
Lezione 13: Multiple inheritance

Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Combining abstractions

Given the classes

 TRAIN_CAR, RESTAURANT

how would you implement a DINER?

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 2

Examples of multiple inheritance

Combining separate abstractions:

 Restaurant, train car
 Calculator, watch
 Home, vehicle
 Taxi, bus

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 3

Warning

Forget all you have heard!
Multiple inheritance is not the works of the devil
Multiple inheritance is not bad for your teeth

(Even though Microsoft Word apparently did not like it:

)

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 4

An example of repeated inheritance

A class with two or more
parents sharing a same grand-
parent.

Examples that come to mind:
ASSISTANT inherits from
TEACHER and STUDENT.

TEACHER STUDENT

ASSISTANT

UNIVERSITY
_MEMBER id

This is a case of repeated inheritance

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 5

repeated and multiple inheritance
Multiple inheritance from B and C
Repeated inheritance from A
(In Eiffel is found often; why?)

CB

D

ANY

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 6

A

A

D

This form of repeated
inheritance cannot
happen in Eiffel

Another warning

The language part of this lecture are Eiffel-oriented

Java and C# mechanisms (single inheritance from
classes, multiple inheritance from interfaces) will also be
discussed

C++ also has multiple inheritance, but it will not be
described

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 7

Multiple inheritance: Composite figures

A composite figure

Simple figures

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 8

Defining the notion of composite figure

COMPOSITE_FIGURE inherits different features from
more than one parent: this is multiple inheritance

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 9

COMPOSITE_
FIGURE

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE
LIST

[FIGURE]

In the overall structure

COMPOSITE_
FIGURE

FIGURE
LIST

[FIGURE]

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE

TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 10

display*
move*
rotate*

figs: LIST [FIGURE]
…

fromfigs.start until figs.after loop

figs.item.display

figs.forth

end

Working with polymorphic data structures

Dynamic binding

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)
13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 11

(from 10-EREDITARIETA’)

figs: LIST [FIGURE]
…

across figs as c loop

c item display

end

Working with polymorphic data structures

Dynamic binding

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)
13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 12

(from 10-EREDITARIETA’)

Definition (Polymorphism, adapted)

An attachment (assignment or argument passing) is
polymorphic if its target entity and source
expression have different types.

An entity or expression is polymorphic if – as a
result of polymorphic attachments – it may at runtime
become attached to objects of different types.

A container data structure is polymorphic if it may
contain references to objects of different types.

Polymorphism is the existence of these possibilities.

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 13

(from 10-EREDITARIETA’)

A composite figure as a list

Cursor

item

forth

after

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 14

Requires dynamic
binding

class COMPOSITE_FIGURE inherit
FIGURE
LIST [FIGURE]

feature
display

-- Display each constituent figure in turn.
do

from start until after loop
item.display

forth
end

end
... Similarly for move, rotate etc. ...

end

Composite figures

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 15

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
>, >=,
…

+, –,
*, / …

(total order
relation)

(commutative
ring)

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 16

How do we write COMPARABLE?

deferred class COMPARABLE [G] feature

end

less alias "<" (x : COMPARABLE [G]): BOOLEAN
deferred
end

less_equal alias "<=" (x : COMPARABLE [G]): BOOLEAN
do

Result := (Current < x or (Current = x))
end

greater alias ">" (x : COMPARABLE [G]): BOOLEAN
do Result := (x < Current) end

greater_equal alias ">=" (x : COMPARABLE [G]): BOOLEAN
do Result := (x <= Current) end

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 17

Java and .NET and C# solution

Single inheritance only for classes

Multiple inheritance from interfaces

An interface is like a fully deferred class, with no
implementations (do clauses), no attributes (and also no
contracts): it’s only specification

A class may inherit from:
 At most one class
 Any number of interfaces

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 18

Deferred classes vs Java interfaces (1)

• Java interfaces are “entirely deferred”
• Only method (routine) definitions
• No method implementations
• No attributes
• No contracts

• Eiffel deferred classes can include effective features,
possibly relying on deferred ones, as in the
COMPARABLE example

• Flexible mechanism to implement abstractions
progressively

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 19

Deferred classes vs Java interfaces (2)

Java requires that every descendant of an interface must
provide implementations of all interface’s features.

To be able to flexibly model reality we need the full
spectrum from fully abstract (i.e., fully deferred) to fully
implemented classes provided by Eiffel

Multiple inheritance is here to help us combine
abstractions

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 20

Which ?

ff A B

f

Resolving name clashes

rename f as f_A

C f_A,

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 21

class C inherit
A rename f as f_A end
B

…

Consequences of renaming (1)

a1 : A
b1 : B
c1 : C
...

c1 f

c1 f_A

a1 f

a1 f_A

b1 f

b1 f_A

rename f as f_A

C

f A B

f_A, f

f

OK

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 22

Invalid!

OK

OK

OK

Invalid!

Version from A

Version from B

Version from A

Version from B

In class C

Consequences of renaming (2)

a1 : A
b1 : B
c1 : C
...
a1 := c1
c1 f

c1 f_A

a1 f

a1 f_A

b1 f

b1 f_A

rename f as f_A

C

f A B

f_A, f

f

OK

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 23

Invalid!

OK

OK

OK

Invalid!

Version from A

Version from B

Version from A, not from B !

Version from B

In class C

Instances of C
do not inherit

name f from A

Renaming and redefinition
Renaming keeps the feature behavior and changes its name

Redefinition changes the feature behavior and keeps its
name

It is possible to combine both:

class B
inherit

A
rename f as f_A
redefine f_A
end

…

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 24

An application of renaming

Provide locally better adapted terminology.
Example: child (TREE); subwindow (WINDOW)

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 25

‘‘Graphical’’ features: height, width, change_height, change_width, xpos, ypos,
move...

‘‘Hierarchical’’ features: superwindow, subwindows, change_subwindow,
add_subwindow...

class WINDOW inherit
RECTANGLE
TREE [WINDOW]

rename
parent as superwindow,
children as subwindows,
add_child as add_subwindow
…

end
feature

...
end

Renaming to improve feature terminology

BUT: see style rules
about uniformity of

feature names

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 26

Are all name clashes bad?

A name clash must be removed unless it is:
 Under repeated inheritance (i.e. not a real clash), OR
 All inherited features with the same name are such that

• They all have compatible signatures
• At most one of them is effective

Semantics of the latter case:
 All features are merged into a single one
 If there is an effective feature, its implementation is the one

which is used

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 27

Feature merging

A B C

D

f +f * f *

* Deferred
+ Effective

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 28

Feature merging: case of effective features

A B C

D

f +f + f +

* Deferred
+ Effective
-- Undefine

f --
f --

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 29

class
D

inherit
A

undefine f end

B
undefine f end

C

feature
...

end

Feature merging: case of different names (1)

A B C

D

g * f *

* Deferred
+ Effective
-- Undefine

Renaming

g f h f

class
D

inherit
A

rename
g as f

end

B

C
rename

h as f
end

feature
...

end

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 30

Desired name

h +

Desired implementation

Feature merging: case of different names (2)

A B C

D

f + g +

f --

f --

class
D

inherit
A

undefine f end

B
rename

g as f
undefine f
end

C
rename

h as f
end

feature ... end

h f

g f

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 31

Desired name

h +
Desired implementation

As if f were deferred
in the parent

f * g *

Feature call after merging

a1: A b1: B c1: C d1: D
a1.g b1.f c1.h d1.f

d1.g
d1.h

A B C

D

g
+

f
+

h
+

g f h f
f

--
f

--

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 32

Invalid!

OKOKOKOK

Invalid!

In class D

Undefining is like
making the feature
deferred in parent

Undefining is like
making the feature
deferred in parent

Feature merging: case of equal names (1)

D

f + g+ h+ k+

g --f f_B

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 33

B C f + g+ h+ k+

k ++
k k_Ch --

f (from C) f_B g (from B) h (from C) k (from D) k_C

In the root class b1: B d1: D
d1.f
d1.g
d1.h
d1.k

C

B

C

D

Then b1 := d1
b1.f
b1.g
b1.h
b1.k

B

B

C

D

Dynamic binding
cannot be applied
since name f has
been removed in

inheritance toward D

Feature merging: case of equal names (2)

D

f * g+ h+ k+

g --

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 34

B C f + g+ h+ k+

k ++ k --
h --

f (from C) g (from B) h (from C) k (from D)

In the root class b1: B d1: D
b1.f d1.f
b1.g d1.g
b1.h d1.h
b1.k d1.k

C

B

C

D

Then b1 := d1
b1.f
b1.g
b1.h
b1.k

C

B

C

D

Invalid!

B

B

B

Name f is
inherited from B

and dynamic
binding links it to
implementation

from C

Sharing and replication

Features such as f, not renamed along any of the
inheritance paths, will be shared.
Features such as g, inherited under different names, will
be replicated: there are two names to execute the same
action

A

B C

D

f
g

g g_b g g_c

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 35

The need for select

A potential ambiguity arises because of polymorphism
and dynamic binding:
a1 : ANY; t1 : LIST; d1 : D
…
a1.copy (…)
t1.copy (…)
d1.copy (…)
a1 := t1
a1.copy (…)

t1 := d1
t1.copy (…)

a1 := d1
a1.copy (…)

copy ++

is_equal ++

copy copy_C
is_equal is_equal_C

CLIST

D

copy
is_equalANY

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 36

this renaming is
mandatory to avoid
name clash

ANY version

LIST or ANY version ??

LIST version

LIST version

LIST version

LIST version

The run-time cannot decide !

When the need arises?
• This happens whenever, through the combination of

renaming (and possibly redefinition) in different
inheritance paths, in a class X there is more than one
version of an inherited feature f (repeatedly inherited
feature)

• These versions will have different names (due to
renaming) and might have different behaviours (due to
redefinition)

• If a variable of the ancestor class which has provided the
original version of the feature get assigned a variable of
class X neither the compiler nor the runtime can decide
which version of feature f should be used

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 37

class
D

inherit
LIST [T]

select
copy,
is_equal

end

C
rename

copy as copy_C,
is_equal as is_equal_C,

...
end

Removing the ambiguity

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 38

The version from LIST is
used under dynamic

binding in the case of a
polymorphic target with a

possible ambiguity

Order for redeclaration clauses (standard specif.)
class

AN_HEIR

inherit
A_PARENT

undefine
feature_A, feature_B, …

redefine
feature_C, feature_D, …

rename
feature_C, feature_D, …

export
{class_X, class_Y, … } feature_A, feature_B, …
{class_W, class_Z, … } feature_C, feature_D, …

select
feature_C, feature_D, …

end

end

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 39

change implementation

give a new name

change the visibility status

selection for dynamic binding

make deferred

Prescribed in ECMA, not yet implemented!
(checked May 2021)

Order for redeclaration clauses (actual)
class

AN_HEIR

inherit
A_PARENT

rename
feature_C, feature_D, …

export
{class_X, class_Y, … } feature_A, feature_B, …
{class_W, class_Z, … } feature_C, feature_D, …

undefine
feature_A, feature_B, …

redefine
feature_C, feature_D, …

select
feature_C, feature_D, …

end

end

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 40

change implementation

give a new name

change the visibility status

selection for dynamic binding

make deferred

The one actually implemented in Eiffel
(checked May 2021)

What we have seen

A number of games one can play with inheritance:
 Multiple inheritance
 Feature merging
 Repeated inheritance

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 41

ATTENZIONE

BISOGNA STUDIARE E PRESENTARE LA CAT-CALL
IL TUTORIAL NON DICE MOLTO
http://docs.eiffel.com/book/method/et-inheritance
VEDERE DISCUSSIONE NEL LIBRO DI MEYER OBJECT-
ORIENTED SOFTWARE CONSTRUCTION 2ED DAL
PARAGRAFO 17.3 (p.) IN AVANTI, IN PARTICOLARE 17.5 E
17.9

IL PROBLEMA È CHE QUANDO NELL'AMBIENTE SI TESTA
PER CATCALL MARCA TUTTO COME CATCALL. HO
FATTO (mag-21) UN NUOVO PROGETTO catcall-nuovo PER
VEDERE LA SITUAZIONE ED HO RISTUDIATO UN PO'

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 42

CATcalls = Changed Availability or Type calls

Changed Availability or Type calls
Flexibility of inheritance might cause problems
sometimes, when features are changed in descendants

 Changed Availability: a descendant has changed the export
status of a feature

 Changed Type: a descendant has changed the type of an
argument of a feature

… and polymorphic attachment causes a violation in the
access or the type

Let's see an example

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 43

CATcall example
class ANIMAL
feature

eat (a_food: FOOD)
deferred
end

class COW inherit ANIMAL redefine eat end
feature

eat (a_food: GRASS)
…
end

class LION inherit ANIMAL redefine eat end
feature

eat (a_food: STEAK)
…
end

my_animal: ANIMAL
my_food: FOOD

…
my_animal.eat (my_food)

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 44

FOOD

STEAKGRASS

ANIMAL

LIONCOW

A correct polymorphic
feature call which could
cause runtime problems:

if my_animal is a LION
and my_food is a GRASS

Non-conforming inheritance

class
ARRAYED_LIST [G]

inherit
LIST [G]

ARRAY [G]

Instances of ARRAYED_LIST can use all ARRAY features
but do NOT conform to ARRAY

inherit {NONE }

ARRAYLIST

ARRAYED_LIST

Non-conforming
inheritance

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 45

Non-conforming
inheritance

Allow to use a different
implementation for a
feature, maybe more

efficient

In Eiffel ARRAYED_LIST
non è fatta in questa
modo ha ereditarietà

multipla normale

Semantics of non-conforming inheritance

my_arrayed_list : ARRAYED_LIST [STRING]
my_list : LIST [STRING]
my_array : ARRAY [STRING]

…
my_list := my_arrayed_list
…
my_array := my_arrayed_list

See EiffelStudio tutorial
http://docs.eiffel.com/book/method/et-inheritance

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 46

Invalid!

OK

A common Eiffel library idiom

class ARRAYED_LIST [G] inherit
LIST [G]
ARRAY [G]

feature
… Implement LIST features using ARRAY features …

end

For example:
i_th (i : INTEGER): G

-- Element of index `i’.
do

Result := item (i)
end

Feature of ARRAY

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 47

Could use delegation instead

class ARRAYED_LIST [G] inherit
LIST [G]

feature
representant : ARRAY [G]
… Implement LIST features using ARRAY features

applied to representant …

end For example:
i_th (i : INTEGER): G

-- Element of index `i’.
do

Result := representant  item (i)
end

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 48

Composite figures

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 49

13-EREDITARIETA'-MULTIPLA Rev. 2.4.1 (2021-22) by Enrico Nardelli (based on touch.ethz.ch) 50

