 S60 0.194477 0.950000 19s48
7 0.5 0.8 2019 0.4s30560 0.800396 2754

a 0.5 0.95 2070 0.491425 0.950121
9

13146
0.5 0.97 2056 0.490429 0 .97000s S1597

10 o.a 0.97 3264 0.777420 0.970052 4043

‘lkble 1: Summarizing parameters far the proposed figures

Finally, Figures 11-13 contain charts showing the bound-
ary values of the coefficient of aggregation for the studied
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values of existence probability. Experiments show that the

coefficient of aggregation tends to be stable after a number

of exchanges in the order of 20,000. Note that each chart

shows with a continuous line an aggregation process on the

random spatial region and with a dwhed line a disaggrega-

tion process on the same region.

5 Conclusions

In this paper we have proposed a random model for spatial
regions that, starting from the traditional pixel indepen-
dent model, provides the possibility to mould the generated
set of points until a desired level of aggregation is reached.
We showed how the flexibtity of this new model is useful

in an applicative context, since it permits to focus on sub-
classes of spatial regions having similar spatial and quanti-
tative points’ distribution.

Future work will be focused mainly to individuate, given
a number of points, lower and upper bounds for the associate
aggregation factor.
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(a)

Figure 1: The same region can generate a dense (a) or a bushy (b) quadtree.

(a)

Figure 2: A non-symmetric spatial region.

(c)

Figure 3: A square of side 4 (a), a rhomb of side 3 (b) and an octagon of side 2 (c) on an 8 x 8 grid.

Figure 4
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Figure 5

Figure 6

Figure 7

Figure 8

Figure 9
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Figure 10
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Figure 11: Boundary conditions for P(Z) = 0.2
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Figure 12: Boundary conditions for P(T) = 0.5
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Figure 13: Boundery conditions for P(T) = 0.8
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