

Fondamenti della Programmazione: Metodi Evoluti

Prof. Enrico Nardelli

Lezione 5: Logica

Reminder: contracts

Associated with an individual feature:

- Pre-conditions (must be true BEFORE feature execution)
- Post-conditions (must be true AFTER feature execution)

Associated with a class:

 Class invariants (expresses consistency requirements between queries of a class)

How to express conditions in contracts?

We need a mathematical notation since conditions have to be automatically checked

Logic is the answer!

Reasoning and programming

Logic is the basis of

- Mathematics: proofs are only valid if they follow the rules of logic.
- Software development:
 - Conditions in program actions: "If m is positive, then execute this instruction"

Conditions in contracts:

"x must not be zero, so that we can calculate $\frac{x+7}{x}$ "

Boolean expressions

A condition is expressed as a boolean expression.

It consists of

- Boolean variables (identifiers denoting boolean values)
- Boolean operators (not, or, and, =, implies)

and represents possible

Boolean values (truth values, either True or False)

Examples

Examples of boolean expressions (with *rain_today* and *cuckoo_sang_last_night* as boolean variables):

- rain_today
 (a boolean variable is a boolean expression)
- not rain_today
- (not cuckoo_sang_last_night) implies rain_today

(Parentheses group sub-expressions)

Negation (not)

a	not a
True	False
False	True

For any boolean expression *e* and any values of variables:

- Exactly one of e and not e has value True
- Exactly one of e and not e has value False
- One of e and not e has value True (Principle of the Excluded Middle)
- Not both of e and not e have value True (Principle of Non-Contradiction)

Disjunction (or)

а	Ь	a or b
True	True	True
True	False	True
False	True	True
False	False	False

or operator is commutative

or operator is associative:

 $\bullet \quad a \text{ or } (b \text{ or } c) = (a \text{ or } b) \text{ or } c$

Disjunction principle:

An or disjunction has value True except if both operands have value False

NB: differently from 'or' in common language or is non-exclusive

Conjunction (and)

a	b	a and b
True	True	True
True	False	False
False	True	False
False	False	False

and operator is commutative
and operator is associative

• a and (b and c) = (a and b) and c

Conjunction principle:

An and conjunction has value False except if both operands have value True

Truth assignment and truth table

Truth assignment for a set of variables: particular choice of values (True or False), for every variable

A truth assignment satisfies an expression if the value for the expression is **True**

A truth table for an expression with *n* variables has

- n + 1 columns
- 2^n rows

Combined truth table for basic operators

а	Ь	not a	a or b	a and b
True	True	False	True	True
True	False		True	False
False	True	True	True	False
False	False		False	False

Tautologies

Tautology: a boolean expression that has value **True** for every possible truth assignment

Examples:

- *a* or (not *a*)
- not (a and (not a))
- (*a* and *b*) or ((not *a*) or (not *b*))

Contradictions

Contradiction: a boolean expression that has value False for every possible truth assignment

Examples:

- *a* and (not *a*)
- **not** (*a* **or** (**not** *a*))

Satisfiable: for at least one truth assignment the expression yields **True**

- Any tautology is satisfiable
- No contradiction is satisfiable.

Equivalence (=)

а	Ь	a = b
True	True	True
True	False	False
False	True	False
False	False	True

- = operator is commutative (a = b has same value as b = a)
- = operator is reflexive (a = a is a tautology for any a)

Substitution:

For any expressions u, v and e, if u = v is a tautology and e' is the expression obtained from e by replacing every occurrence of u by v, then e = e' is a tautology

Types of propositions

Tautology

- True for all truth assignments
 - P or (not P)
 - not (P and (not P))
 - (P and Q) or ((not P) or (not Q))

Contradiction

- False for all truth assignments
 - P and (not P)

Satisfiable

• True for at least one truth assignment

Equivalent

• ϕ and χ are equivalent if they are satisfied under exactly the same truth assignments, or if $\phi = \chi$ is a tautology

De Morgan's laws

They show the duality between **and** and **or**: negating an expression is equivalent to negating variables and swapping **and** and **or**

Tautologies

- not (a or b) = (not a) and (not b)
- not (a and b) = (not a) or (not b)
- a or b = not (not a) and (not b)
- a and b = not (not a) or (not b)

More tautologies (distributivity):

- (a and (b or c)) = ((a and b) or (a and c))
- (a or (b and c)) = ((a or b) and (a or c))

Syntax convention: binding of operators

Order of binding (starting with tightest binding): **not**, **and**, **or**, **implies** (to be introduced), = .

Style rules:

When writing a boolean expression, drop the parentheses:

- Around the expressions of each side of "=" if whole expression is an equivalence.
- Around successive elementary terms if they are separated by the same associative operators.

Implication (implies)

a	b	a implies b
True	True	True
True	False	False
False	True	True
False	False	True

a implies b, for any a and b, is the value of (not a) or b In a implies b: a is antecedent, b consequent Implication principle:

- An implication has value True except if its antecedent has value True and its consequent has value False
- In particular, always True if antecedent is False

Implication in ordinary language

implies in ordinary language often means causation, as in "if ... then ..."

- "If the weather stays like this, skiing will be great this weekend"
- "If you put this stuff in your hand luggage, they won't let you through."

Misunderstanding implication

Whenever *a* is **False**, *a* **implies** *b* is **True**, regardless of *b*:

- "Today is Wednesday implies 2+2=5."
- "2+2=5 implies today is Wednesday."

Both of the above implications are **True**

Cases in which *a* is **False** tell us nothing about the truth of the consequent

Reversing implications (1)

It is not generally true that

$$a \text{ implies } b = (\text{mot } a) \text{ implies } (\text{not } b)$$

Example (wrong!):

• "All the people in Rome who live near Spanish Steps are rich. I do not live near Spanish Steps, so I am not rich."

live_near_spanish_steps implies rich [1]

(not live_near_spanish_steps) implies (not rich) [2]

Reversing implications (2)

Correct:

a implies b = (not b) implies (not a)

Example:

• "All the people who live near Spanish Steps are rich. She is not rich, so she can't be living near Spanish Steps"

```
live_near_spanish_steps implies rich =
     (not rich) implies (not live_near_spanish_steps)
```


Semistrict boolean operators (1)

Example boolean-valued expression (*x* is an integer):

$$\frac{x+7}{x} > 0$$

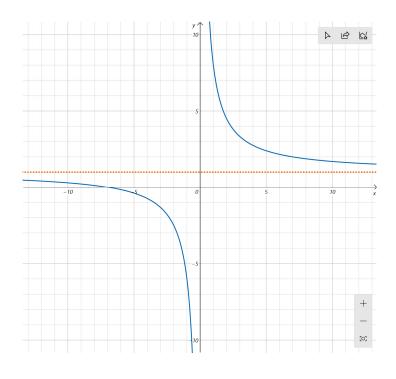
True for x < -7 or x > 0False for $x \ge -7$ and x < 0Undefined for x = 0



• Avoid division by zero:

$$(x/=0)$$
 and $(((x+7)/x)>0)$

True for x < -7 or x > 0False for $x \ge -7$ and $x \le 0$ Always defined



Semistrict boolean operators (3)

BUT:

- What happens when evaluating it?
- Program would crash during evaluation of division

We need a non-commutative version of and (and or):

Semistrict boolean operators

Semistrict operators (and then, or else)

a and then b: has same value as a and b if a and b are both defined, and has False whenever a has value False even if b is undefined

a or else b: has same value as a or b if a and b are both defined, and has True whenever a has value True even if b is undefined

$$(x /= 0)$$
 and then $(((x + 7) / x) > 0)$

Semistrict operators allow us to define an order of expression evaluation (left to right).

Important for programming when undefined objects may cause program crashes

Ordinary vs. Semistrict boolean operators

Use

- Ordinary boolean operators (and and or) if you can guarantee that both operands are defined
- and then if a condition only makes sense when another is true
- or else if a condition only makes sense when another is false

Example:

• "If you are not single, then your spouse must sign the contract"

```
is_single or else spouse_must_sign
not is_single and then spouse_must_sign
```


Semistrict implication

Example with implies:

• "If you are not single, then your spouse must sign the contract."

(not is_single) implies spouse_must_sign

Definition of implies: in our case, always semistrict!

• a implies b = (not a) or else b

Strict or semi-strict?

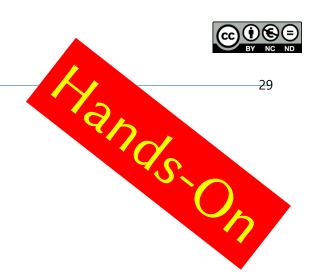
$$> a = 0$$
 or $> b = 0$

$$> a /= 0$$
 and $| b // a /= 0$

$$\geq a /= Void$$
 and $b /= Void$

$$> a < 0$$
 or > 2

$$(a = b \text{ and } b /= \text{Void})$$
 and



$$a.age = 0$$

Programming language notation for boolean operators

Eiffel keyword	Common mathematical symbol
not	~ or ¬
or	V
and	^
=	\Leftrightarrow
implies	\Rightarrow

Propositional and predicate calculus

Propositional calculus:

property *p* holds for a single object

Predicate calculus:

property *p* holds for several objects

Generalizing or

G : group of objects, *p* : property

Generalization of or:

Does *at least one* of the objects in *G* satisfy *p*?

Is at least one station of Line 8 an exchange?

Station_Balard.is_exchange or Station_Lourmel.is_exchange or Station_Boucicaut.is_exchange or ... (all stations of Line 8)

Existential quantifier: *exists*, or ∃

∃ *s* : *Stations*_8 | *s.is*_exchange

"There exists an *s* in *Stations_8* such that *s.is_exchange* is true"

Generalizing and

Generalization of and:

Does *every* object in *G* satisfy p?

Are all stations of Tram 8 exchanges?

Station_Balard.is_exchange and Station_Lourmel.is_exchange and Station_Boucicaut.is_exchange and ...

(all stations of Line 8)

Universal quantifier: *for_all*, or ∀ *s: Stations_8* | *s.is_exchange*

"For all s in Stations8 | s.is_exchange is true"

Existentially quantified expression

Boolean expression:

 $\exists s: SOME_SET \mid s.some_property$

True if and only if at least one member of SOME_SET satisfies property some_property

Proving

- True: Find one element of SOME_SET that satisfies the property
- False: Prove that no element of SOME_SET satisfies the property (test all elements)

Universally quantified expression

Boolean expression:

$$\forall$$
 s: SOME_SET | s.some_property

True if and only if every member of SOME_SET satisfies property some_property

Proving

- True: Prove that every element of SOME_SET satisfies the property (test all elements)
- False: Find one element of SOME_SET that does not satisfies the property

Duality

Generalization of DeMorgan's laws:

$$not (\exists s : SOME_SET | P) = \forall s : SOME_SET | not P$$

$$not (\forall s : SOME_SET | P) = \exists s : SOME_SET | not P$$

Empty sets

∃s: SOME_SET | some_property

If SOME_SET is empty: always False

 $\forall s: SOME_SET \mid some_property$

If SOME_SET is empty: always True

Tautology / contradiction / satisfiable?

Let the range of variables be INTEGER

$$x < 0$$
 or $x >= 0$ tautology

$$x > 0$$
 implies $x > 1$ satisfiable

$$\forall x \mid x > 0 \text{ implies } x > 1$$
 contradiction

$$\forall x \mid x*y = y$$
 satisfiable

$$\exists y \mid \forall x \mid x * y = y$$
 tautology

