
Lezione 10: Ereditarietà

Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

On the menu for today (& next time)

Two fundamental mechanisms for expressiveness and
reliability:

 Inheritance (subclassing)
 Genericity (type parameterization)

with associated (just as important!) notions:
 Static typing
 Polymorphism
 Dynamic binding

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Reminder: the dual nature of classes

A class is a module
A class is a type*

As a module, a class:
 Groups a set of related services
 Enforces information hiding (not all services are visible from

the outside)
 Has clients (the modules that use it) and suppliers (the

modules it uses)
As a type, a class:

 Denotes possible run-time values (objects & references), the
instances of the type

 Can be used for declarations of entities (representing such
values)

*Or a type template
(see, later, generic classes)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

Reminder: how the two views match

The class, viewed as a module, groups a set of services
(the features of the class)

which are precisely the operations applicable to
instances of the class, viewed as a type.

Example:
class BUS,
features stop, move, speed, passenger_count

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Extending the basic notion of class

LIST_OF_CARS

LINKED_LIST
_OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Generalization

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

SET_OF_CARS

Basics of inheritance (subclassing)

Principle:
Describe a new class as extension or specialization of an
existing class

(or several with multiple inheritance)

If B inherits from A :

 As modules: all the services of A are available in B
(possibly with a different implementation)

 As types: whenever an instance of A is required, an instance
of B will be acceptable

(“is-a” relationship, e.g. CAR is a VEHICLE)

Terminology
If B inherits from A (by listing A in its inherit clause):

 B is an heir of A
 A is a parent of B

For a class A:
The descendants of A are A itself and (recursively) the
descendants of A ’s heirs
 Proper descendants exclude A itself

Reverse notions:
Ancestor
 Proper ancestor

More precise notion of instance:
 Direct instances of A
 Instances of A : the direct instances

of A and its descendants

(Other terminology: subclass, superclass, base class)

B

A

C D

E

Let's play Lego!

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED
10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

Class BRICK

deferred class
BRICK

feature
width: INTEGER
depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred
end

end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

Explained later

Explained later

Deferred classes and features

• A deferred class is declared as such with the
keyword deferred

• Deferred classes cannot be instantiated and hence
cannot contain a create clause

• A class with at least one deferred feature must be
declared as deferred, but…

 … a class with all effective features can be defined as
deferred

• A deferred feature does not provide an
implementation

 deferred instead of do … … …

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

Class LEGO_BRICK

class
LEGO_BRICK

inherit
BRICK

feature
number_of_nubs: INTEGER

do
Result := ...

end

volume: INTEGER
do

Result := ...
end

end

Inherit all features of class
BRICK.

New feature, calculate all
nubs

Implementation of volume
(was deferred in class

BRICK)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

Effective

 Effective
 Effective classes do not have deferred features (the

“standard case”) .
 Effective routines have an implementation of their

feature body.
 Effective classes can be instantiated

Terminology: Effective = non-deferred
(i.e. fully implemented)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

Deferred
• Deferred classes cannot be instantiated and hence cannot

contain a create clause
• hence the target type of a create instruction cannot be a deferred

class, but …
 … variables of the type of a deferred class can be used and refer to

objects !

Remember BRICK is a deferred class

a_brick: BRICK
a_lego_brick: LEGO_BRICK

create a_brick

create a_lego_brick

a_brick := a_lego_brick

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13

Correct!

Wrong!

Correct!

Deferred features
• A deferred feature does not have an implementation yet

 deferred instead of do … … …
• A call to a deferred feature can be written:

 it will only be executed for an instance of an effective (sub)-
class

 there is no way of executing a deferred feature for an
instance of a deferred class, since such an instance can never
be created

Remember BRICK is a deferred class and LEGO_BRICK is an
effective sub-class of BRICK

a_brick: BRICK
a_lego_brick: LEGO_BRICK

create a_lego_brick
a_brick := a_lego_brick
a_brick.volume

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

It is deferred feature for a
a_brick, but since a_brick can

never be an instance of
BRICK , only an instance of

an effective (sub)-class,
there is no problem.

Class LEGO_BRICK_SLANTED

The new implementation
(substitutes the one coming

from LEGO_BRICK)

class
LEGO_BRICK_SLANTED

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

Declares previous
implementation of volume is

going to be changed.

Class LEGO_BRICK_WITH_HOLE

class
LEGO_BRICK_WITH_HOLE

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

The new implementation
(substitutes the one coming

from LEGO_BRICK)

Declares previous
implementation of volume is

going to be changed.

Inheritance Notation

volume++

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

+

++

volume*

volume+

*

volume++

Notation:

Deferred *

Effective +

Redefinition ++

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

Redeclaration of features (1)

Redeclaration is the general term covering various cases:
 Effecting: transforming a deferred feature into an effective

one
 Undefining: transforming an effective feature into a

deferred one
 Redefining: changing signature, contract, implementation

of a deferred or effective feature

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

Effective

Effective

Deferred

Deferred

Redefinition Redefinition

Status in parent

Status in heir

redefine

undefine

Redeclaration of features (2)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

covariance rule: class and feature
must both become more specific

covariance rule: class and
feature must both become

more specific

Redefining an effective feature may change:
 contracts
 implementation
 signature (both arguments and result), keeping conformance

Effecting a deferred feature may change:
 contracts
 signature (both arguments and result), keeping conformance

An attribute cannot be redefined as a function
 for performance reasons (implies replacing a simple memory

access with potentially a function call)

A function can be redefined as an attribute

Precursor

 If a feature was redefined, but you still wish to call
the old version of the same feature, use the
Precursor keyword (possibly with arguments)

 It has the effect of calling the feature as inherited from
the super class

 Cannot be used to call the inherited version of another
feature (you can call only the inherited version of the
same feature)

 It must be used as an expression or instruction
depending on the kind of feature (query or command)

volume: INTEGER
do

... Precursor ...
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Example hierarchy (from Traffic)

MOVING

VEHICLE

TAXI

EVENT_TAXI

LINE_VEHICLE

TRAM BUS

position

load

busy

take +

take *

update_coordinates
move

update_coordinates ++

move ++

FOR FEATURES
* Deferred: class does not provide
implementation
+ Effective: class provides implementation
++ Redefined: class provides a new
definition/implementation

*

*

**

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

FOR CLASSES
↑ Inherits from

* Deferred: class does not need
to have deferred features

Instances cannot be created

DISPATCHER_
TAXI

take +

Features in the example

Feature defined in class
take (from_location, EVENT_TAXI

to_location : COORDINATE) DISPATCHER_TAXI

-- Bring passengers
-- from `from_location '
-- to `to_location '

busy : BOOLEAN TAXI
-- Is taxi busy?

load (q : INTEGER) VEHICLE
-- Load `q ' passengers.

position : COORDINATE MOVING
-- Current position on map.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

Inheriting features

deferred class
TAXI

inherit
VEHICLE

feature
[… Rest of class …]

end

All features of TAXI are applicable to
instances of EVENT_TAXI

For e: EVENT_TAXI we can write e.busy

All features of VEHICLE are applicable to
instances of TAXI

For t: TAXI we can write t.load

deferred class
VEHICLE

inherit
MOVING

feature
[… Rest of class …]

end

All features of MOVING are applicable to
instances of VEHICLE

For v: VEHICLE we can write v.move

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

class
EVENT_TAXI

inherit
TAXI

feature
[… Rest of class …]

end

Definitions: kinds of feature

A “feature of a class” is one of:

 An inherited feature if it is a feature of one of the
ancestors of the class.

 An immediate feature if it is declared in the class, and not
inherited. In this case the class is said to introduce the
feature.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

Changing export status of inherited features (1)

A feature of the parent may become interesting to clients
of the descendant

 Its status will change from secret to exported

A feature of the parent may not be suitable for direct use
by clients of the descendant

 Its status will change from exported to secret
 For example, feature fly in a class BIRD does not make

sense in the descendant OSTRICH

It is possible to arbitrarily change the export status of
any inherited feature

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

Changing export status of inherited features (2)
class

AN_HEIR

inherit
A_PARENT

export
{class_X, class_Y, … } feature_A, feature_B, …
{class_W, class_Z, … } feature_C, feature_D, …

end
…
end

{NONE } make the feature(s) secret

keyword all may be used instead of explicitly listing features

but explicit listing takes precedence over implicit listing by means
of all

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Are these correct?

m : MOVING; v : VEHICLE; t : TAXI;
e : EVENT_TAXI; d: DISPATCHER_TAXI

e •load (…)
d •take (…)
e •position -- query
d•busy -- query

m •load (…)
v •busy -- query

Inherited features

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

No!

Are these correct?

Yes!

Polymorphic assignment

v : VEHICLE
a_cab : EVENT_TAXI

(EVENT_TAXI)

v

a_cab

A proper
descendant type of

the original

v := a_cab

More interesting:

if some_condition then
v := a_cab

else
v := a_tram

end
…

a_tram: TRAM

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

(VEHICLE)

Assignments

Assignment:
target := expression

With polymorphism:
The type of expression is a descendant of the
type of target

So far (no polymorphism):

expression was always of the same type as target

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

A particular call:

register_trip (a_cab)

register_trip (v : VEHICLE)
do … end

Polymorphism is also for argument passing

Type of actual argument is
generally a descendant of

type of formal

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Definitions: Polymorphism

An attachment (assignment or argument passing) is
polymorphic if its target variable and source
expression have different types.

An entity or expression is polymorphic if it may at
runtime — as a result of polymorphic attachments —
become attached to objects of different types.

Polymorphism is the existence of these possibilities.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Definitions: Static and dynamic type

The static type of an entity is the type used in its
declaration in the corresponding class text

If the value of the entity, during a particular execution,
is attached to an object, the type of that object is the
entity’s dynamic type at that time

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

Static and dynamic type

v : VEHICLE
a_cab : EVENT_TAXI

v := a_cab

Static type of v :VEHICLE

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33

(VEHICLE)

(EVENT_TAXI)

v

a_cab

Dynamic type after this
assignment:
EVENT_TAXI

Basic type property

Static and dynamic type

The dynamic type of an entity
must conform to its static type

(Ensured by the type system of the compiler)

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34

Static typing

Type-safe call:
A feature call x.f such that any object attached to x
during execution has a feature corresponding to f

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler) that
guarantees, for any program it accepts, that any call in
any execution will be type-safe

Statically typed language:
A programming language for which it is possible to write
a static type checker

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35

v •load (…)
e •load (…)
t •take (…)
d •take (…)
m •move (…)
e •move (…)

m : MOVING
v : VEHICLE
t : TAXI;
e : EVENT_TAXI
d: DISPATCHER_TAXI

Type safety and inherited features

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 36

m •load (…)
m •take (…)

type-safe
calls

type-unsafe
calls

Conformance: base definition

Basic inheritance type rule

For a polymorphic attachment to be valid,
the type of the source must conform

to the type of the target

Conformance: base definition

Reference types (non-generic):
U conforms to T if U is a descendant of T

An expanded type conforms only to itself

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37

A fictitious inheritance hierarchy

ANY

NONE

Classes defined by
the programmer

D E J

F IB

A G H

C

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 38

Predefined

Predefined

The role of deferred classes

Top-down definition of software architecture without
deciding too early on implementation

only hierarchies of names and contracts

Capturing high-level concepts and their taxonomy in the
application domain

Representing common behaviors and their taxonomy in
libraries

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 39

Deferred classes in EiffelBase

CONTAINER*

BOX* COLLECTION* TRAVERSABLE*

FINITE* INFINITE*

BOUNDED* UNBOUNDED* COUNTABLE*

RESIZABLE*

BAG* SET* HIERARCHICAL* LINEAR*

TABLE* ACTIVE* INTEGER_
INTERVAL

* BILINEAR*

INDEXABLE* CURSOR_
STRUCTURE

* DISPENSER* SEQUENCE*

ARRAY STRING HASH_TABLE STACK* QUEUE*

… …

* deferred

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40

A deferred feature

In e.g. LIST:
forth

deferred

end

ensure
index = old index + 1

require
not after

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 41

Deferred!

Mixing deferred and effective features

Effective!

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 42

In the same class

search (x : G)
-- Move to first position after current
-- where x appears, or after if none.
do

from until after or else item = x loop
forth

end
end

“Programs with holes”

“Program with holes”

A powerful form of reuse:

 The reusable element defines a general scheme

 Specific cases fill in the holes in that scheme

Combine reuse with adaptation

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 43

A more realistic example of inheritance hierarchy

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display *
rotate*

perimeter *

perimeter +

perimeter ++

diagonal

...
...

perimeter ++

+
+

side2

* deferred

+ effective

++ redefined

perimeter ++

side1

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 44

corners
vertices perimeter +

Remember the basis of feature redefinition
class B
inherit

A
redefine
f
end

…

Signature (order, number and types of formal parameters, type of
returned value) of redefinition of f in B must conform to signature of f
in A

Creation procedure must be re-declared (i.e., the create clause in the
ancestors’ code is not inherited) but their definition is inherited. Instead,
default_create doesn't need to be re-declared as creation procedure.

In the implementation of f in B the keyword Precursor (possibly with
arguments) uses A ’s version of f

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 45

Redefinition 1: CLOSED_FIGURE
deferred class CLOSED_FIGURE

inherit

FIGURE

feature

perimeter : REAL

-- Perimeter length

deferred

end
end

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 46

Redefinition 2: POLYGON
class POLYGON
inherit

CLOSED_FIGURE
create

make
feature

vertices : ARRAY [POINT]

corners : INTEGER

perimeter : REAL
-- Perimeter length.

do
from ... until ... loop

Result := Result + vertices [i] . distance (vertices [i + 1])
...

end
end

…
invariant

corners >= 3
corners = vertices.count

vertices [i]

vertices [i + 1]

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 47

Redefinition 3: RECTANGLE

side1

side2
diagonal

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 48

Inherited invariants still
holds!

class RECTANGLE
inherit

POLYGON
redefine

perimeter
end

create
make

feature
diagonal, side1, side2 : REAL

perimeter : REAL
-- Perimeter length.

do Result := 2 ∗ (side1 + side2) end
invariant

vertex_count = 4
end

Must return a
conforming Result!

Static type checker reveals an unsafe call:
the target type does not know the feature

r

Inheritance, typing and polymorphism

(POLYGON)

(RECTANGLE)

p 

Permitted (independently
from what happens earlier)?

x := p.diagonal
r := p

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 49
Source does not conform to

the target!

Assume:
p : POLYGON ; r : RECTANGLE ; t : TRIANGLE
x : REAL

Permitted:
x := p.perimeter
x := r.perimeter
x := r.diagonal
p := r

What is the effect of the following?

if some_test then
p := r

else
p := t

end
x := p.perimeter

Redefinition: A class may change an inherited feature, as with
POLYGON redefining perimeter.

Polymorphism: p may have different forms at run-time.

Dynamic binding: Effect of p.perimeter depends on the run-time
form of p, which determines the executed version of perimeter

Dynamic binding

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 50

Definitions: Dynamic binding

Dynamic binding (a semantic rule):
Any execution of a feature call will use the version of
the feature best adapted to the type of the target object

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 51

Binding and typing

(For a call xf)

Static typing: The guarantee that there is at least one
version for f

Dynamic binding: The guarantee that every call will
use the most appropriate version of f

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 52

Without dynamic binding?

display (f : FIGURE)
do

if “f is a CIRCLE” then
...

elseif “f is a POLYGON” then
...

end
end

and similarly for all other routines!

Tedious; must be changed whenever there’s a new figure
type

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 53

With inheritance and associated techniques

f : FIGURE

c : CIRCLE

p : POLYGON

With:

Initialize:

and:

Then just use:

create c make (...)

create p make (...)

if ... then
f := c

else
f := p

end

f move (...)
f rotate (...)
f display (...)

-- and so on for every
-- operation on f !

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 54

Creation and inheritance

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 55

Assume:
p : POLYGON
t : TRIANGLE
r : RECTANGLE

Right or wrong?:
create t
p := t

create p
t := p

Right!

Wrong!

Creation expression and instruction

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 56

With p : POLYGON

create {TRIANGLE } p
it's a creation instruction

p := create {RECTANGLE }
it's a creation expression

The latter is useful for anonymous object creation

Instead of
p := create {RECTANGLE }
target.set (p)

Just write
target.set (create {RECTANGLE })

p created with type

TRIANGLE

p created with type

RECTANGLE

anonymous object
creation

Must be a subclass

Must be a subclass

Be aware!

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 57

Assume:
p : POLYGON
t : TRIANGLE
r : RECTANGLE

Right or wrong?:
create {TRIANGLE } p
t := p

p := create {RECTANGLE }
r := p Wrong!

Wrong!

Contracts and inheritance

Issue: what happens, under inheritance, to

 Class invariants?

 Routine preconditions and postconditions?

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 58

Invariants

Invariant Inheritance rule:
 The invariant of a class automatically includes the invariant

clauses from all its parents
 Remember: all invariant clauses are “AND”-ed.

Accumulated result is visible in flat and interface views.

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 59

Contracts and inheritance

r ++

require
γ

ensure

δ

r
require

α
ensure

β

a1 : A

a1.r (…)
…

Standard call in C:

if a1.α then
-- Here a1.α holds

a1.r (...)

-- Here a1.β holds
end

C A

D B

client of

↑ inherits from

++ redefinition

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 60

Contracts and inheritance

require
γ

ensure

δ

r
require

α
ensure

β

a1 : A
x1: X
…
a1 := x1

a1.r (…)b1: B

if a1.α then
-- Here α holds (but the instance needs γ to hold)

a1.r -- The version of r in X is executed
end
-- Here δ holds (but other code needs β to hold)

Code matched contracts of r in A and now needs
to match also contracts of r in X

γ has to be stronger or weaker than α to be sure,
before the execution of r, that γ is implied by α ?

δ has to be stronger or weaker than to be sure,
after the execution of r, that β is implied by δ ?

r ++

C A

D X

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 61

δ has to be stronger
than β, that is, β
must be weaker

γ has to be weaker
than α, that is, α
must be stronger

Assertion redeclaration rule

When redeclaring a routine, we may only:

 Keep or weaken the precondition

 Keep or strengthen the postcondition

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 62

A simple language rule does the trick!

Redefined version of contracts in the subclass may have nothing
(assertions kept by default), or

require else new_pre

ensure then new_post

Resulting assertions in the subclassare:

 original_precondition or else new_precondition

 original_postcondition and then new_postcondition

Assertion redeclaration rule in Eiffel

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 63

provides one more
possibility: weaker

provides one more
constraint: stronger

Inheritance: summary

Type mechanism: lets you organize our data
abstractions into taxonomies

Module mechanism: lets you build new classes as
extensions of existing ones

Polymorphism: Flexibility with type safety

Dynamic binding: automatic adaptation of operation to
target, for more modular software architectures

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 64

What we have seen

The basics of fundamental O-O mechanisms:
 Inheritance
 Polymorphism
 Dynamic binding

Characteristic of Eiffel implementation of O-O:
 Static typing

10-EREDITARIETÀ Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 65

