
Lezione 12: «Container» data structures

Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 2

Topics for this lecture

Containers and genericity

Container operations

Assessing algorithm performance: Big-O notation

Important Data Structures:

 Tuples

 Lists

 Arrays

 Hash tables

 Stacks and queues

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 3

Container data structures

Contain other objects (“items”)

Various container implementations, as studied next,
determine:

 Which of these operations are available
 Their speed
 The storage requirements

This lecture is just an intro; “Data Structures and
Algorithms” is a large and important section of
Informatics

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 4

Container data structures: classification

• A container can be studied from three viewpoints:
storage, access, and traversal

• For each of these viewpoint the Base library offers a
hierarchy of deferred classes:

• BOX describes storage properties, such as being
bounded or unbounded.

• COLLECTION describes access properties (defining
how to access a container's items, for example through
an index or according to a last-in, first-out policy).

• TRAVERSABLE describes traversal properties, such as
sequential or hierarchical.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 5

Deferred classes in EiffelBase
From lesson 11-EREDITARIETÀ

12-STRUTTURE-DATI

CONTAINER*

BOX* COLLECTION* TRAVERSABLE*

FINITE* INFINITE*

BOUNDED* UNBOUNDED* COUNTABLE*

RESIZABLE*

BAG* SET* HIERARCHICAL* LINEAR*

TABLE* ACTIVE* INTEGER_
INTERVAL

* BILINEAR*

INDEXABLE* CURSOR_
STRUCTURE

CURSOR_
STRUCTURE

* DISPENSER* SEQUENCE*

ARRAY STRING HASH_TABLE STACK* QUEUE*

… …

* deferred

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 6

Container data structure operations

 Insertion: add an item
 Search: find out if a given

item is present
 Removal: remove an

occurrence (if any) of an item
 Wipeout: remove all

occurrences of items
 Traversal/Iteration: apply a

given operation to every item

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 7

A familiar container: the list

item

Cursor

forth

afterbefore

back

index count1

finishstart

To facilitate iteration and other
operations, our lists have cursors
(here internal, can be external)

Queries
Commands

12-STRUTTURE-DATI

(the active element)

lastfirst

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 8

A standardized naming scheme

Container classes in EiffelBase use standard names for
basic container operations:

is_empty : BOOLEAN
has (v : G): BOOLEAN
count : INTEGER
item : G

Whenever applicable, use them in your own classes as well

make
put (v : G)
remove (v : G)
wipe_out
start, finish
forth, back

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 9

Bounded representations

In designing container structures, avoid hardwired limits!

“Don’t box me in”: EiffelBase is paranoid about hard
limits

 Most structures conceptually unbounded
 Even arrays (bounded at any particular time) are resizable

When a structure is bounded, the maximum number of
items is called capacity, with an invariant

count <= capacity
12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 10

Containers and genericity

How do we handle variants of a container class
distinguished only by the item type?

Solution: genericity allows explicit type parameterization
consistent with static typing

Container structures are implemented as generic classes:

LINKED_LIST [G]
pl : LINKED_LIST [PERSON]
sl : LINKED_LIST [STRING]
al : LINKED_LIST [ANY]

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 11

A specific implementation: (singly) linked lists

12-STRUTTURE-DATI

EiffelBase class: LINKED_LIST [T]

not exported: use itemnot exported: use first

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 12

Caveat

Whenever you define a container structure and the
corresponding class, pay attention to borderline cases:

 Empty structure
 Full structure (if finite capacity)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 13

Key features

Attributes are the key features in manipulating a container since are
the fundamental places keeping information on its status

Queries provide derived information on container status

Commands change the container status (hence attributes value)

The attributes of LINKED_LIST [G] are ONLY these ones (some were
defined as deferred in ancestor classes):

 active is the current element (possibly Void), export {LINKED_LIST }

 first_element is the first element (possibly Void), export {LINKED_LIST }

 count is the number of elements

 before is true when the cursor is before the first element

 after is true when the cursor is after the last element

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 14

Class invariants defining properties (inherited)

from FINITE: is_empty = (count = 0)

NB: it's how the function is_empty is defined

from TRAVERSABLE: is_empty implies off

NB: off is deferred in TRAVERSABLE; defined here as
off = before or after

from LINEAR: after implies off

from BILINEAR: before implies off

from BILINEAR: not (after and before)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 15

Class invariants defining properties (inherited)

from CHAIN: 0 <= index <= count + 1

NB: index is a function (it traverses the list)
providing the current cursor position

from CHAIN: off = ((index = 0) or (index = count + 1))

from CHAIN: isfirst = ((not is_empty) and (index = 1))

from CHAIN: islast = ((not is_empty) and (index = count))

from CHAIN: not off implies (item = i_th (index))

NB: item and i_th are functions providing the
element at a given integer

from LIST: before = (index = 0))

from LIST: after = (index = count + 1))

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 16

Class invariants defining further constraints

In an empty list there is no active nor first_element :

is_empty implies ((first_element = Void) and (active = Void))

Also:

(active = Void) implies is_empty

therefore in a not empty list active cannot be Void

Note the following constraints:

before implies (active = first_element)

after implies (active = last_element)

In these cases active is on the first or the last element, but they cannot be
accessed since item requires not off

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 17

Queries: accessing elements

item : returns value (of type G) stored in the element at the current cursor
position (i.e., active.item)

require not off

first : returns value stored in the first element (i.e., first_element.item)

last : returns value stored in the last element (i.e., last_element.item)

N.B.: last_element is a function traversing the list!

require not is_empty (for both)

i_th (i : INTEGER) returns value (of type G) stored in the element in the i_th

position, i.e. at index i

require 1 <= i <= count

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 18

Commands with contracts: moving the cursor

start : move the cursor to first position (no effect if empty)
 ensure (not is_empty) implies isfirst
 ensure is_empty implies after

finish : move the cursor to last position (no effect if empty)
 ensure (not is_empty) implies islast
 ensure is_empty implies before

forth : move the cursor to next position
 require not after
 ensure index = old index + 1

back : move the cursor to previous position
 require not before
 ensure index = old index - 1

go_i_th : move the cursor to i -th position
 require 0 <= i <= count + 1
 ensure index = i

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 19

Tuples

A tuple is a container storing items of arbitrary type in a set
of contiguous memory locations, each

 identified by name

Example:
a_book: TUPLE [author: STRING, year: INTEGER, title:
STRING]

where author and year and title denote the tuple components
and are called tags

Tags facilitates access to individual elements…

… but can be omitted if you do not need to use them…

Rev. 2.5.1 (2022-23) di Enrico Nardelli (basato su touch.ethz.com)

Collodi 1883 Pinocchio

author titleyearoptionally

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 20

Tuples: tags for accessing and modifying

Given:
a_person: TUPLE [name: STRING, age: INTEGER]

a_person := [“Mario”, 56]
Assigns to a_person the expression [“Mario”, 56], called a manifest
tuple

print(a_person.name)
Prints the string Mario

 a_person.age := 48
Uses tag age as an assigner command for the tuple component

NB: a_person: TUPLE [STRING, INTEGER] is a correct definition for a
tuple requiring no access to specific component

Rev. 2.5.1 (2022-23) di Enrico Nardelli (basato su touch.ethz.com)12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 21

Tuple type as anonymous class

A tuple is like a class providing only
• Attributes
• All public
• With setter procedures

 without precondition
 doing nothing else beyond setting attribute value

In cases like this a tuple is a more economic modeling
solution than a class

Known also as anonymous classes

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 22

Tuples: conformance rules
The type TUPLE describes tuples of arbitrary length and composition
The type TUPLE [T] describes tuples whose first component is of type T
and the rest is of arbitrary length and composition
The type TUPLE [T, V] describes tuples whose first component is of type
T, second component is of type V, and the rest is of arbitrary length and
composition
… and so on …
Then, given

p0: TUPLE
p1: TUPLE [STRING]
p2:TUPLE [STRING, INTEGER]

Assignments like:
p0 := p1; p1 := p2

are conforming,
while assignments like

p2:= p1; p1 := p0
are not conforming

12-STRUTTURE-DATI

TUPLE [T, V]

TUPLE [T]

TUPLE

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 23

Arrays

An array
ARRAY [G]

is a container storing items of type conforming to G in
a set of contiguous memory locations, each identified by
an integer index

Rev. 2.5.1 (2022-23) di Enrico Nardelli (basato su touch.ethz.com)

Valid index values

lower upper

3

item (6)

4 5 6 7 8 9

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 24

Arrays are bounded:
lower : INTEGER

-- Minimum index.
upper : INTEGER

-- Maximum index.

Usage:
my_array :ARRAY[INTEGER]

…

create my_array.make_filled (0, 4, 17)

The capacity (or count) of an array is:
capacity = count = upper – lower + 1

Bounds and indexes (1)

12-STRUTTURE-DATI

bounds

default value

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 25

Since class invariant requires

 count >= 0

We have

lower <= upper + 1

An array has one element (count = 1) if and only if

lower = upper

An array is empty (count = 0) if and only if

lower = upper + 1

Bounds and indexes (2)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 26

Accessing and modifying array items

item (i : INTEGER) : G
-- Entry at index i, if in the index interval.

require
valid_key: valid_index (i)

put (v : G ; i : INTEGER)
-- Replace i-th entry, if in the index interval, by v.

require
valid_key: valid_index (i)

ensure
inserted: item (i) = v

i >= lower and i <= upper

12-STRUTTURE-DATI

i >= lower and i <= upper

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 27

Safe insertion in arrays

put (v : G ; i : INTEGER)
-- Replace i-th entry, if in the index interval, by v.

require
valid_key: valid_index (i)

ensure
inserted: item (i) = v

A put (v , i) might fail if i is not a valid index.
Use force (v , i) if you don't want to check the
precondition. It "forces" the resizing of the array is the
index is not in the validity range…

i >= lower and i <= upper

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 28

attempts to
increase lower
or to decrease
upper will be

discarded

At any point in time arrays have a fixed lower and upper
bound, and thus a fixed capacity

Unlike most other programming languages, Eiffel allows
resizing an array (resize)
resize (min_index, max_index : INTEGER)

-- Enlarge array, preserving existing items,
-- down to min_index and up to max_index.
require

valid_bounds: min_index <= max_index
ensure

no_low_lost: lower = min_index.min (old lower)

no_high_lost: upper = max_index.max (old upper)

It is a costly operation, since involves allocating a new zone and
copying all elements

Resizing an array (1)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 29

Resizing an array (2)

Inserting element with put can be done only within the
bound. What if one needs to insert an element outside the
current bounds?

Use feature force which, unlike put, has no precondition and
can insert outside bounds. If required, it resizes the array:
force (v : G ; i : INTEGER)

-- Assign i-th entry to v.
ensure

inserted: item (i) = v
higher_count: count >= old count

By default, force enlarge the size when needed by 50% so that
in a linear sequence of force d insertions only a logarithmic
number of costly resizing operation is performed.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 30

Feature item is declared as
item alias ″[]″ (i : INTEGER) : G assign put

This allows the following synonym notations:

a [i] for a.item (i)
a.item (i) := x for a.put (x, i)
a [i] := x for a.put (x, i)

A class may have at most one feature, with any number
of arguments, alias-ed to “[]”

REMEMBER: simplifying the notation

12-STRUTTURE-DATI

From
06 – Visibilità

p.8

From
03 – Features p.42

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 31

Linked list or array?

The choice of a container data structure depends on the

speed of its container operations

The speed of a container operation depends on how it is

implemented, on its underlying algorithm

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 32

How fast is an algorithm?

Depends on the hardware, operating system, load on the

machine...

But most fundamentally depends on the algorithm!

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 33

Algorithm complexity: “big-O” notation

Defines function not by exact formula but by order of
magnitude, e.g.
O (1), O (log count), O (count), O (count 2), O (2count).

7count 2 + 20count + 4 is

Let n be the size of the data structure (count).
“f is O (g (n))”

means that there exists a constant k such that:

 n, |f (n)|  k |g (n)|

O (count 2)count 2?

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 34

Why is the order of magnitude important?

Consider algorithms with complexity

O (n)

O (n 2)

O (2n)
Assume for your next birthday they have promised you a
new PC 1'000 times faster…
How much bigger a problem than today can you solve in
one day of computation time?
Assume for your master degree they have promised you a
new PC 1'000'000 times faster…
How much bigger a problem than today can you solve in
one day of computation time?
12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 35

Examples

put_right of LINKED_LIST : O (1)

Regardless of the number of elements in the linked list it
takes a constant time to insert an item at cursor position.

force of ARRAY : O (count)

At worst the time for this operation grows proportionally
to the number of elements in the array.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 36

Variants of algorithm complexity

We may be interested in
 Worst-case performance
 Best-case performance (seldom)
 Average performance (needs statistical distribution)

Unless otherwise specified this discussion considers
worst-case

Lower bound notation:  (n)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 37

Cost of linked list operations

Operation Feature Complexity

Insert right to cursor put_right O (1)

Insert at end extend O (1)

Move cursor ahead forth O (1)

Move cursor back back O (count)

Remove right neighbor remove_right O (1)

Remove at cursor position remove O (count)

Index-based access i_th O (count)

Search has O (count)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 38

Cost of array operations

Operation Feature Complexity

Index-based access item O (1)

Index-based replacement put O (1)

Index-based replacement
outside of current bounds force O (count)

Search has O (count)

Search in sorted array - O (log count)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 39

Hash tables

Can we get the efficiency of arrays

 Constant-time access
 Constant-time update

without limiting ourselves to keys that are integers in a
fixed, contiguous interval?

Hash table answer: almost!

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 40

Hash tables

Arrays allows to access elements through an integer
index. What if we want another kind of index, e.g. strings?

Hash tables allow keys other than integers, e.g. strings.
A trivial example:

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 41

Hash function

The hash function maps K, the set of possible keys, into
an integer interval a..b.

A perfect hash function gives a different integer value for
every element of K.

Otherwise, whenever two different keys give the same
hash value a collision occurs.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 42

A mapping structure

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 43

Using hash tables

12-STRUTTURE-DATI

person, person1 : PERSON
personnel_directory : HASH_TABLE [PERSON, STRING]

create personnel_directory.make (100000)

Storing an element:
create person1

personnel_directory.put (person1, ”Annie”)

Retrieving an element

person := personnel_directory.item (”Annie”)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 44

class
HASH_TABLE [G, K -> HASHABLE]

feature
item (key : K): G

put (new : G ; key : K)
-- Insert new with key if no other item
-- is associated with same key, otherwise

 -- do nothing

force (new : G; key : K)
-- Update table so that new will be
-- the item associated with key.

…
end

Allows h  item (“ABC”) := x

for h  put (x, “ABC”)

Together, allow

h [“ABC”] := x

for h  put (x, “ABC”)

Constrained genericity & the class interface

assign putalias "[]"

Allows h [“ABC”] for h  item (“ABC”)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 45

The example rewritten

12-STRUTTURE-DATI

Not good style, why?

person, person1 : PERSON
personnel_directory : HASH_TABLE [PERSON, STRING]

create personnel_directory.make (100000)

Storing an element:
create person1
personnel_directory.put (person1, ”Annie”)

personnel_directory [”Annie”] := person1

Retrieving an element
person := personnel_directory.item (”Annie”)
person := personnel_directory [”Annie”]

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 46

Collision handling

Open hashing:
ARRAY [LINKED_LIST [G]]

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 47

A better technique: closed hashing

In EiffelBase the class HASH_TABLE [G, H] implements closed
hashing:

HASH_TABLE [G, H] uses a single ARRAY [G] to store the
items. At any time some of positions are occupied and some
free:

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 48

Closed hashing

If the hash function yields an already occupied position,
the mechanism will try a succession of other positions (i1,
i2, i3) , provided by adding a suitably defined increment,
until it finds a free one:

With this policy and a good choice of hash function search and
insertion in a hash table are O (1) …
…save for the need of enlarging the table when it becomes almost
full: an O (count) operation (this affects put and force). Eiffel use
80% as a threshold to decide when enlarging the table

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 49

Cost of hash table operations

Operation Feature Complexity

Key-based access item O (1)

Key-based insertion put, force O (count)

Removal remove O (1)

Key-based replacement replace O (1)

Search has O (1)

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 50

Dispensers

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 51

Dispensers

Unlike indexed structures, as arrays and hash tables,
there is no key or other identifying information for
dispenser items.

Dispensers are container data structures that prescribe a
specific retrieval policy:

 Last In First Out (LIFO): choose the element inserted most
recently  stack.

 First In First Out (FIFO): choose the oldest element not yet
removed  queue.

 Priority queue: choose the element with the highest
priority.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 52

Stacks

A stack is a dispenser applying a LIFO policy. The basic
operations are:

Access the top element (item)
Pop the top element (remove)
Push an item to the top of the

stack (put)

Top
A new item
would be
pushed
here

Body,
what
would
remain
after
popping

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 53

Applications of stacks

Many!

Ubiquitous in programming language implementation:
 Parsing expressions

 Managing execution of routines (“THE stack”)
Special case: implementing recursion

 Traversing trees

 …

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 54

The run-time stack

The run-time stack contains the activation records for all
currently active routines.

An activation record contains a routine’s locals (arguments
and local entities).

12-STRUTTURE-DATI

Before a call: push on stack
a “frame” containing values
of local variables,
arguments, and return
information

After a call: pop frame from
stack, restore values (or
terminate if stack is empty)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 55

Implementing stacks

Common stack implementations are either arrayed or
linked.

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 56

Choosing between data structures

Use a linked list if:
 Order between items matters
 The main way to access them is in

that order
 (Bonus condition) No hardwired

size limit

Use an array if:
 Each item can be identified by an

integer index
 The main way to access items is

through that index
 Hardwired size limit (at least for

long spans of execution)

Use a hash table if:
Every item has an associated key
The main way to access them is

through these keys
The structure is bounded

Use a stack:
For a LIFO policy
Example: traversal of nested

structures such as trees

Use a queue:
For a FIFO policy
Example: simulation of FIFO

phenomenon

12-STRUTTURE-DATI

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 57

Learning how to use data structures

12-STRUTTURE-DATI

Study the relevant sections of Eiffel on-line documentation

EiffelBase, The Kernel
https://www.eiffel.org/doc/solutions/EiffelBase%2C%20The%20Kernel

EiffelBase Data Structures Overview
https://docs.eiffel.com/book/solutions/eiffelbase-data-structures-overview

Accessible also through the course web site

https://www.eiffel.org/doc/solutions/EiffelBase,%20The%20Kernel
https://www.eiffel.org/doc/solutions/EiffelBase,%20The%20Kernel
https://docs.eiffel.com/book/solutions/eiffelbase-data-structures-overview

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.com) 58

What we have seen

Container data structures: basic notion, key examples

Algorithm complexity (“Big-O”)

How to choose a particular kind of container

12-STRUTTURE-DATI

	Diapositiva 1
	Topics for this lecture
	Container data structures
	Container data structures: classification
	Deferred classes in EiffelBase
	Container data structure operations
	A familiar container: the list
	A standardized naming scheme
	Bounded representations
	Containers and genericity
	A specific implementation: (singly) linked lists
	Caveat
	Key features
	Class invariants defining properties (inherited)
	Class invariants defining properties (inherited) (2)
	Class invariants defining further constraints
	Queries: accessing elements
	Commands with contracts: moving the cursor
	Tuples
	Tuples: tags for accessing and modifying
	Tuple type as anonymous class
	Tuples: conformance rules
	Arrays
	Bounds and indexes (1)
	Bounds and indexes (2)
	Accessing and modifying array items
	Safe insertion in arrays
	Resizing an array (1)
	Resizing an array (2)
	Eiffel note: simplifying the notation
	Linked list or array?
	How fast is an algorithm?
	Algorithm complexity: “big-O” notation
	Why neglect constant factors?
	Examples
	Variants of algorithm complexity
	Cost of linked list operations
	Cost of array operations
	Hash tables
	Hash tables (2)
	Hash function
	A mapping structure
	Using hash tables
	Constrained genericity & the class interface
	The example rewritten
	Collision handling
	A better technique: closed hashing
	Closed hashing
	Cost of hash table operations
	Dispensers
	Dispensers (2)
	Stacks
	Applications of stacks
	The run-time stack
	Implementing stacks
	Choosing between data structures
	Learning how to use data structures
	What we have seen

