
Lezione 10: Ereditarietà

Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

On the menu for today (& next time)

Two fundamental mechanisms for expressiveness and
reliability:

 Inheritance (subclassing)
 Genericity (type parameterization)

with associated (just as important!) notions:
 Static typing
 Polymorphism
 Dynamic binding

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Reminder: the dual nature of classes

A class is a module
A class is a type*

As a module, a class:
 Groups a set of related services
 Enforces information hiding (not all services are visible from

the outside)
 Has clients (the modules that use it) and suppliers (the

modules it uses)
As a type, a class:

 Denotes possible run-time values (objects & references), the
instances of the type

 Can be used for declarations of entities (representing such
values)

*Or a type template
(see, later, generic classes)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

Reminder: how the two views match

The class, viewed as a module, groups a set of services
(the features of the class)

which are precisely the operations applicable to
instances of the class, viewed as a type.

Example:
class BUS,
features stop, move, speed, passenger_count

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Extending the basic notion of class

LIST_OF_CARS

LINKED_LIST
_OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Generalization

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

SET_OF_CARS

Basics of inheritance (subclassing)

Principle:
Describe a new class as extension or specialization of an
existing class

(or several with multiple inheritance)

If B inherits from A :

 As modules: all the services of A are available in B
(possibly with a different implementation)

 As types: whenever an instance of A is required, an instance
of B will be acceptable

(“is-a” relationship, e.g. CAR is a VEHICLE)

Terminology
If B inherits from A (by listing A in its inherit clause):

 B is an heir of A
 A is a parent of B

For a class A:
The descendants of A are A itself and (recursively) the
descendants of A ’s heirs
 Proper descendants exclude A itself

Reverse notions:
Ancestor
 Proper ancestor

More precise notion of instance:
 Direct instances of A
 Instances of A : the direct instances

of A and its descendants

(Other terminology: subclass, superclass, base class)

B

A

C D

E

Let's play Lego!

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED
10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

Class BRICK

deferred class
BRICK

feature
width: INTEGER
depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred
end

end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

Explained later

Explained later

Deferred classes and features

• A deferred class is declared as such with the
keyword deferred

• Deferred classes cannot be instantiated and hence
cannot contain a create clause

• A class with at least one deferred feature must be
declared as deferred, but…

 … a class with all effective features can be defined as
deferred

• A deferred feature does not provide an
implementation

 deferred instead of do … … …

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

Class LEGO_BRICK

class
LEGO_BRICK

inherit
BRICK

feature
number_of_nubs: INTEGER

do
Result := ...

end

volume: INTEGER
do

Result := ...
end

end

Inherit all features of class
BRICK.

New feature, calculate all
nubs

Implementation of volume
(was deferred in class

BRICK)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

Effective

 Effective
 Effective classes do not have deferred features (the

“standard case”) .
 Effective routines have an implementation of their

feature body.
 Effective classes can be instantiated

Terminology: Effective = non-deferred
(i.e. fully implemented)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

Deferred
• Deferred classes cannot be instantiated and hence cannot

contain a create clause
• hence the target type of a create instruction cannot be a deferred

class, but …
 … variables of the type of a deferred class can be used and refer to

objects !

Remember BRICK is a deferred class

a_brick: BRICK
a_lego_brick: LEGO_BRICK

create a_brick

create a_lego_brick

a_brick := a_lego_brick

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13

Correct!

Wrong!

Correct!

Deferred features
• A deferred feature does not have an implementation yet

 deferred instead of do … … …
• A call to a deferred feature can be written:

 it will only be executed for an instance of an effective (sub)-
class

 there is no way of executing a deferred feature for an
instance of a deferred class, since such an instance can never
be created

Remember BRICK is a deferred class and LEGO_BRICK is an
effective sub-class of BRICK

a_brick: BRICK
a_lego_brick: LEGO_BRICK

create a_lego_brick
a_brick := a_lego_brick
a_brick.volume

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

It is deferred feature for a
a_brick, but since a_brick can

never be an instance of
BRICK , only an instance of

an effective (sub)-class,
there is no problem.

Class LEGO_BRICK_SLANTED

The new implementation
(substitutes the one coming

from LEGO_BRICK)

class
LEGO_BRICK_SLANTED

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

Declares previous
implementation of volume is

going to be changed.

Class LEGO_BRICK_WITH_HOLE

class
LEGO_BRICK_WITH_HOLE

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

The new implementation
(substitutes the one coming

from LEGO_BRICK)

Declares previous
implementation of volume is

going to be changed.

Inheritance Notation

volume++

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

+

++

volume*

volume+

*

volume++

Notation:

Deferred *

Effective +

Redefinition ++

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

Redeclaration of features (1)

Redeclaration is the general term covering various cases:
 Effecting: transforming a deferred feature into an effective

one
 Undefining: transforming an effective feature into a

deferred one
 Redefining: changing signature, contract, implementation

of a deferred or effective feature

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

Effective

Effective

Deferred

Deferred

Redefinition Redefinition

Status in parent

Status in heir

redefine

undefine

Redeclaration of features (2)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

covariance rule: class and feature
must both become more specific

covariance rule: class and
feature must both become

more specific

Redefining an effective feature may change:
 contracts
 implementation
 signature (both arguments and result), keeping conformance

Effecting a deferred feature may change:
 contracts
 signature (both arguments and result), keeping conformance

An attribute cannot be redefined as a function
 for performance reasons (implies replacing a simple memory

access with potentially a function call)

A function can be redefined as an attribute

Precursor

 If a feature was redefined, but you still wish to call
the old version of the same feature, use the
Precursor keyword (possibly with arguments)

 It has the effect of calling the feature as inherited from
the super class

 Cannot be used to call the inherited version of another
feature (you can call only the inherited version of the
same feature)

 It must be used as an expression or instruction
depending on the kind of feature (query or command)

volume: INTEGER
do

... Precursor ...
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Example hierarchy (from Traffic)

MOVING

VEHICLE

TAXI

EVENT_TAXI

LINE_VEHICLE

TRAM BUS

position

load

busy

take +

take *

update_coordinates
move

update_coordinates ++

move ++

FOR FEATURES
* Deferred: class does not provide
implementation
+ Effective: class provides implementation
++ Redefined: class provides a new
definition/implementation

*

*

**

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

FOR CLASSES
↑ Inherits from

* Deferred: class does not need
to have deferred features

Instances cannot be created

DISPATCHER_
TAXI

take +

Features in the example

Feature defined in class
take (from_location, EVENT_TAXI

to_location : COORDINATE) DISPATCHER_TAXI

-- Bring passengers
-- from `from_location '
-- to `to_location '

busy : BOOLEAN TAXI
-- Is taxi busy?

load (q : INTEGER) VEHICLE
-- Load `q ' passengers.

position : COORDINATE MOVING
-- Current position on map.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

Inheriting features

deferred class
TAXI

inherit
VEHICLE

feature
[… Rest of class …]

end

All features of TAXI are applicable to
instances of EVENT_TAXI

For e: EVENT_TAXI we can write e.busy

All features of VEHICLE are applicable to
instances of TAXI

For t: TAXI we can write t.load

deferred class
VEHICLE

inherit
MOVING

feature
[… Rest of class …]

end

All features of MOVING are applicable to
instances of VEHICLE

For v: VEHICLE we can write v.move

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

class
EVENT_TAXI

inherit
TAXI

feature
[… Rest of class …]

end

Definitions: kinds of feature

A “feature of a class” is one of:

 An inherited feature if it is a feature of one of the
ancestors of the class.

 An immediate feature if it is declared in the class, and not
inherited. In this case the class is said to introduce the
feature.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

Changing export status of inherited features (1)

A feature of the parent may become interesting to clients
of the descendant

 Its status will change from secret to exported

A feature of the parent may not be suitable for direct use
by clients of the descendant

 Its status will change from exported to secret
 For example, feature fly in a class BIRD does not make

sense in the descendant OSTRICH

It is possible to arbitrarily change the export status of
any inherited feature

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

Changing export status of inherited features (2)
class

AN_HEIR

inherit
A_PARENT

export
{class_X, class_Y, … } feature_A, feature_B, …
{class_W, class_Z, … } feature_C, feature_D, …

end
…
end

{NONE } make the feature(s) secret

keyword all may be used instead of explicitly listing features

but explicit listing takes precedence over implicit listing by means
of all

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Are these correct?

m : MOVING; v : VEHICLE; t : TAXI;
e : EVENT_TAXI; d: DISPATCHER_TAXI

e •load (…)
d •take (…)
e •position -- query
d•busy -- query

m •load (…)
v •busy -- query

Inherited features

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

No!

Are these correct?

Yes!

Polymorphic assignment

v : VEHICLE
a_cab : EVENT_TAXI

(EVENT_TAXI)

v

a_cab

A proper
descendant type of

the original

v := a_cab

More interesting:

if some_condition then
v := a_cab

else
v := a_tram

end
…

a_tram: TRAM

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

(VEHICLE)

Assignments

Assignment:
target := expression

With polymorphism:
The type of expression is a descendant of the
type of target

So far (no polymorphism):

expression was always of the same type as target

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

A particular call:

register_trip (a_cab)

register_trip (v : VEHICLE)
do … end

Polymorphism is also for argument passing

Type of actual argument is
generally a descendant of

type of formal

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Definitions: Polymorphism

An attachment (assignment or argument passing) is
polymorphic if its target variable and source
expression have different types.

An entity or expression is polymorphic if it may at
runtime — as a result of polymorphic attachments —
become attached to objects of different types.

Polymorphism is the existence of these possibilities.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Definitions: Static and dynamic type

The static type of an entity is the type used in its
declaration in the corresponding class text

If the value of the entity, during a particular execution,
is attached to an object, the type of that object is the
entity’s dynamic type at that time

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

Static and dynamic type

v : VEHICLE
a_cab : EVENT_TAXI

v := a_cab

Static type of v :VEHICLE

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33

(VEHICLE)

(EVENT_TAXI)

v

a_cab

Dynamic type after this
assignment:
EVENT_TAXI

Basic type property

Static and dynamic type

The dynamic type of an entity
must conform to its static type

(Ensured by the type system of the compiler)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34

Static typing

Type-safe call:
A feature call x.f such that any object attached to x
during execution has a feature corresponding to f

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler) that
guarantees, for any program it accepts, that any call in
any execution will be type-safe

Statically typed language:
A programming language for which it is possible to write
a static type checker

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35

v •load (…)
e •load (…)
t •take (…)
d •take (…)
m •move (…)
e •move (…)

m : MOVING
v : VEHICLE
t : TAXI;
e : EVENT_TAXI
d: DISPATCHER_TAXI

Type safety and inherited features

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 36

m •load (…)
m •take (…)

type-safe
calls

type-unsafe
calls

Conformance: base definition

Basic inheritance type rule

For a polymorphic attachment to be valid,
the type of the source must conform

to the type of the target

Conformance: base definition

Reference types (non-generic):
U conforms to T if U is a descendant of T

An expanded type conforms only to itself

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37

A fictitious inheritance hierarchy

ANY

NONE

Classes defined by
the programmer

D E J

F IB

A G H

C

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 38

Predefined

Predefined

The role of deferred classes

Top-down definition of software architecture without
deciding too early on implementation

only hierarchies of names and contracts

Capturing high-level concepts and their taxonomy in the
application domain

Representing common behaviors and their taxonomy in
libraries

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 39

Deferred classes in EiffelBase

CONTAINER*

BOX* COLLECTION* TRAVERSABLE*

FINITE* INFINITE*

BOUNDED* UNBOUNDED* COUNTABLE*

RESIZABLE*

BAG* SET* HIERARCHICAL* LINEAR*

TABLE* ACTIVE* INTEGER_
INTERVAL

* BILINEAR*

INDEXABLE* CURSOR_
STRUCTURE

* DISPENSER* SEQUENCE*

ARRAY STRING HASH_TABLE STACK* QUEUE*

… …

* deferred

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40

A deferred feature

In e.g. LIST:
forth

deferred

end

ensure
index = old index + 1

require
not after

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 41

Deferred!

Mixing deferred and effective features

Effective!

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 42

In the same class

search (x : G)
-- Move to first position after current
-- where x appears, or after if none.
do

from until after or else item = x loop
forth

end
end

“Programs with holes”

“Program with holes”

A powerful form of reuse:

 The reusable element defines a general scheme

 Specific cases fill in the holes in that scheme

Combine reuse with adaptation

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 43

A more realistic example of inheritance hierarchy

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display *
rotate*

perimeter *

perimeter +

perimeter ++

diagonal

...
...

perimeter ++

+
+

side2

* deferred

+ effective

++ redefined

perimeter ++

side1

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 44

corners
vertices perimeter +

Remember the basis of feature redefinition
class B
inherit

A
redefine
f
end

…

Signature (order, number and types of formal parameters, type of
returned value) of redefinition of f in B must conform to signature of f
in A

Creation procedure must be re-declared (i.e., the create clause in the
ancestors’ code is not inherited) but their definition is inherited. Instead,
default_create doesn't need to be re-declared as creation procedure.

In the implementation of f in B the keyword Precursor (possibly with
arguments) uses A ’s version of f

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 45

Redefinition 1: CLOSED_FIGURE
deferred class CLOSED_FIGURE

inherit

FIGURE

feature

perimeter : REAL

-- Perimeter length

deferred

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 46

Redefinition 2: POLYGON
class POLYGON
inherit

CLOSED_FIGURE
create

make
feature

vertices : ARRAY [POINT]

corners : INTEGER

perimeter : REAL
-- Perimeter length.

do
from ... until ... loop

Result := Result + vertices [i] . distance (vertices [i + 1])
...

end
end

…
invariant

corners >= 3
corners = vertices.count

vertices [i]

vertices [i + 1]

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 47

Redefinition 3: RECTANGLE

side1

side2
diagonal

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 48

Inherited invariants still
holds!

class RECTANGLE
inherit

POLYGON
redefine

perimeter
end

create
make

feature
diagonal, side1, side2 : REAL

perimeter : REAL
-- Perimeter length.

do Result := 2 ∗ (side1 + side2) end
invariant

vertex_count = 4
end

Must return a
conforming Result!

Static type checker reveals an unsafe call:
the target type does not know the feature

r

Inheritance, typing and polymorphism

(POLYGON)

(RECTANGLE)

p

Permitted (independently
from what happens earlier)?

x := p.diagonal
r := p

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 49
Source does not conform to

the target!

Assume:
p : POLYGON ; r : RECTANGLE ; t : TRIANGLE
x : REAL

Permitted:
x := p.perimeter
x := r.perimeter
x := r.diagonal
p := r

What is the effect of the following?

if some_test then
p := r

else
p := t

end
x := p.perimeter

Redefinition: A class may change an inherited feature, as with
POLYGON redefining perimeter.

Polymorphism: p may have different forms at run-time.

Dynamic binding: Effect of p.perimeter depends on the run-time
form of p, which determines the executed version of perimeter

Dynamic binding

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 50

Definitions: Dynamic binding

Dynamic binding (a semantic rule):
Any execution of a feature call will use the version of
the feature best adapted to the type of the target object

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 51

Binding and typing

(For a call xf)

Static typing: The guarantee that there is at least one
version for f

Dynamic binding: The guarantee that every call will
use the most appropriate version of f

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 52

Without dynamic binding?

display (f : FIGURE)
do

if “f is a CIRCLE” then
...

elseif “f is a POLYGON” then
...

end
end

and similarly for all other routines!

Tedious; must be changed whenever there’s a new figure
type

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 53

With inheritance and associated techniques

f : FIGURE

c : CIRCLE

p : POLYGON

With:

Initialize:

and:

Then just use:

create c make (...)

create p make (...)

if ... then
f := c

else
f := p

end

f move (...)
f rotate (...)
f display (...)

-- and so on for every
-- operation on f !

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 54

Creation and inheritance

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 55

Assume:
p : POLYGON
t : TRIANGLE
r : RECTANGLE

Right or wrong?:
create t
p := t

create p
t := p

Right!

Wrong!

Creation expression and instruction

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 56

With p : POLYGON

create {TRIANGLE } p
it's a creation instruction

p := create {RECTANGLE }
it's a creation expression

The latter is useful for anonymous object creation

Instead of
p := create {RECTANGLE }
target.set (p)

Just write
target.set (create {RECTANGLE })

p created with type

TRIANGLE

p created with type

RECTANGLE

anonymous object
creation

Must be a subclass

Must be a subclass

Be aware!

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 57

Assume:
p : POLYGON
t : TRIANGLE
r : RECTANGLE

Right or wrong?:
create {TRIANGLE } p
t := p

p := create {RECTANGLE }
r := p Wrong!

Wrong!

Contracts and inheritance

Issue: what happens, under inheritance, to

 Class invariants?

 Routine preconditions and postconditions?

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 58

Invariants

Invariant Inheritance rule:
 The invariant of a class automatically includes the invariant

clauses from all its parents
 Remember: all invariant clauses are “AND”-ed.

Accumulated result is visible in flat and interface views.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 59

Contracts and inheritance

r ++

require
γ

ensure

δ

r
require

α
ensure

β

a1 : A

a1.r (…)
…

Standard call in C:

if a1.α then
-- Here a1.α holds

a1.r (...)

-- Here a1.β holds
end

C A

D B

client of

↑ inherits from

++ redefinition

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 60

Contracts and inheritance

require
γ

ensure

δ

r
require

α
ensure

β

a1 : A
x1: X
…
a1 := x1

a1.r (…)b1: B

if a1.α then
-- Here α holds (but the instance needs γ to hold)

a1.r -- The version of r in X is executed
end
-- Here δ holds (but other code needs β to hold)

Code matched contracts of r in A and now needs
to match also contracts of r in X

γ has to be stronger or weaker than α to be sure,
before the execution of r, that γ is implied by α ?

δ has to be stronger or weaker than to be sure,
after the execution of r, that β is implied by δ ?

r ++

C A

D X

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 61

δ has to be stronger
than β, that is, β
must be weaker

γ has to be weaker
than α, that is, α
must be stronger

Assertion redeclaration rule

When redeclaring a routine, we may only:

 Keep or weaken the precondition

 Keep or strengthen the postcondition

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 62

A simple language rule does the trick!

Redefined version of contracts in the subclass may have nothing
(assertions kept by default), or

require else new_pre

ensure then new_post

Resulting assertions in the subclassare:

 original_precondition or else new_precondition

 original_postcondition and then new_postcondition

Assertion redeclaration rule in Eiffel

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 63

provides one more
possibility: weaker

provides one more
constraint: stronger

Inheritance: summary

Type mechanism: lets you organize our data
abstractions into taxonomies

Module mechanism: lets you build new classes as
extensions of existing ones

Polymorphism: Flexibility with type safety

Dynamic binding: automatic adaptation of operation to
target, for more modular software architectures

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 64

What we have seen

The basics of fundamental O-O mechanisms:
 Inheritance
 Polymorphism
 Dynamic binding

Characteristic of Eiffel implementation of O-O:
 Static typing

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 65

