
Lezione 14: Agenti

Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Numerical programming

1. Given a set of predefined functions, allow the user to
choose one of them to be numerically integrated,
according to user provided interval and integration
step

2. Allow the user to input a polynomial function to be
numerically integrated, as above

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Integration: a first solution

a b

f (x)

f

Numerical question: why not
x := x + step ?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

compute_integral (f : INTEGRATABLE_FUNCTION ;
a, b, step : REAL): REAL

-- Integral of function f
-- over Interval [a, b]

local
x: REAL; i : INTEGER

do

from x :=a i :=0 until x ≥ b loop

Result := Result + f.item (x) ∗ step
i := i + 1

x := a + i ∗ step
end

end

Solution highlights and problems (see demo)
deferred class INTEGRATABLE_FUNCTION feature

item (x : REAL): REAL

…

For each function to be integrated one has to define an appropriate class,
subclass of INTEGRATABLE_FUNCTION and implementing the required feature
item which provides the current value of the function

class CALCULUS feature
compute_integral (f : INTEGRATABLE_FUNCTION ; a, b, step : REAL): REAL

…

my_calculus : CALCULUS

…

r := my_calculus.compute_integral (f_to_integrate, start, end, step)

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Solution demo

See demo…

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 5

Solution highlights and problems (2)

Need to define a wrapper class (INTEGRATABLE_FUNCTION) only to
provide the common ancestor for all functions to be integrated.

It has just one instance

It has no attributes

A better approach is to directl pass the function to be integrated as
an argument to the integration procedure

The mechanism allowing this has to be provided by the
programming language: in Eiffel it is the agent mechanism

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 6

Agents (1)
Agents are objects whose unique purpose is to describe an
operation
In Eiffel an operation is represented by a routine: a command
(procedure) or a query (function)
Given a routine r the corresponding agent is defined by the
espression

agent r
An agent can be assigned to an object (of an appropriate type to be
seen next)

a := agent r

Now we can ask a to execute routine r through a predefined
feature call (of an appropriate type: to be seen next)

a.call
like if we just wrote

r

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7

The old syntax used a.call([x,y])
Here (x,y) is indeed a tuple but

with a simpler syntax

If routine r takes two arguments then writing

a.call (x, y)

is the agent call producing the same effect as
r (x, y)

In such a way we can pass a routine r as an argument to
another routine t so that the passed routine r is known
inside t just through its formal name a

Agents (2)

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

Agents (3)

Agents provide to operations the separation between
definition of the operation (agent definition)
execution of the operation (agent call)

Useful whenever an object has to apply an operation to
other objects without prior knowledge of the specific
operation

• providing new operations to existing objects

e.g.: iterating over a list and applying an action to every
item, without knowing the action in advance

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

Application of agents

Numerical programming: Applying a calculus
operation to a function

Iteration: Applying an operation to all elements of a
data structures

Event-driven programming: Applying a program
reaction to an event (and being able to undo it)

User interaction: Being able to undo user actions

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

A first kind of agent: function (1)

Assume class
MY_CLASS

has feature
my_function (x: REAL): REAL do … end

and consider
my_object : MY_CLASS

We want to agent-ize my_object.my_function

Which is the language mechanism allowing to write
a := agent my_object.my_function ? ? ?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

The old syntax used FUNCTION (B, A, R)
where B denoted the class providing the
function passed as an agent, or its
ancestor; often ANY was used.

A first kind of agent: function (2)

In general:
which is the type of an “agent-ized” function?

Described by EIFFEL generic class
FUNCTION [A, R]

A is constrained to be a type conforming to TUPLE

R denotes the type of the result returned by the function

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

The old syntax used
FUNCTION (ANY, TUPLE[REAL], REAL)

A first kind of agent: function (3)

Declaring variable
a : FUNCTION [REAL, REAL]

allows to write (agent definition)

a := agent my_object.my_function

Then the request to the agent to execute feature call

a.call (x)
has the same effect as

my_object.my_function (x)

…but for the fact that a.call (x) does not return a result !
14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13

A first kind of agent: function (4)

Feature call of class FUNCTION [A, R] just executes the
agent-ized routine and store its result in feature
last_result
Therefore

a.call (x)

s := a.last_result
produces the same effect as

s := my_object.my_function (x)

A shortcut is to write (keeping the convention for
accessing a generic item of a structure)

s := a.item (x)
14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

Integration: agent based solution

a b

f (x)

f

Numerical question: why not
x := x + step ?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

compute_integral (f : FUNCTION [REAL, REAL]; a, b, step : REAL): REAL

-- Integral of function f
-- over Interval [a, b]

local
x: REAL; i : INTEGER

do

from x :=a i :=0 until x ≥ b loop

Result := Result + f.item (x) ∗ step
i := i + 1

x := a + i ∗ step
end

end

Agent-based solution highlight and comparison
class CALCULUS feature

compute_integral (f : FUNCTION [REAL, REAL]; a, b, step : REAL): REAL
…
my_calculus : CALCULUS
…
r := my_calculus.compute_integral (agent f_to_integrate, start, end, step)

Previous solution without agents
class CALCULUS feature

compute_integral (f : INTEGRATABLE_FUNCTION ; a, b, step : REAL): REAL
…
deferred class INTEGRATABLE_FUNCTION feature

item (x : REAL): REAL
…
my_calculus : CALCULUS
…
r := my_calculus.compute_integral (f_to_integrate, start, end, step)

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

a feature

a class instance

Agent-based solution demo

See demo…

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

One more issue (1)
Declaring variable

a : FUNCTION [REAL, REAL]

allows to write (agent definition)

a := agent my_object.my_function

and we can then ask the agent a to compute my_function
with an argument x assigned by the routine using the agent
itself

s := a.item (x)

What if we have a function with two arguments and we want
the agent to compute it with one fixed parameter p defined
by us?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

The old syntax used
FUNCTION (ANY, TUPLE[REAL, REAL], REAL)

One more issue (2)
We declare variable

a2 : FUNCTION [REAL, REAL, REAL]

and write (agent definition)

a2 := agent my_object.my_function (?, p)

and we can then ask the agent a2 to compute my_function with first
argument x assigned by the routine using the agent itself and second
argument assigned to p by the agent definition

s := a2.item (x)

and we get the same effect as
s := my_object.my_function (x, p)

If no argument is used in the agent definition, then all the routine
arguments have to be assigned by the routine using the agent
14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

Iteration examples

• Perform the following actions on a list of persons with
name and age

1. Print the name of each
2. Increment age of each by a given amount

Implementation for each is straightforward

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Iteration examples (2)

See demo…

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

Iteration examples (3)

For each problem the same “pattern” (loop-and-for-each-
do-something) is applied again and again: can we
abstract?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

Towards a generalization (1)

Assume MY_LIST_CLASS has a procedure able to iterate
over all elements

do_for_each_item (action-on-some-argument …)
from start

until after

loop
apply action-on-some-argument to current item

forth

end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

A routine passed as
argument to a

routine…

… so that it can be
executed at run-

time

The old syntax used
PROCEDURE (ANY, TUPLE[G])

Towards a generalization (2)
Then for

my_list : MY_LIST_CLASS
writing
my_list.do_for_each_item (my_procedure)
would apply my_procedure to each element in my_list

Descendants of LINEAR [G], like LINKED_LIST [G], have such a routine!
(a mechanism of this kind is often called iterator)

do_all (action : PROCEDURE [G])
from start
until after
loop

action.call (item)
forth

end
The argument passed to the agent-ized procedure is item, the
LINKED_LIST attribute denoting the current element of the list

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

The mechanism to
agent-ize a

procedure…

The old syntax used PROCEDURE (B,A)
where B denoted the class providing the
procedure passed as an agent, or its
ancestor; often ANY was used.

A second kind of agent: procedure (1)

In general:
which is the type of an “agent-ized” procedure?

Described by EIFFEL generic class
PROCEDURE [A]

A is constrained to be a type conforming to TUPLE

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

A second kind of agent: procedure (2)

Declaring object
a : PROCEDURE [G]

allows to attach to a the object (agent definition)

agent my_object.my_procedure
either by assignment (as seen for agent-ized functions) or
by parameter passing.

Then the request to the agent to execute feature call

a.call (p)
has exactly the same effect as

my_object.my_procedure (p)

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

A second kind of agent: procedure (3)

Then for
my_list : LINKED_LIST [PERSON]

writing
my_list.do_all (my_procedure)

would apply my_procedure to each element in my_list , as if
it were written

from start

until after

loop
my_procedure (item)
forth

end
14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

Iteration solution with agents: first approach

How to use this with
my_list : LINKED_LIST [PERSON]

so that the iterator
my_list.do_all (…)

has the required behavior?

Which is the my_procedure to be passed in an agent form
so as to print or increment_age ?

It has to be a procedure such that the current item of the
list (an instance of PERSON) is its argument

And which is the target that has to call such a procedure?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

Iteration solution with agents: first approach

The answer is in the syntax of agent-ized procedure and do_all

my_list.do_all (agent my_object.my_procedure)

my_procedure has to be such that the current item of my_list
(which is an instance of PERSON) is its argument

my_object cannot be a specific instance of PERSON since
my_procedure will have to be applied to each item of the list
(and this is taken care by do_all)

Hence my_object has to be the current object (Current), which
has to have a procedure able to call the appropriate procedure
of PERSON

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

Iteration examples

Given my_list : LINKED_LIST [PERSON]

we can write my_list.do_all (…) so as to implement:

• Perform the following actions on a list of persons
with name and age

1. Print the name of each
2. Increment age of each by a given amount

The argument of action (print, increment_age) is the current
person, possibly with parameter(s) (amount)

But how to pass the proper argument?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Iteration examples with agents

1. Perform the following operations on a list of persons
with name and age

1. Print the name of each
2. Increment age of each by a given amount

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Iteration example solution (1st approach)

See demo…

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

Agent-based solution (1st approach) highlight
Previous solution for integration was
class CALCULUS feature

integral (f : FUNCTION [REAL, REAL]; a, b, step : REAL): REAL

…

my_calculus : CALCULUS

…

r := my_calculus.integral (agent f_to_integrate, start, end, step)

In this case solution is
my_list.do_all (agent print_person)
…

feature print_person (p : PERSON) do p.print_me end
…

class PERSON feature
print_me do print (‘my name is :’ , name); … end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33

same as agent print_person (?)

a feature

Feature needed to use
the PERSON feature

print_me

Feature needed to use
the PERSON feature

set_age

Agent-based solution (1st approach) highlight
Also for case 2. the solution has the same structure

my_list.do_all (agent increment_age (?, delta_age))
…

feature increment_age (p : PERSON ; delta_age: INTEGER)
do p.set_age (age + delta_age) end

…

class PERSON feature
p.set_age (new_age: INTEGER) do age := new_age; … end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34

Keeping arguments open

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35

An agent can have both “closed” and “open” arguments

closed arguments are set at time of agent definition; open arguments are set
when requesting the agent to execute feature call

To keep an argument open, just replace it by a question mark:

u := agent a0.f (a1, a2, a3) -- All closed

w := agent a0.f (a1, a2, ?)

x := agent a0.f (a1, ? , a3)

y := agent a0.f (a1, ?, ?)

z := agent a0.f (?, ?, ?) -- All open. Same as z := agent a0.f

Calling an agent with open/closed arguments

f (x1 : T1 ; x2 : T2 ; x3 : T3)

a1 : T1 ; a2 : T2 ; a3 : T3

u := agent a0.f (a1, a2, a3)

v := agent a0.f (a1, a2, ?)

w := agent a0.f (a1, ? , a3)

x := agent a0.f (a1, ?, ?)

y := agent a0.f (?, ?, ?)

z := agent a0.f

u.call ([])

v.call ([a3])

w.call ([a2])

x.call ([a2, a3])

y.call ([a1, a2, a3])

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 36

z.call ([a1, a2, a3])

Agent-based solution (1st approach) discussion
my_list.do_all (agent print_person)
…
feature print_person (p : PERSON) do p.print_me end
…
class PERSON feature

print_me do print (‘my name is :’ , name); … end
--
my_list.do_all (agent increment_age (?, delta_age))
…
feature increment_age (p : PERSON ; delta_age: INTEGER)

do p.set_age (age + delta_age) end
…
class PERSON feature

p.set_age (new_age: INTEGER) do age := new_age); … end

In both cases we had to wrap the feature defined on PERSON (print_me, set_age) in a
new feature (defined at the same level of the object on which iterator is applied) to be
passed as an agent to the iterator

Can we avoid this wrapping and pass directly the original feature?

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37

Avoid wrapping procedures
We need a mechanism to pass, as an agent, a procedure defined
for instances of a class G without agent-izing it by means of
making reference to a specific instance x of G

(remember the agent definition is agent my_object.my_procedure)

Otherwise we cannot use that agent-ized procedure for arbitrary
instances of G

Given procedure my_procedure defined in class G, the agent
definition

agent {G }.my_procedure
does the job.

It is called agent definition with open target

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 38

Iteration examples with agents

• Perform the following operations on a list of persons
with name and age

1. Print the name of each
2. Increment age of each by a given amount

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 39

Agent-based solution (2nd approach) discussion (1)
my_list.do_all (agent {PERSON }.print_me)
…

class PERSON feature
print_me
do print (‘my name is :’ , name); … end

Previous solution (1st approach)
my_list.do_all (agent print_person)
…

feature print_person (p : PERSON) do p.print_me end
…

class PERSON feature
print_me
do print (‘my name is :’ , name); … end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40

Agent mechanism
allows to reuse

print_me (an existing
procedure of

PERSON) without
having to wrap it

Agent-based solution (2nd approach) discussion (2)
my_list.do_all (agent {PERSON }.increment_age (delta_age))
…

class PERSON feature
increment_age (delta_age: INTEGER)

do age := age + delta_age end

Previous solution (1st approach)
my_list.do_all (agent increment_age (?, delta_age))
…

feature increment_age (p : PERSON ; delta_age: INTEGER)
do p.set_age (age + delta_age) end

…

class PERSON feature
set_age (new_age: INTEGER)

do age := new_age; … end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 41

Agent mechanism allows
to reuse set_age (an

existing procedure of
PERSON)

Here wrapping is
required because

set_age is not exactly
the procedure we

need

Agent-based solution (2nd approach) discussion (3)

Previous solution (1st approach)

my_list.do_all (agent increment_age (?, delta_age))
…

feature increment_age (p : PERSON ; delta_age: INTEGER)
do p.set_age (age + delta_age) end

…

class PERSON feature
set_age (new_age: INTEGER)

do age := new_age; … end

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

But if we cannot
modify the code of
the class PERSON

then we have to use
the 1st approach

42

Agents with open/closed target/arguments

x.a_feature (agent y.f) -- closed/open
x.a_feature (agent y.f (?, ?)) -- closed/open
x.a_feature (agent y.f (a, ?)) -- closed/partial
x.a_feature (agent y.f (a, b)) -- closed/closed

x.an_iterator (agent {C }.f) -- open/open
x.an_iterator (agent {C }.f (?, ?)) -- open/open
x.an_iterator (agent {C }.f (a, ?)) -- open/partial
x.an_iterator (agent {C }.f (a, b)) -- open/closed

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 43

Kernel library classes representing agents

call

last_result

item

*
ROUTINE

PROCEDURE
+

FUNCTION
+

PREDICATE
+

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 44

Further iterator routines in TRAVERSABLE

Other interesting iterators defined
in TRAVERSABLE [G], parent of LINEAR [G]

Execute on all elements satisfying a given condition
do_if (action : PROCEDURE [G];

test : PREDICATE [G])
where PREDICATE [G] is a
subclass of FUNCTION [G, BOOLEAN]

Test whether a property hold for all elements
for_all (test : PREDICATE [G])

Test whether a property hold for at least one element
there_exists (test : PREDICATE [G])

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 45

Agent-like mechanisms in other languages

In non-O-O languages, e.g. C and Matlab, there is no notion of agent, but you
can pass a routine as argument to another routine, as in
integral (& f, a, b)

where f is the function to integrate. & f (C notation for function pointers, one
among many possible ones) is a way to refer to the function f. (We need some
such syntax because just `f ’ could be a function call.)

Agents (or delegates in C# or closures in functional languages) provide a higher-
level, more abstract and safer technique by wrapping the routine into an object
with all the associated properties.

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 46

Iteration examples

1. Perform the following actions on a list of persons
with name and age

1. Print the name of each
2. Increment age of each by a given amount

2. Perform the following actions on a list of persons
with name and salary

1. Increment by a given amount each salary which is
below a given level

Implementation for each is straightforward

14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 47

Iteration examples
Given my_list : LINKED_LIST [PERSON]
we can write my_list.do_all (…) so as to implement:

• Perform the following actions on a list of persons with name
and age

 Print the name of each
 Increment age of each by a given amount

The argument of action (print, increment_age) is the current person, possibly
with parameter(s) (amount)

• Perform the following actions on a list of persons with name
and salary

 Increment by a given amount each salary which is below a given
level

The argument of action (increment_salary) is the current person, possibly with
parameter(s) (amount, level)

But how to pass the proper argument?
14-AGENTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 48

