
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 7: Creazione e Void Safety

Identifiers, entities, variables

An identifier is a name chosen by the programmer to
represent certain program elements
It may denote :

 A class, e.g. ACROBAT
 A feature, e.g. count
 A run time value, such as an object or object reference, e.g.

mario

An identifier that denotes a run-time value is called an
entity, or a variable if it can change its value

During execution an entity may become attached to an
object

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 2

class ACROBAT

feature
clap (n: INTEGER)

-- Clap `n’ times and forward to copycat.
do

-- “Clap n times”

buddy.clap(n)

end

… … … … … … …

buddy : COPYCAT
-- the copycat of this acrobat

end

ACROBAT

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 3

Reference to an object

During execution, a reference is either:

•Attached to a certain object

•Void

States of a reference

 To denote a void reference: use the reserved word Void

 To find out if x is void, use the condition

x = Void

 Inverse condition (x is attached to an object):

x /= Void

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 4

Entity attached to an object

In the program: an entity, such as mario

In memory, during execution: an object

OBJECT

(COPYCAT)

reference FIELDS

(ACROBAT)

Generating class

OBJECT

Generating class

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 5

buddy

…

…

mario mariuccio

By default

Initially, buddy is not attached to any object: its value is
a void reference

OBJECT

buddy
void reference

(ACROBAT)

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 6

mario

The trouble with void references

The basic mechanism of computation is feature call

x f (a, …)

Since references may be void, then x might be attached to no
object

The call is erroneous in such cases

Apply feature f

To object to which x is attached

Possibly with arguments

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 7

class ACROBAT

feature
clap (n: INTEGER)

-- Clap `n’ times and forward to copycat.
do

-- “Clap n times”

buddy.clap(n)

end

… … … … … … …

buddy : COPYCAT
-- the copycat of this acrobat

end

Example: call on void target

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 8

If buddy is Void this is a Void
reference

Exceptions

They are abnormal events during execution. For example:
 “Void call”: buddy clap

where buddy is void
 Attempt to compute a / b where b has value 0

A failure will happen unless the program has code to
recover from the exception (“rescue” clause in Eiffel,
“catch” in Java)

Every exception has a type, appearing in EiffelStudio
run-time error messages, e.g.

 Feature call on void reference (i.e. void call)
 Arithmetic underflow

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 9

In an instance of ACROBAT, may we assume that buddy
is attached to an instance of COPYCAT?

(COPYCAT)

reference

Where does this one
come from?

This object has been created

Initial state of a reference

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 10

(ACROBAT)

buddy

…

…

Why do we need to create objects?

Couldn’t we assume that a declaration

buddy : COPYCAT

creates an instance of COPYCAT and attaches it
to buddy?

(Answer in a little while…)

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 11

Is Void necessary?

(PERSON) (PERSON)

Void references are useful

Consider a representation for married persons:

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 12

spouse spouse

Void references are useful

(PERSON)

We need a Void reference to represent an unmarried person:

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 13

spouse

Void references are useful

(PERSON) (PERSON)

spouse

Even when representing only married persons...

... we shouldn’t create an object for spouse every time we create
an instance of PERSON

(why?)

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 14

spouse

Using void references

(PERSON)

Create every PERSON object with a void spouse

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 15

spouse

Using void references

(PERSON) (PERSON)

spouse spouse

Create every PERSON object with a void spouse

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 16

Using void references

(PERSON) (PERSON)

spouse

Create every PERSON object with a void spouse

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 17

... then attach the spouse references as desired, through
appropriate instructions

spouse

Using void references

(PERSON) (PERSON)

Create every PERSON object with a void spouse ...

... then attach the spouse references as desired, through
appropriate instructions

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 18

spouse spouse

Using void references

(PERSON) (PERSON)

Create every PERSON object with a void spouse ...

... then attach the spouse references as desired, through
appropriate instructions

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 19

spouse spouse

References to linked structures

To terminate the list, last next reference is void

(STOP)

next

(STOP)

next

(STOP)

next

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 20

Object creation

Every entity is declared with a certain type:

mariuccio: COPYCAT

A creation instruction

create mariuccio

produces, at run time, an object of that type.

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 21

To avoid exception

Create and assign referenced object as soon as a
referencing object is created:

create mario

create mariuccio

mario.pair(mariuccio)

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 22

To be helped not to forget assignment one might also thought
to add an invariant to the class:

invariant
buddy_exists: buddy /= Void

Try it: what happens?

Creating and assigning
referenced object

Creating referencing object

A better approach: creation procedures

Declare pair as a creation procedure and merge
initialization with creation:

create mario.pair (mariuccio)

-- Same effect as previous two last instructions

Convenience: initialize upon creation
Correctness: ensure invariant right from the start

Creation procedures are also called constructors

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 23

Creation principle

This allows the author of the class to force proper
initialization of all instances that clients will create.

If a class has a non-trivial invariant, it must list one or

more creation procedures, whose purpose is to ensure that

every instance, upon execution of a creation instruction,

will satisfy the invariant

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 24

Creation procedures

Even in the absence of a strong invariant, in creation
procedures it is useful to combine creation with
initialization:

class POINT create
default_create, make_cartesian, make_polar

feature
…

end

Valid creation instructions:

create your_point.default_create

create your_point
create your_point.make_cartesian (x, y)
create your_point.make_polar (r, t)

Inherited by all classes, by default does nothing

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 25

Object creation: summary
To create an object:

 If class has no create clause, use basic form:
create x

 If the class has a create clause listing one or more procedures,
you must use

create x.make (…)
where make is one of the creation procedures, and (…) stands for
arguments if any.

 A creation procedure is just a regular feature whose name is
listed in the create clause

 To be able to use also the basic form, the create clause must list
also default_create

 A creation procedure is used to ensure values of just created
object's attributes are properly initialized

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 26

Correctness of an instruction

For every instruction we must know precisely, in line
with the principles of Design by Contract:

 How to use the instruction correctly: its precondition.
 What we are getting in return: the postcondition.

Together, these properties (plus the invariant) define
the correctness of a language mechanism.

What is the correctness rule for a creation instruction?

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 27

Correctness of a creation instruction

Creation Instruction Correctness Rule

Before creation instruction:
1. Precondition of its creation procedure, if any, must

hold

After creation instruction with target x of type C :
2. x /= Void holds
3. Postcondition of creation procedure holds
4. Object attached to x satisfies invariant of C

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 28

Successive creation instructions

The correctness condition does not require x to be void before
creation:

-- Here x needs not to be void
create x

-- Here x is certainly not void
create x

-- Here the object previously attached to x is lost

x
object created by the first
create

object created by the second
create

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 29

Effect of creation instruction

 x won’t be void after creation instruction (whether or not it
was void before)

 If there is a creation procedure, its postcondition will hold for
newly created object

 The object will satisfy the class invariant

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 30

Objects and references

States of a reference:

N.B.: No need to create p to assign q to p !

VOID ATTACHED

create p
OR

p := q (where q is attached)

p := Void
OR

p := q (where q is void)

p ATTACHED

p VOID

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 31

The trouble with void references (once again)

The basic mechanism of computation is feature call

x f (a, …)

Since references may be void, then x might be attached to no
object

The call is erroneous in such cases

Apply feature f

To object to which x is attached

Possibly with arguments

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 32

The inventor of null references

I call it my billion-dollar mistake. It was the invention of the
null reference in 1965.
At that time, I was designing the first comprehensive type
system for references in an object oriented language (ALGOL
W).
My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by
the compiler.
But I couldn't resist the temptation to put in a null reference,
simply because it was so easy to implement.
This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion dollars
of pain and damage in the last forty years.

By Tony Hoare, 2009

337-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Problems of void-calls

Entities are either
 Attached: referencing a valid object
 Detached: Void (or null)

Calls on detached entities cause a runtime error
Runtime errors are bad...

34

How can we prevent this problem?

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Solution to void-calls

Statically attached: property (referencing a valid object)
that can be determined at compile-time
Dynamically attached: property (referencing a valid
object) that can be determined at run-time
If we ensure consistency, that is if we ensure that:

then the solution to void calls is:

35

A call f.x (...) is only allowed,
if f is statically attached.

If f is statically attached, its possible runtime
values are dynamically attached.

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Void calls: the full story (1)

• In ISO Eiffel, void calls do not happen any more
thanks to the notion of attached type.

• A type declared in the normal way, say CITY, is called
an attached type and guaranteed to prevent void
references.

• Types representing objects from the application domain
usually should be attached and hence exclude void:
there is no such thing as a void city.

• A type only allows void references if it is declared
with the detachable keyword, as in

s: detachable STOP

• Types representing linked data structures generally
must support void values.

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 36

Void calls: the full story (2)

• Guaranteeing the absence of void calls relies on two
complementary techniques:

• If an entity x is of an attached type, it must have an
associated initialization mechanism (not Void) so that
before its first use in a call x.f (…) it will have been attached
to an object.

• If x is of a detachable type, any call x.f (…) must occur in a
context where x is guaranteed to be non-void, for example if
x /= Void then x.f (…) end

• The compiler rejects any x.f call where x could be void in
some execution

• In the course we sometime use the old rules
• The compiler will in many cases accept old code

• When it does reject code, this generally reflects a real
problem

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 37

Attachment for types (1)

Can declare type of entities as attached or detachable
 att: attached STRING
 det: detachable STRING

Attached types
 Can call features without control: att.to_upper
 Can be assign to detachable: det := att
 Cannot be set to void: att := Void

Detachable types
 No feature calls without control: det.to_upper
 Cannot be assign to attached: att := det
 Can be set to void: det := Void

387-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Attachment for types (2)

Default initial value
 Detachable: Void
 Attached: explicit assignment

Initialization rules for attached types
 Attributes: at end of each creation routine
 Locals: before first use
 Compiler uses control-flow analysis

Types without attachment clause
 Default interpretation can be set in project settings
 Default for void-safe projects is attached

397-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Certified attachment patterns (CAP)
 For local entities (formal arguments and local entities)
 Code pattern where attachment is guaranteed
 if x /= Void then x.f end

(where x is a local)

Object Test
 Assign result of arbitrary expression to a local
 Boolean value indicating if result is attached
 if attached x as l then l.f end

We shall look at them in more detail…

Safe use of detachable types

407-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

What is a CAP?

The Eiffel standard (2nd edition, June 2006) defines a
CAP as follows:

A Certified Attachment Pattern (or CAP) for an
expression exp whose type is detachable is an
occurrence of exp in one of the following contexts:
1. exp is an Object-Test Local and the occurrence is
in its scope.
2. exp is a read-only entity and the occurrence is in
the scope of a void test involving exp.

417-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Certified attachment pattern (CAP)

Code patterns where attachment is guaranteed
Basic CAPs for locals and arguments

 Setting value on creation
 Void check with conditional or semi-strict operator

42

capitalize (a_string: detachable STRING)

do

if a_string /= Void then

a_string.to_upper

end

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Testing in preconditions, code, postconditions

Does testing in pre-conditions provide a CAP?

43

capitalize (a_string: detachable STRING)

require

a_string /= Void

do

. . .

if a_string /= Void then

a_string.to_upper

end

ensure

attached a_string as s implies s.is_upper

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

contract checking can be disabled
at run-time

Static analysis can guarantee this
test is executed

Object test (1)

Checking attachment of an expression (and its type)
Assignment to a read-only local variable, not declared
and only available in one branch
Object test must be used for attributes, see why…

44

name: detachable STRING

capitalize_name

do

if name /= Void then

.

name.to_upper

end

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Other instructions might make
name void

if attached name as n then
.
n.to_upper

end n cannot be reassigned

Object test (2)
What to do if Object Test fails? Take appropriate actions in the else
branch of if (if empty nothing is done and the program continues)
A variant of check instruction will raise an exception (there is no else
branch and if the Object Test fails the program stops)
It's not yet part of the Eiffel Standard definition

45

name: detachable STRING

capitalize_name

do

.

check attached name as n then

name.to_upper

end

.

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Contract that can never be turned off,
even in the finalized version

The general form is
check <assertion> then
<compound>

end

Object test (3)

Must be used also:
in assertions
in class invariants

(in these cases if instruction cannot be used)

46

name: detachable STRING

capitalize_name

do

...

ensure

attached name as n implies n.is_upper

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Can NOT be used
name /= Void implies name.is_upper

since it does not bind name to a read-only identifier
(the compiler will reject it as non void-safe)

It is worthwhile to discover static errors

Relative cost to fix a bug
Source: Boehm 81

0

10

20

30

40

50

60

70

Requirements Design Code Development
Testing

Acceptance
Testing

Operation

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch) 47

References

Eiffel documentation on void-safety
 http://docs.eiffel.com/book/method/void-safe-programming-eiffel

Avoid a Void: The eradication of null dereferencing
 http://s.eiffel.com/void_safety_paper

487-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Side note on object tests

Object test can also be used to make a type cast
The test is True, if object conforms to specified type
Local variable will have specified type

49

name: detachable ANY

capitalize_name

do

if attached {STRING} name as l_name then

l_name.to_upper

end

ensure

attached {STRING} name as n implies n.is_upper

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Stable attributes

Detachable attributes which are never set to void
They are initially void, but once attached will stay so

50

name: detachable STRING

note

option: stable

attribute

end

capitalize_name

do

if name /= Void then

name.to_upper

end

end

7-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

Arrays

Arrays can have more storage space then elements
Empty storage space filled with default values
What is the default for attached types?

 a: attached ARRAY [attached STRING]

See Array demo

517-CREAZIONE Rev. 2.3.1 (2020-21) di Enrico Nardelli (basato su touch.ethz.ch)

