Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 10: Ereditarieta

OO
On the menu for today (& next time)

Two fundamental mechanisms for expressiveness and
reliability:
= Inheritance (subclassing)

= Genericity (type parameterization)

with associated (just as important!) notions:
= Static typing
= Polymorphism

= Dynamic binding

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Reminder: the dual nature of classes

A class is a module
A class is a type” {
(

“Or a type template
see, later, generic classes)

As a module, a class:
= Groups a set of related services

= Enforces information hiding (not all services are visible from
the outside)

= Has clients (the modules that use it) and suppliers (the
modules it uses)

As a type, a class:

= Denotes possible run-time values (objects & references), the
instances of the type

= Can be used for declarations of entities (representing such
values)

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

Reminder: how the two views match

The class, viewed as a module, groups a set of services

(the features of the class)

which are precisely the operations applicable to
instances of the class, viewed as a type.

Example:
class BUS,

features stop, move, speed, passenger _count

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

OE0
Extending the basic notion of class

‘ \Inheritance
/ 5 Generalization

Genericity

Type parameterization \

L Shae
L]ST_OF_CARS EEEEEEEEEE PERSONS) ..-..*
4
LINKED LIST
_OF _CARS

\ Specializaticy

/ Type parameterization

‘ll.lllll.

\

Basics of inheritance (subclassing)

Principle:

Describe a new class as extension or specialization of an
existing class

(or several with multiple inheritance)

If B inherits from A :

* As modules: all the services of A are available in B
(possibly with a different implementation)

" As types: whenever an instance of A is required, an instance
of B will be acceptable

(“is-a” relationship, e.g. CAR is a VEHICLE)

:
Terminology

If B inherits from A (by listing A in its inherit clause):

= Bis an heir of A (A\

" Alis a parent of B

A
For a class A:

*The descendants of A are A itself and (recursively) the
descendants of A’s heirs

" Proper descendants exclude A itself -
Reverse notions:

™
o
"Ancestor
" Proper ancestor
More precise notion of instance: <
Ccd (o

= Direct instances of A

= Instances of A: the direct instances
of A and its descendants

(Other terminology: subclass, superclass, base class) (E\

QOO0

Let's play Lego!

LEGO_BRICK_WITH_HOLE LEGO_BRIC_SLANTED

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

DOEG

Class BRICK

deferred class

BR/CK\

feature Explained later
width: INTEGER

depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred

end \

end Explained later

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

Deferred classes and features

e A deferred class is declared as such with the
keyword deferred

e Deferred classes cannot be instantiated and hence
cannot contain a create clause

* Aclass with at least one deferred feature must be
declared as deferred, but...

= ... aclass with all effective features can be defined as

deferred

* A deferred feature does not provide an
implementation

= deferred instead of do

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

QOO0

Class LEGO BRICK s

class
LEGO _BRICK
Inherit all features of clas
BRICK. .)
inherit
BRICK
feature

number_of nubs: INTEGER
New feature, calculate all 7 do
nubs

end

Result := ...

Implementation of volume|> volume: INTEGER
(was deferred in class '

BRICK) do

Result := ...
end

end

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

. (@lolcle)
Effective e

» Effective

= Effective classes do not have deferred features (the
“standard case”).

= Effective routines have an implementation of their
feature body.

= Effective classes can be instantiated

Terminology: Effective = non-deferred

(i.e. fully implemented)

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

(HOOC)
Deferred

e Deferred classes cannot be instantiated and hence cannot
contain a create clause

« hence the target type of a create instruction cannot be a deferred
class, but ...

= ...variables of the type of a deferred class can be used and refer to
objects !

Remember BRICK is a deferred class

a_brick: BRICK
a_lego_brick: LEGO_BRICK

create a_brick (Mrongh

create a_lego brick | Correct! |

a_brick := a_lego_brick | Correct! |

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13

Deferred features

* A deferred feature does not have an implementation yet
= deferred instead of do

e A call to a deferred feature can be written:

= it will only be executed for an instance of an effective (sub)-
class

= there is no way of executing a deferred feature for an
instance of a deferred class, since such an instance can never
be created

Remember BRICK is a deferred class and LEGO BRICK is an
effective sub-class of BRICK

a_brick: BRICK
a_lego_brick: LEGO_BRICK

It is deferred feature for a
a_brick, but since a_brick can

create a [ego brick never be an instance of

. : BRICK , only an instance of
a_brick := a_legO_bl‘le an effective (sub)-class,
there is no problem.

a_brick.volume

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

Class LEGO_BRICK_SLANTED

class
LEGO BRICK _SLANTED

inherit
LEGO_BRICK
Declares previous > redefine
implementation of volume is l
going to be changed. votume
end
feature
volume: INTEGER
The new implementation do
(substitutes the one coming Result := ...
from LEGO_BRICK) end
end

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

15

DEG)
Class LEGO_BRICK_WITH_HOLE

class
LEGO BRICK WITH HOLE

inherit
LEGO_BRICK
Declares previous redefine
implementation of volume is l
going to be changed. votume
: end
feature
volume: INTEGER
The new implementation do
(substitutes the one coming Result := ...
from LEGO_BRICK) end
end

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

Inheritance Notation

Notation:

Deferred *

volume™
Effective +

Redefinition ++

volume+

volume++ volume++

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

Redeclaration of features (1)

Redeclaration is the general term covering various cases:

= Effecting: transforming a deferred feature into an effective

one

undefine meferred one

=

redefine "of 3 deferred or effective feature

Status in parent Effective

Status in heir Effective

; : transforming an effective feature into a

Deferred

Deferred

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

m : changing signature, contract, implementation

18

Redeclaration of features (2)

Redefining an effective feature may change:

= contracts covariance rule: class and feature
: , must both become more specific
= implementation

m [signature (both arguments and result), keeping conformance]

covariance rule: class and }

Effecting a deferred feature may change; /) feature must both become
more specific

= contracts
m [signature (both arguments and result), keeping conformance]

An attribute cannot be redefined as a function

= for performance reasons (implies replacing a simple memory
access with potentially a function call)

A function can be redefined as an attribute

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

Precursor

» If a feature was redefined, but you still wish to call
the old version of the same feature, use the
Precursor keyword (possibly with arguments)

> It has the effect of calling the feature as inherited from
the super class

> Cannot be used to call the inherited version of another
feature (you can call only the inherited version of the
same feature)

> It must be used as an expression or instruction
depending on the kind of feature (query or command)

volume: INTEGER
do
... Precursor ...
end

olce)
Example hierarchy (from Traffic)

a I

FOR CLASSES

T Inherits from - ~__ position

* Deferred: class does not need MOVING update_coordinates

to have deferred features move

Instances cannot be created / (FOR FEATURES R

- ~) Deferred: class does not provide

= > implementation
@ load + Effective: class provides implementation
++ Redefined: class provides a new
definition/implementation
/ \ N)
busy - ~ -
take* w \UNE_ED update_coordinates **

move ™"
.) / \ » + \

" DISPATCHER_ -
- AM BUS
EVENT_TAXI] Q_) Q

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

Features in the example

Feature

take (from_location,
to_location: COORDINATE)

-- Bring passengers
-- from " from_location'

--to "to_location'

busy: BOOLEAN
- Is taxi busy?

load (q: INTEGER)
- Load g ' passengers.

position: COORDINATE
-- Current position on map.

defined in class

EVENT_TAXI
DISPATCHER _TAXI

TAXI

VEHICLE

MOVING

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

22

Inheriting features

/deferred class P
VEHICLE
inherit All features of MOVING are applicable to
MOVING instances of VEHICLE
feature For v: VEHICLE we can write v.move
[... Rest of class ...]
\.end)
/deferred class)
TAXI
) : All features of VEHICLE are applicable to
inherit :
VEHICLE instances of TAXI
feature For t: TAXI we can write t.load
[... Rest of class ...]
\.end y
(class p’
EVENT TAXI
e All features of TAXI are applicable to
TAX] instances of EVENT TAXI
feature For e: EVENT_TAXI we can write e.busy
[... Rest of class ...]

10—E\\end /{f. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

Definitions: kinds of feature

A “feature of a class” is one of:

= An inherited feature if it is a feature of one of the
ancestors of the class.

= An immediate feature if it is declared in the class, and not
inherited. In this case the class is said to introduce the
feature.

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

: : : ©I8
Changing export status of inherited features (1)

A feature of the parent may become interesting to clients
of the descendant

= |ts status will change from secret to exported

A feature of the parent may not be suitable for direct use
by clients of the descendant

= [ts status will change from exported to secret

= For example, feature fly in a class BIRD does not make
sense in the descendant OSTRICH

It is possible to arbitrarily change the export status of
any inherited feature

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

DE0
Changing export status of inherited features (2)

class
AN_HEIR
inherit
A PARENT
export
{class_X, class_Y, ...} feature_A, feature_B, ...
{class_W, class_Z, ...} feature_C, feature_D, ...
end
end

{NONE} make the feature(s) secret
keyword all may be used instead of explicitly listing features

but explicit listing takes precedence over implicit listing by means
of all

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Inherited features

m: MOVING; v: VEHICLE; t: TAXI;
e: EVENT _TAXI; d: DISPATCHER _TAXI

p . %’chese correct?]
e.load (...)

d.take (...)

e.position | -- query

\d.busy) - query . @

take* / \ take™*

EVENT_TAXI

v.busy -- query

Are these correct7

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

update_coordinates

update_coordinates*™”

*
T move™*™"

BUS

27

Polymorphic assignment

v: VEHICLE

a_cab: EVENT_TAXI

a tram: TRAM

v:=a cab

MOre interesting:

if some_condition then
v:=a cab
else

vV:i=a tram
end

\

10-EREDITARIETA

A proper
descendant type of
the original

) (VEHICLE)

a_cab

(8

(EVENT_TAXI)

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

Assignments

Assignment:
target := expression

So far (no polymorphism):

expression was always of the same type as target

With polymorphism:
The type of expression is a descendant of the
type of target

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

Polymorphism is also for argument passing

register_trip|(v: VEHICLE)
do ... end

A particular call:

register_trip|(a_cab)

- \

Type of actual argument is
generally a descendant of
type of formal ,

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Definitions: Polymorphism

An attachment (assignment or argument passing) is
polymorphic if its target variable and source

expression have different types.

An entity or expression is polymorphic if it may at
runtime — as a result of polymorphic attachments —
become attached to objects of different types.

Polymorphism is the existence of these possibilities.

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

10-EREDITARIETA

N : : OO0
Definitions: Static and dynamic type S

The static type of an entity is the type used in its
declaration in the corresponding class text

If the value of the entity, during a particular execution,
is attached to an object, the type of that object is the
entity’s dynamic type at that time

10-EREDITARIETA

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

OO0
Static and dynamic type

/Static type of v:VEHICLE]

v: VEHICLE
a_cab: EVENT_TAXI

v:=a cab
4
" A (VEHICLE)
Dynamic type after this
assignment:
\ EVENT_TAXI 5
a_cab

(8

(EVENT_TAXI)

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33

-
Basic type property

(4 N

Static and dynamic type

The dynamic type of an entity

must conform to its static type

(Ensured by the type system of the compiler)

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34

e tvoi
Static typing

Type-safe call:

A feature call x.f such that any object attached to x
during execution has a feature corresponding to f

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:

A program-processing tool (such as a compiler) that
guarantees, for any program it accepts, that any call in
any execution will be type-safe

Statically typed language:

A programming language for which it is possible to write
a static type checker

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35

QOO0

Type safety and inherited features i

w update_coordinates
move
m: MOVING pd

v: VEHICLE
t: TAXI; .

e: EVENT TAXI busy T T~

d: DISPATCHER_TAXI ~ we ENEVEHICLE D pdate coornates”

move
take™* take* T\
£ Y
it RSN RN
eeload (...

tetake (...)
d.take(...) meload (...)
memove (...) m.take (...)

€eIMoVve (...
| e-move (..)

calls

type-safe]

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 36

Conformance: base definition

/ Basic inheritance type rule

For a polymorphic attachment to be valid,
the type of the source must conform
_ to the type of the target)

Conformance: base definition

Reference types (non-generic):
U conforms to T if U is a descendant of T

An expanded type conforms only to itself

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37

A fictitious inheritance hierarchy

ANY- Predefined

L]
L]

L]
...

o
...
L 4
L]
.....
L]
L]

Classes defined by
the programmer

.
.
.
.
o*
......
....
. . *a
. «]
. - a,
. L]]
'''''
. - Y
. * L]
......
. . Yy
. a,
. ",
. Y

L4
...
L4

]
.....
. .
oy .

b .*

] .

o, *

] .
oy .

*a .®
] .
s .
L4 .

o, .

a, 13
] .

, *

", .

",y «*
LA

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 38

The role of deferred classes

Top-down definition of software architecture without
deciding too early on implementation

only hierarchies of names and contracts

Capturing high-level concepts and their taxonomy in the
application domain

Representing common behaviors and their taxonomy in
libraries

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 39

Deferred classes in EiffelBase

*
c ONTAIN@

7
*

*
COLLECTION TRAVERSABLE

* % *) * o
BAG ' SET IERARCHICAL LINEAR

*) * N * ' *
TABLE ACTIVE INTEGER_ BILINEAR
INTERVA
e 2 '
DISPENSER SEQUENCE

INFINITE

FINITE

%
UNBOUNDED

- ol g:
BOUNDED

%
COUNTABLE ‘

*
INDEXABLE

RESIZABLE CURSOR_

STRUCTURE

- o’ s .
ARRAY STRING HASH_TABLE STACK QUEUE

[* deferred

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40

(@lolco)
A deferred feature

Ine.g. LIST:

forth
require
not after
deferred
ensure
index = old index + 1
end

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 41

Mixing deferred and effective features

In the same class

/ Effective!
ey O)

-- Move to first position after current
-- where x appears, or after if none.

do

from until @or else item = x loop

end

Deferred!
end

“Programs with holes”

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 42

“Program with holes”

A powerful form of reuse:
= The reusable element defines a general scheme

= Specific cases fill in the holes in that scheme

Combine reuse with adaptation

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 43

A more realistic example of inheritance hierarchy

center * display * y
FIG URE rotate”

i perimeter *
- OPEN_ CLOSED
FIGURE FIGURE
/ \ corners /
o . vertices < “perimeter perimeter "
SEGMENT POLYLINE

POLYGON +
/ ELLIPSE
sidel
- RECTANGLE) idc)
TRIANGLE

diagonal
f 2
* deferred I

+ effective perimeter " SQUARE CIRCLE

++ redefined 3 -+
N J perimeter

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 44

perlmeter

Remember the basis of feature redefinition

class B
inherit
A

redefine

f

end

Signature (order, number and types of formal parameters, type of
returned value) of redefinition of fin B must conform to signature of f
in A

Creation procedure must be re-declared (i.e., the create clause in the

ancestors’ code is not inherited) but their definition is inherited. Instead,
default_create doesn't need to be re-declared as creation procedure.

In the implementation of fin B the keyword Precursor (possibly with
arguments) uses A ’s version of f

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 45

OIGIO)
Redefinition 1: CLOSED FIGURE

deferred class CLOSED FIGURE
inherit

FIGURE
feature

perimeter: REAL

display *

rotate™

FIGURE

deferred —
P — perimeter *
end | @G ~ aNGRER
FIGURE »

FIGURE

\ corners / \
. . .
e vertrqe;_ = erimeter perimeter*
POLYLINE POLYGON o

end

_ SEGMENT

-+
ELLIPSE

TRIANGLE diagondl

perimeter ** - e

SQUARE

perimeter **

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 46

goce

display *
rotate”

Redefinition 2: POLYGON “"“”’*@LRE

class POLYGON _ _—

perimeter *

inherit OPEN_ g ——
FIGURE
CLOSED FIGURE FIGURE
corners

create o / \ vertices - erimete:\ perimeter*

make @ @ POLYGON —

ELLIPSE

feature /

vertices: ARRAY [POINT] perimeter "+

J

- idel
. — RECTANGLE) Side;
corners: INTEGER TRIANGLE — diagonal

perimeter: REAL
-- Perimeter length.

dO perimete,—++ 4 SQUARE @
M : ++
from ... until ... loop perimeter
Result := Result + vertices [i] . distance (vertices [i + 1])
end
end vertices [|
invariant

corners >= 3

corners = vertices.count
vertices [i + 1]

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 47

OIGIO)
Redefinition 3: RECTANGLE

class RECTANGLE T E—
inherit conforming Result!

POLYGON

redefine
perimeter

end

create

diagonal
make side2

feature
diagonal, sidel, side2: REAL

perimeter: REAL sidel

-- Perimeter length.
do Result := 2 * (sidel + side2) end
invariant

(vertex count =4]

end

Inherited invariants stil]

holds!

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 48

00
Inheritance, typing and polymorphism

Assume:
p: POLYGON ; r: RECTANGLE ; t: TRIANGLE
x: REAL
Q
Permitted: @ <
X := p.perimeter (POLYGON)

X := r.perimeter
x := r.diagonal

®

(RECTANGLE)

Permitted (independently

from what happens earlier)? Static type checker reveals an unsafe call:
— the target type does not know the feature
X := pdr [<

— ¥ 4
r=p " Source does not conform to
10-EREDITARIETA Rev. 2.4.1 (: the target! ch)

49

0lGI0)
Dynamic binding

What is the effect of the following?

/if some test then\

b

else

p:=t
end

\x := p.perimeter j

Redefinition: A class may change an inherited feature, as with
POLYGON redefining perimeter.

Polymorphism: p may have different forms at run-time.

Dynamic binding: Effect of p.perimeter depends on the run-time

form of p, which determines the executed version of perimeter

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 50

Definitions: Dynamic binding

Dynamic binding (a semantic rule):

=Any execution of a feature call will use the version of
the feature best adapted to the type of the target object

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 51

OO
Binding and typing

(For a call xf)

Static typing: The guarantee that there is at least one
version for f

Dynamic binding: The guarantee that every call will
use the most appropriate version of f

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 52

0110
Without dynamic binding?

display (f: FIGURE)

do
if “fis a CIRCLE” then
elseif “fis a POLYGON” then
end

end

and similarly for all other routines!

Tedious; must be changed whenever there’s a new figure
type

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 53

With inheritance and associated techniques

With:

f: FIGURE
c: CIRCLE
p: POLYGON

«

and:

£

Initialize:

p
if ... then

fi=c

else

f=p

end

-

10-EREDITARIETA

\

create c.make (...)

create p.make (...)

Then just use:

(f.move (...)

f.rotate (...)
f.display (...)

-- and so on for every

-- operation on f!
(&

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

54

[] [] []
Creation and inheritance L2

Assume:
p: POLYGON
t: TRIANGLE
r: RECTANGLE

Right or wrong?:

create f)
Right!
p:=t
create
P Wrong! l
t:=p

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 55

Creation expression and instruction

With p: POLYGON %}p — type]
TRIANGLE
create {TRIANGLE } p ~
it's a creation instruction Must be a subclass |
% (p created with typeJ

p := create {RECTANGLE} — RECTANGLE
it's a creation expression -

The latter is useful for anonymous object creation

Instead of
p := create {RECTANGLE} G eI eCL r?bject}
target.set (p)

Just write

target.set (create {RECTANGLE })

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 56

Be aware!

Assume:
p: POLYGON
t: TRIANGLE
r: RECTANGLE

Right or wrong?:
create {TRIANGLE} p

t:=p

p := create {RECTANGLE}
r:=p

10-EREDITARIETA Rev. 2.4.1(2021-22) di E

Wrong)! l

Wrong! l

nrico Nardelli (basato su touch.ethz.ch)

57

Contracts and inheritance

Issue: what happens, under inheritance, to

= (Class invariants?

= Routine preconditions and postconditions?

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 58

Invariants

Invariant Inheritance rule:

= The invariant of a class automatically includes the invariant
clauses from all its parents

= Remember: all invariant clauses are “AND”-ed.

Accumulated result is visible in flat and interface views.

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 59

Contracts and inheritance

-
((;\/ m require

al: A
.ci'l.r(...) ensure
— \ 8
Standard call in C:
if al.acthen
(oD (8
-- Here al.o holds : e
al.r(...) require
-- Here al.f holds @
d) . ensure
_ en J =client of @
T inherits from

++ redefinition
. J

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 60

Contracts and inheritance p1: B al.r(..)

al: A

x1: X
r
";’: x7 (C\ requ1re

if al.athen \ ensure

-- Here o holds (but the instance needs ¥to hold) @

al.r -- The version of rin Xis executed

end d(\
-- Here ¢ holds (but other code needs fto hold)-

Code matched contracts of rin A and now needs requ1re
to match also contracts of rin X /y has to be weaker

‘4 than a, that is, o
¥has to be stronger or weaker than & to be sure, mustabe stronger | ensure
before the execution of r, that yis implied by a? @
0 has to be stronger or weaker than to be sure,
after the execution of r, that Bis implied by &7 than £, that is,

must be weaker

0 has to be stron/%er]

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 61

Assertion redeclaration rule

When redeclaring a routine, we may only:

= Keep or weaken the precondition

= Keep or strengthen the postcondition

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 62

Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version of contracts in the subclass may have nothing
(assertions kept by default), or

require else new_pre

ensure then new_post

provides one more
possibility: weaker

Resulting assertions in the subclassare:
= original_precondition or else new_precondition

= original_postcondition and then new_postcondition

provides one more
i constraint: stronger
10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Na NG) 63

Inheritance: summary

Type mechanism: lets you organize our data
abstractions into taxonomies

Module mechanism: lets you build new classes as
extensions of existing ones

Polymorphism: Flexibility with type safety

Dynamic binding: automatic adaptation of operation to
target, for more modular software architectures

What we have seen

The basics of fundamental O-O mechanisms:
> Inheritance
> Polymorphism
> Dynamic binding

Characteristic of Eiffel implementation of O-O:
» Static typing

10-EREDITARIETA Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 65

