
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Esercitazione 4

Class invariants explained in 60 seconds

Consistency requirements for a class
Established after object creation
Hold

 Before any feature execution (like pre-conditions)
 After any feature execution (like post-conditions)

class
ACCOUNT

feature
balance: INTEGER

invariant
balance >= 0

end

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 2

Pay attention to class invariants!

 Class invariants
 Marriage problems
 Violating the invariant

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 3

Allow creation of a
PERSON with a Void
reference to spouse

Modeling people and marriage

class
PERSON

feature
name: STRING

-- name of Current.

spouse: detachable PERSON
-- Spouse of Current.

marry (a_other: PERSON)
-- Marry `a_other’.

do
end

end

class
MARRIAGE

create
make

feature
make

local
alice: PERSON
bob: PERSON

do
create alice
create bob
bob.marry (alice)

end
end

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 4

Do they compile correctly in
Void Safe mode?

Let's remember to use creation procedures

class
MARRIAGE

feature
make

local
alice: PERSON
bob: PERSON

do
create alice.set_name(“Alice”)
create bob.set_name(“Bob”)
bob.marry (alice)

end
end
ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 5

Let's remember to use creation procedures

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 6

class
PERSON

create
set_name

feature
name: STRING

-- name of Current.
set_name (a_name: STRING)

-- assign name
do name := a_name
ensure name = a_name
end

spouse: detachable PERSON
-- Spouse of Current.

marry (a_other: PERSON)
-- Marry `a_other’.

do
end

end

Write the contracts

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
??

ensure
??

invariant
??

end
ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 7

Here a_other must be attached to an
instance of PERSON

A possible solution
class PERSON
feature

name: TEXT
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
spouse = Void
a_other.spouse = Void
a_other /= Current

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 8

Implementing marry (1)
class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do
??
??

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end
ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 9

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do
a_other.spouse := Current
spouse := a_other

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end

Implementing marry (2)

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 10

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do
a_other.spouse := Current
spouse := a_other

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end

Implementing marry (3)

Compiler Error:

No assigner
command

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 11

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do

spouse := a_other
ensure

spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end

a_other.set_spouse (Current)

Implementing marry (4)

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 12

set_spouse (a_other: PERSON)
do spouse := a_other
ensure spouse = a_other
end

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other is attached hence cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do

spouse := a_other
ensure

spouse = a_other
a_other.spouse = Current

end

invariant
attached spouse as s implies s.spouse = Current

end

a_other.set_spouse (Current)

Implementing marry (5)

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 13

set_spouse (a_other: PERSON)
do spouse := a_other
ensure spouse = a_other
end

Invariant of a_other?

Violated after call to
set_spouse

What happened?

In MARRIAGE class: bob.marry (alice)

In marry feature: a_other.set_spouse (Current)
In PERSON class:

attached spouse as s implies s.spouse = Current

During execution of marry for Bob, set_spouse is

executed for Alice and set Alice.spouse to Bob value.
When set_spouse ends the class invariant is checked for

Alice. Alice.spouse is attached to Bob but Bob.spouse
value is not Alice and the invariant is violated

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 14

Violating the class invariant

When one first changes spouse of a_other, then - after
the execution of a_other.set_spouse terminates – the class
invariant is checked for a_other and found violated

Instead, if one first changes spouse of Current, then
right after execution of spouse := a_other no invariant is
checked (since only a Current’s attribute is modified)
hence it’s possible to update a_other status so as to keep
class invariants true for both objects

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 15

class PERSON
feature

name: STRING
spouse: detachable PERSON
marry (a_other: PERSON)

require
-- NB a_other by definition cannot be Void
a_other.spouse = Void
spouse = Void
a_other /= Current

do

ensure
spouse = a_other
a_other.spouse = Current

end

feature {PERSON}
set_spouse (a_other: PERSON)

do spouse := a_other
ensurespouse = a_other
end

invariant
attached spouse as s implies s.spouse = Current

end

Implementing marry (6)

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 16

Divorcing?
local

bob, alice: PERSON

do

create bob; create alice

bob.marry (alice)

-- let's implement divorce as

bob.set_spouse (Void)

alice.set_spouse (Void)

-- the argument has to be detachable…

-- does it make sense?!?

-- let’s try and see what happens…

end

spouse := a_other
a_other.set_spouse (Current)

Class invariant violation during divorce

Executing Bob.set_spouse(Void) keeps class invariant true
for Current, that is Bob, since antecedent is false. Makes the
invariant false for Alice, but system does not become aware
of it

 class invariants are checked for an object only before and after
the qualified call of a feature on the object itself

 class invariants are NOT checked for a given object
 inside the execution of any of its features
 if other features on the same object are called in an

unqualified way
 if features of other objects of the same class are called (but

invariants are checked on called objects!)

When starting Alice.set_spouse(Void), the class invariant
is checked for Alice and found violated
Changing the order of execution does not solve the problem
ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 17

Ending the marriage
class PERSON
feature

name: STRING
spouse: detachable PERSON
divorce

require
spouse /= Void

do
spouse := Void
if attached spouse as s then s.set_spouse (Void) end

ensure
spouse = Void

end

invariant
attached spouse as s implies s.spouse = Current

end

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 18

Is the order of instructions
correct?

Let’s see… N.B.: just one
invocation of divorce is needed

There is a problem…

Setting first the value of Current.spouse to Void makes
the call spouse.set_spouse useless: it is not executed since
the if attached test fails and the Void call is not issued

Class invariant is checked after Bob.divorce and is
found satisfied since its antecedent is false

But if Alice is accessed then its class invariant is found
violated

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 19

How to solve it

For divorcing one has to first to set the value of
spouse.spouse to Void and then to set the value of
Current.spouse to Void
Class invariant for spouse object

 is checked after spouse.set_spouse(Void) ends
 is satisfied since the antecedent is false

Class invariant for Current object
 is NOT checked after spouse.set_spouse(Void) ends
 is checked at the end of divorce

 is satisfied since the antecedent is false

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 20

Ending the marriage
class PERSON
feature

name: STRING
spouse: detachable PERSON
divorce

require
spouse /= Void

do
if attached spouse as s then s.set_spouse (Void) end
spouse := Void

ensure
spouse = Void

end

invariant
attached spouse as s implies s.spouse = Current

end

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 21

attached (old spouse) as os implies os.spouse = Void

There is a little bit still missing…

What we have seen

Class invariant should only depend on Current object

If class invariant depends on other objects
 Take care who can change state
 Take care in which order you change state

Class invariant can be temporarily violated
 You can still call features on Current object
 Violation detected when object is accessed
 Take care calling other objects, they might call back

Although writing invariants is not that easy, they are
necessary to do formal proofs. This is also the case for loop
invariants (which will come later).

ESERCITAZIONE-4-marriage Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.etz.ch) 22

