
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 9: Istruzioni di controllo

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 2

In this lecture

 Basic control structures: sequence, conditional, loop
 Decision structures: variants of conditional

instruction
 Repeating operations: the loop
 Loops as approximation strategy: the loop invariant
 What does it take to ensure that a loop terminates?
 A look at the general problem of loop termination
 Lower-level control structures and the rationale for

the “control structures of Structured Programming”
 Undecidability of the Halting Problem

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 3

The notion of algorithm

General definition:

An algorithm is the specification of a process to be
carried out by a computer

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 4

Not quite an algorithm

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 5

5 properties of an algorithm

1. Defines data to which process will be applied

2. Every elementary step taken from a set of well-specified
actions

3. Describes ordering(s) of execution of these steps

4. Properties 2 and 3 based on precisely defined conventions,
suitable for an automatic device

5. For any data, guaranteed to terminate after finite number of
steps

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 6

Algorithm vs program

“Algorithm” usually considered a more abstract notion,
independent of platform, programming language etc.

In practice, the distinction tends to fade, since:
 Algorithms need a precise notation
 Programming languages becoming more abstract

However:
 In software systems, data (objects) are just as important as

algorithms
 A software system typically contains many algorithms and

object structures

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 7

What makes up an algorithm

Basic actions:

 Feature call x.f (a)

 Assignment
 ...

Sequencing of these basic actions:

CONTROL STRUCTURES

(Actually, not
much else!)

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 8

A control structure
A program construct that describes the scheduling

of basic actions

Three fundamental control structures:
 Sequence
 Loop
 Conditional

They are the

… more at the end of the lecture …

“Control structures of Structured Programming”

Control structures

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 9

Control structures as problem-solving techniques

Sequence:
“To achieve C from A, first achieve an intermediate goal
B from A, then achieve C from B”

Loop:
solve the problem on successive approximations of its
input set

Conditional:
solve the problem separately on two or more subsets of
its input set

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 10

The sequence (or Compound)

instruction 1

instruction 2

...

instruction n

9-CONTROLLO

The empty instruction IS an instruction!

;

;

;

;

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 11

Conditional instruction (full form)

if
Condition

then
Instructions

else
Other_instructions

end

 -- Boolean_expression

 -- Compound

 -- Compound

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 12

A variant of the conditional (short form)

Means the same as
if Condition then

Instructions
else

end

if Condition then
Instructions

end

Empty clause

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 13

The conditional as problem-solving technique

Region 1

Region 2

PROBLEM SPACE

Use technique 1

Use technique 2

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 14

A query computing the greatest of two integers

greater (a, b : INTEGER): INTEGER
-- The higher of a and b.

do

end

if
a > b

then
Result := a

else
Result := b

end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 15

Typical use

i, j, k : INTEGER

…

m := greater (25, 32)

n := greater (i + j, k)

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 16

Better O-O style

later (d : DATE): DATE
-- The latest between Current and d.
do

end

if
d.as_integer > Current.as_integer

then
Result := d

else
Result := Current

end

In a class DATE :

9-CONTROLLO

Modeling a relevant
concept

Feature call on a
target

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 17

A possible variant

later (d : DATE): DATE
-- The latest between Current and d.
do

end

Result := Current

if d.as_integer > Current.as_integer then

Result := d

end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 18

Nesting

if Condition1 then

Instructions 1

else

end

if Condition2 then

Instructions 2

else

end

if Condition3 then

Instructions 3

else

end

. . .

if Condition3 then
Instructions 4

else

end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 19

Nested structure

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 20

Comb-like structure

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 21

Comb-like conditional

if Condition1 then

Instructions 1

elseif Condition 2 then

Instructions 2

elseif Condition3 then

Instructions 3

elseif

...

else
Instructions 0

end9-CONTROLLO

EXACTLY one
among Instructions i
is executed even if

more Condition i are
true

When multiple
Condition i are
true the FIRST
branch is taken

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 22

Independent conditionals

if Condition1 then
Instructions 1

end

if Condition 2 then
Instructions 2

end

if Condition3 then
Instructions 3

end

if
...

end

9-CONTROLLO

Any Instructions i
whose

Condition i is true
is executed

When multiple
Condition i are

true ALL
branches are

taken

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 23

Also available in Eiffel: «Inspect» (Multi-branch)

inspect
choice

when “D” then
 Instructioni

when “F”, “H” then
 Instructionj

when “K”..“M” then
 Instructionk

…
else

 Instruction0

end

CHARACTER or
INTEGER

9-CONTROLLO

interval

multiple choices

Have to be
disjoint,

hence at most
one is

executed...

…or this is
executed.

Compiler
will

complain if
not disjoint.

It's optional but a
runtime exception
is raised if missing

and no other
clause is used

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 24

a detachable STRING

Syntactical variations (1)

A conditional expression is an expression whose value depends
on the result of a conditional instruction
 a_greeting := if time < noon then
 "Good morning"
 else
 "Good afternoon"
 end

Also with the elseif variant
 a_greeting := if time < noon then
 "Good morning"
 elseif time < evening then
 "Good afternoon"
 else
 Void
 end
9-CONTROLLO

if the various
expressions do not
have the same type

their lowest common
ancestor type is used

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 25

Syntactical variations (2)

Works also with the inspect instruction
 a_textual_number := inspect a_number

when 1 then "one"
 when 2 then "two"
 else "do not know"
 end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 26

More control structure topics

 Loops and their invariants

 See what it takes to ensure that a loop terminates

 Look at the general problem of loop termination

 Examine lower-level control structures: “Goto” and
flowcharts; see rationale for the “control structures of
Structured Programming”

 Prove the undecidability of the Halting Problem

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 27

from
Initialization -- Compound

until
Exit_condition -- Boolean_expression

loop
Body -- Compound

end

Loop, short form

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 28

from
Initialization -- Compound

invariant
Invariant_expression -- Boolean_expression

until
Exit_condition -- Boolean_expression

loop
Body -- Compound

variant
Variant_expression -- Integer_expression

end

Loop, full form

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 29

from
Initialization -- Compound

invariant
Invariant_expression -- Boolean_expression

variant
Variant_expression -- Integer_expression

until
Exit_condition -- Boolean_expression

loop
Body -- Compound

end

Loop, full form (old syntax)

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 30

Another loop syntax

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 31

from
Instructions

until
Condition

loop
Instructions

end

Forms of loop (in different languages)

while Condition do
Instructions

end

repeat
Instructions

until
Condition

end
for i : a..b do

Instructions
end

for (Instruction; Condition; Instruction) do

Instructions
end9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 32

Operations on a list

item

before after

count

forth

index

start

Commands

Queries

(boolean)

1

(The cursor)

9-CONTROLLO

LINKED_LIST (predefined class in Eiffel Studio)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 33

Moving in a list

item

before after

count

forth

index

start

(The cursor)

1

9-CONTROLLO

LINKED_LIST (predefined class in Eiffel Studio)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 34

A feature looking for
an element in a list

A problem with the cursor

For my_list instance of LINKED_LIST

has_duplicates: BOOLEAN
-- Has my_list duplicate values?

local
s : LINKABLE

do
from

my_list.start
until

my_list.after or Result
loop

s := my_list.item
my_list.forth
-- Check if s occurs again in the line:
my_list.search (s)
Result := not my_list.after

end
end

 search moves the cursor
to the position of s

or to after

The position of the internal cursor
must always be saved and restored

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 35

Adding an external cursor

“AA”

before after

countindex

start

1

(A real object)

3

“FF”

5

Another cursor
pointing on the
same List

9-CONTROLLO

The cursor

index

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 36

The new cursor can
be moved with start

and forth

Iterating over all items in a list (2)

The cursor variable The same type of
my_listnew_cursor

A newly generated
pointer pointing to
the first element

Using an external cursor:

9-CONTROLLO

Also the new cursor
has this feature

returning its status

local
c : like my_listnew_cursor

do
from

c := my_listnew_cursor
until

cafter
loop

-- “Do something with citem”
cforth

end
end

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 37

Save the cursor

The solution with external cursor

has_duplicates: BOOLEAN
-- Has my_list duplicate values?

local
s : LINKABLE
c : like my_list.new_cursors

do
from

my_list.start
until

my_list.after or Result
loop

s := my_list.item
my_list.forth
-- Check if s occurs again in the line:
c := my_list.cursor
my_list.search (s)
my_list.go_to (c)
Result := not my_list.after

end
end

9-CONTROLLO

Restore the cursor

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 38

Looping over all list items

For my_list instance of LINKED_LIST

from
my_list.start

until
my_list.after

loop
-- “Do something with my_list.item”
-- Display current item

my_list.forth
end

9-CONTROLLO

print(my_list.item)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 39

For my_list a list of REAL, instance of LINKED_LIST, and
REAL has a greater feature

feature
 highest_value_in_list: REAL

 do
 from
 my_list.start
 until
 my_list.after
 loop

 Result := item.greater (Result)
 my_list.forth
 end

A feature finding the maximum in a list of reals (1)

9-CONTROLLO

The greater of two values, e.g.

greater (8.5, 10.2) = 10.2

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 40

Iterating over all items in a list (3)

across
my_list as ml

loop
-- “Do something with mlitem”

end

The same effect as the previous version, but shorter!
Key points:
• iterates over all elements of the list
• defines a new cursor (allows multiple concurrent

iterations of the same structure)
It's not yet part of the Eiffel Standard definition
9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 41

For my_list a list of REAL, instance of LINKED_LIST, and
REAL has a greater feature

feature
 highest_value_in_list: REAL

 do
 across
 my_list as ml
 loop
 Result := mlitemgreater (Result)
 end

A feature finding the maximum in a list of reals (2)

9-CONTROLLO

The greater of two values, e.g.

greater (8.5, 10.2) = 10.2

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 42

Comparison between the two versions

across
 my_list as ml

loop
 Result :=

 ml.item.greater (Result)

end

from

 my_list.start

until

 my_list.after

loop

 Result :=

 my_list.item.greater (Result)

my_list.forth
end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 43

Expressions iterating over all elements of a list

across
my_list as ml

loop
-- “Do something with mlitem”

end

Remember it's an instruction, but it has also two expression variants
yielding a boolean value (only for objects of ITERABLE type):

 across my_list as ml all mlitem > 0 end
true if and only if all elements are positive.

 across my_list as ml some mlitem > 0 end
true if and only if at least one is positive.

Useful in invariants, but also in other contexts
Remember these are expressions and cannot stand on their own
9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 44

Loop as approximation strategy

value 1 value 2 value i value n

Result = value 1

Result = Max (values 1 2)

Result = Max (values 1 i)

Result = Max (values 1 n)

= Max (values 1 1)
 Result := my_list.item.greater (Result)
 i := i + 1
 Result := my_list.item.greater (Result)
 i := i + 1

Loop body:Loop body:

..

..

..

..

Slice

9-CONTROLLO

The loop
invariant

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 45

do
from

my_list.start

until

my_list.after
loop

 Result := my_list.item.greater (Result)

my_list.forth

end

end

Computing the maximum: postcondition?

9-CONTROLLO

ensure
 -- Result is the greatest among all values

How to implement it?

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 46

do
from

my_list.start

until

my_list.after
loop

 Result := my_list.item.greater (Result)

my_list.forth

end

end

Computing the maximum: invariant?

9-CONTROLLO

ensure
across my_list as ml all ml.item.value <= Result

Invariant ???

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 47

Loop invariant

(Do not confuse with class invariant)

It is a property that:

 Is true after initialization (from clause)

 Is preserved by every loop iteration (loop clause), i.e. is true
at the end of each loop iteration

 Hence it's true also after the last loop iteration

 Ensures the desired result when the exit condition (until
clause) becomes true9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 48

The loop invariant

9-CONTROLLO

What is always true for
the set of previous values?

from

my_list.start

until

my_list.after
loop

 Result := my_list.item.greater (Result)

my_list.forth
end

ensure
across my_list as ml all ml.item <= Result

invariant
-- Result is the greatest among previous values

my_list.index >= 1
my_list.index <= my_list.count

Something is
missing?

How to parametrically describe the
set of previous values?

+ 1

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 49

How the loop invariant works

.
The possible solution(s)

The state before the
start of the loop

The initialization

The set of
loop states

9-CONTROLLO

The domain defined
by the invariant

The domain defined
by the exit condition

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 50

from

my_list.start

until

my_list.after
loop

 Result := my_list.item.greater (Result)

my_list.forth
end

The loop invariant

9-CONTROLLO

ensure
across my_list as ml all ml.item <= Result

invariant
-- Result is the greatest among previous values

my_list.index >= 1
my_list.index <= my_list.count + 1

equivalent to Result = Max (values 1 . . index-1)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 51

from
 my_list.start

until
 my_list.after

loop

 Result := my_list.item.greater (Result)

 my_list.forth
end

The effect of the loop

At the end: invariant and exit condition implies:
• all items visited (after)

• Result is the greatest value

Exit condition
satisfied at end

Invariant satisfied
after each iteration

Invariant satisfied after
initialization

9-CONTROLLO

invariant
-- Result is the greatest among previous values

my_list.index >= 1
my_list.index <= my_list.count + 1

equivalent to Result = Max (values 1 . . index-1)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 52

from
my_list.start

invariant
my_list.index >= 1
my_list.index <= my_list.count + 1
-- If there is any previous item,
-- Result is the greatest of them

until
my_list.after

loop
Result := my_list.item.greater (Result)

end
my_list.forth

How do we know a loop terminates?

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 53

Loop variant

Integer expression that must:

 Be non-negative after initialization (from)
• it's always checked after initialization even if no

execution of the body takes place

 Decrease (i.e. by at least one), while remaining non-
negative, after every iteration of the body (loop)

 Be non-negative right after exit (until)

 Nice if it's 0 (zero) after exit but it's NOT needed

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 54

from
my_list.start

invariant
my_list.index >= 1
my_list.index <= my_list.count + 1
-- If there is any previous item,
-- Result is the greatest of them

until
my_list.after

loop
Result := my_list.item.greater (Result)

my_list.forth
variant

end
 my_list.count − my_list.index + 1

The variant for our example

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 55

variant
integer_expression

invariant
assertion

until
boolean_expression

loop
compound

across
expression as identifier

from
compound

The most general form for a loop instruction

9-CONTROLLO

optional

optional

Required in absence
of across, may be
used with across

Requires an ITERABLE

At least one is needed,
both may be present

Always present

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 56

An example of LOOPing across ITERABLEs

For class INTEGER the operator |..| provides an interval,
e.g. 6 |..| 9 denotes the closed interval 6,7,8,9
An interval of integers is an ITERABLE
Hence it's possible to iterate across integer intervals like
in this example

across 6 |..| 9 as ic
loop

print (ic.item.out + "%N")
end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 57

Another example of LOOPing across ITERABLEs

Cursors of LINKED_LIST are also ITERABLE
Then it's possible to use them to iterate across lists in
ways different from the standard one.
For my_list a list of STRING istance of LINKED_LIST we
can write

across my_list.new_cursor.reversed as ml
loop

print (ml.item + "%N")
end

to print the string in the list in reversed order

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 58

For my_list a list of STRING we want to count how many strings
there are before a "stop" string

across my_list as ml

from

sum := 0

until

ml.item ~ "stop"
loop

sum := sum + 1
end

An example using both across and from

9-CONTROLLO

Combines the automatic iteration
across the entire list with the

possibility of an early exit

The presence of across avoid
the need to explicitly write

start, after, and forth

What if "stop"
is not found?

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 59

all
boolean_expression

some
boolean_expression

across
expression as identifier

The most general form for a loop expression

9-CONTROLLO

Only one of these

Requires an ITERABLE

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 60

What happens at the machine level?

Unconditional branch:
BR label

Conditional branch:

 BZ label_true label_false

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 61

The equivalent of if-then-else

062 BZ 111 082

082 ... Code for Compound_2 ...
BR 125

111 ... Code for Compound_1 ...

125 ... Code for continuation of program ...

if a = 0 then Compound_1 else Compound_2 end

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 62

“Goto considered harmful”

Dijkstra, 1968
Arbitrary Goto instructions lead to messy, hard to maintain programs
(“spaghetti code”)

Böhm and Jacopini theorem: any program
that can be expressed with goto
instructions and conditionals can also
be expressed without gotos, using
sequences and loops

For an example of transformation see
Touch of Class

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 63

Almost universally decried
Still exists in some programming languages
Also hides under various disguises, e.g. break

for
...
if c then break end
...

end

Stay away from goto in any form!

The Goto today

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 64

In programming languages: the Goto

test condition goto else_part

Compound_1

goto continue

else_part : Compound_2

continue : ... Continuation of program ...

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 65

Always use 1-entry 1-exit control structures!

One-entry, one-exit

9-CONTROLLO

(Compound) (Loop) (Conditional)

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 66

The general termination problem

Can EiffelStudio find out if your program will terminate?

No, it can’t 

No other program, for any other realistic programming

language, can!   

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 67

The halting problem and undecidability

(“Entscheidungsproblem”, Alan Turing, 1936.)

It is not possible to devise an effective procedure that
will find out if an arbitrary program will terminate on
arbitrary input

(or if an arbitrary program with no input will terminate)

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 68

The halting problem in Eiffel (1)

Assume we have a feature in a root class TURING

terminates (file_name : STRING): BOOLEAN
-- Does program in file file_name terminate?

do
... Your algorithm here ...

end

It returns true if program stored in file_name terminates

And then …

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 69

The halting problem in Eiffel… (2)

Write the following root procedure for the class TURING stored
in /usr/home/turing.e:

what_do_you_think
-- Terminate only if not.

do
from
until

not terminates (“/usr/home/turing.e”)
loop
end

end

What would happen when you run it?

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 70

Paradoxes in logic

The Russell paradox
 Some sets are members of themselves, e.g. the set T of all infinite

sets is infinite, i.e. T contains T
 Others are not members of themselves, e.g. the set F of all finite

sets is not finite, i.e. F does not contain F
 Consider now the set S of all sets that are not members of

themselves
• Is S inside S? If yes its definition would be wrong (the not part)
• Is S outside S? If yes its definition would be wrong (the all part)

The barber paradox (Russell)
 In various cities some inhabitants do their own hair and some use

one of the many hairdressers
 In Rome, while some inhabitants do their own hair, there is a single

hairdresser, who is defined as the person who does the hair of all
the inhabitants who do not do their own hair

 Who does Rome hairdresser's hair?

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 71

The liar’s paradox

The oldest (600 aC) version (but not a paradox!)

Epimenides is Cretan and says: “All Cretans are liars”
If we assume Epimenides’ sentence is true

then “All Cretans are liars” would imply Epimenides (a Cretan!) is a liar,
hence Epimenides’ sentence would be false: a contradiction.

However, if we assume Epimenides’ sentence is false, this woud imply some
Cretans tell the truth (not Epimenides!) and some are liars (Epimenides!)

Hence Epimenides’ sentence has a non-contradictory interpretation

A later (400 aC) version (a true paradox!)

A person says: “I am lying”.
If the sentence is true then she is lying, then the sentence “I am lying” must be

false,
then the person is telling the truth, hence she is not lying: a contradiction

If the sentence is false then she is not lying, then the sentence “I am lying” must
be true,
then the person is not telling the thruth, hence she is lying: a contradiction

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 72

The Grelling paradox

An adjective in English is defined to be:
 “Autological” if it holds for itself / describes itself (e.g. “polysyllabic”)
 “Heterological” if it does NOT describe itself

What is the status of adjective "Heterological"?
 It should be “Autological” but it cannot be “Autological” by its definition
 It cannot be “Heterological” by its definition

Other forms: are the following sentences true or not?

This sentence does not speak about itself

It’s false that this sentence appears in red

This sentence is false

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 73

The halting problem in practice

Some programs must not terminate
e.g.: operating systems

Some programs should terminate in all cases

If they don’t ... that’s a bug!

Use variant to ensure loop termination

The undecidability of the halting problem does not
prevent to prove that a specific program can terminate

9-CONTROLLO

Rev. 2.7.1 (2024-25) di Enrico Nardelli (basato su touch.ethz.ch) 74

What we have seen

Iteration in Eiffel
 Loop
 Across
 Inspect

GoTo and structured programming

Undecidability of the halting (and some paradoxes)

9-CONTROLLO

	Fondamenti della Programmazione: Metodi Evoluti Prof. Enrico N
	In this lecture
	The notion of algorithm
	Not quite an algorithm
	5 properties of an algorithm
	Algorithm vs program
	What makes up an algorithm
	Control structures
	Control structures as problem-solving techniques
	The sequence (or Compound)
	Conditional instruction
	A variant of the conditional
	The conditional as problem-solving technique
	A query computing the greatest of two integers
	Typical use
	Better O-O style
	A possible variant
	Nesting
	Nested structure
	Comb-like structure
	Comb-like conditional
	Independent conditionals
	Also available in Eiffel: «Inspect» (Multi-branch)
	Syntactical variations (1)
	Syntactical variations (2)
	More control structure topics
	Loop, short form
	Loop, full form
	Loop, full form (old syntax)
	Another loop syntax
	Forms of loop (in different languages)
	Operations on a list
	Moving in a list
	A problem with the cursor
	Adding an external cursor
	Iterating over all items in a list (2)
	The solution with external cursor
	Looping over all list items
	Computing the maximum of a list of values
	Iterating over all items in a list (3)
	Diapositiva 41
	Comparison
	Iterating over all elements of a list
	Loop as approximation strategy
	Computing the maximum: postcondition?
	Computing the maximum: invariant?
	Loop invariant
	The loop invariant
	How the loop invariant works
	The loop invariant (2)
	The effect of the loop
	How do we know a loop terminates?
	Loop variant
	The variant for our example
	The most general form for a loop instruction
	An example of LOOPing across ITERABLEs
	Another example of LOOPing across ITERABLEs
	An example using both across and from
	The most general form for a loop expression
	What happens at the machine level?
	The equivalent of if-then-else
	“Goto considered harmful”
	The Goto today
	In programming languages: the Goto
	One-entry, one-exit
	The general termination problem
	The halting problem and undecidability
	The halting problem in Eiffel (1)
	The halting problem in Eiffel… (2)
	Paradoxes in logic
	The liar’s paradox
	The Grelling paradox
	The halting problem in practice
	What we have seen

