
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 5: Logica

Reminder: contracts

Associated with an individual feature:
 Pre-conditions (must be true BEFORE feature execution)
 Post-conditions (must be true AFTER feature execution)

Associated with a class:
 Class invariants (expresses consistency requirements

between queries of a class)

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 2

Logic

How to express conditions in contracts?

We need a mathematical notation since conditions have
to be automatically checked

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 3

Logic is the basis of
 Mathematics: proofs are only valid if they follow the rules

of logic.

 Software development:

 Conditions in program actions: “If m is positive, then
execute this instruction”

 Conditions in contracts:
“x must not be zero, so that
we can calculate ”

Reasoning and programming

x
x 7+

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 4

Boolean expressions

A condition is expressed as a boolean expression.

It consists of
• Boolean variables (identifiers denoting boolean values)
• Boolean operators (not, or, and, =, implies)

and represents possible
• Boolean values (truth values, either True or False)

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 5

Examples

Examples of boolean expressions
(with rain_today and cuckoo_sang_last_night as boolean
variables):

 rain_today

(a boolean variable is a boolean expression)
 not rain_today

 (not cuckoo_sang_last_night) implies rain_today

(Parentheses group sub-expressions)

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 6

Negation (not)

a not a

True False
False True

For any boolean expression e and any values of variables:
 Exactly one of e and not e has value True
 Exactly one of e and not e has value False
 One of e and not e has value True (Principle of the Excluded

Middle)
 Not both of e and not e have value True (Principle of Non-

Contradiction)

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Disjunction (or)

a b a or b

True True True

True False True

False True True

False False False

or operator is commutative
or operator is associative:

 a or (b or c) = (a or b) or c
Disjunction principle:

 An or disjunction has value True except if both operands have value
False

NB: differently from 'or' in common language or is non-exclusive

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Conjunction (and)

a b a and b

True True True

True False False

False True False

False False False

and operator is commutative
and operator is associative

 a and (b and c) = (a and b) and c
Conjunction principle:

 An and conjunction has value False except if both operands have
value True

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Truth assignment and truth table

Truth assignment for a set of variables: particular choice
of values (True or False), for every variable

A truth assignment satisfies an expression if the value for
the expression is True

A truth table for an expression with n variables has
 n + 1 columns
 2n rows

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 10

Combined truth table for basic operators

a b not a a or b a and b

True True False True True

True False True False

False True True True False

False False False False

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Tautologies

Tautology: a boolean expression that has value True for
every possible truth assignment

Examples:

 a or (not a)
 not (a and (not a))
 (a and b) or ((not a) or (not b))

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 12

Contradictions

Contradiction: a boolean expression that has value False
for every possible truth assignment
Examples:

 a and (not a)
 not (a or (not a))

Satisfiable: for at least one truth assignment the
expression yields True

 Any tautology is satisfiable
 No contradiction is satisfiable.

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 13

Equivalence (=)

a b a = b

True True True

True False False

False True False

False False True

= operator is commutative (a = b has same value as b = a)
= operator is reflexive (a = a is a tautology for any a)
Substitution:

 For any expressions u, v and e, if u = v is a tautology and e’ is the
expression obtained from e by replacing every occurrence of u by v,
then e = e’ is a tautology

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Types of propositions

Tautology
 True for all truth assignments

• P or (not P)
• not (P and (not P))
• (P and Q) or ((not P) or (not Q))

Contradiction
 False for all truth assignments

• P and (not P)

Satisfiable
 True for at least one truth assignment

Equivalent
 φ and χ are equivalent if they are satisfied under exactly the

same truth assignments, or if φ = χ is a tautology

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

15

5-LOGICA 15

De Morgan’s laws

They show the duality between and and or: negating an
expression is equivalent to negating variables and
swapping and and or
Tautologies

 not (a or b) = (not a) and (not b)
 not (a and b) = (not a) or (not b)

 a or b = not (not a) and (not b)
 a and b = not (not a) or (not b)

More tautologies (distributivity):
 (a and (b or c)) = ((a and b) or (a and c))
 (a or (b and c)) = ((a or b) and (a or c))

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 16

Syntax convention: binding of operators

Order of binding (starting with tightest binding): not,
and, or, implies (to be introduced), = .

Style rules:
When writing a boolean expression, drop the parentheses:
• Around the expressions of each side of "=" if whole

expression is an equivalence.
• Around successive elementary terms if they are separated

by the same associative operators.

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Implication (implies)

a b a implies b

True True True

True False False
False True True
False False True

a implies b, for any a and b, is the value of (not a) or b

In a implies b: a is antecedent, b consequent
Implication principle:
 An implication has value True except if its antecedent has

value True and its consequent has value False
 In particular, always True if antecedent is False

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

Implication in ordinary language

implies in ordinary language often means causation, as
in “if … then …”

 “If the weather stays like this, skiing will be great this week-
end”

 “If you put this stuff in your hand luggage, they won’t let you
through.”

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 19

Misunderstanding implication

Whenever a is False,
a implies b is True, regardless of b :

 “Today is Wednesday implies 2+2=5.”
 “2+2=5 implies today is Wednesday.”

Both of the above implications are True

Cases in which a is False tell us nothing about the truth
of the consequent

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 20

Reversing implications (1)

It is not generally true that

a implies b = (not a) implies (not b)

Example (wrong!):
 “All the people in Rome who live near Spanish Steps are

rich. I do not live near Spanish Steps, so I am not rich.”

live_near_spanish_steps implies rich [1]

(not live_near_spanish_steps) implies (not rich) [2]

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 21

Reversing implications (2)

Correct:
a implies b = (not b) implies (not a)

Example:
 “All the people who live near Spanish Steps are rich. She is

not rich, so she can’t be living near Spanish Steps”

live_near_spanish_steps implies rich =
(not rich) implies (not live_near_spanish_steps)

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 22

Semistrict boolean operators (1)

Example boolean-valued expression (x is an integer):

True for x<-7 or x>0
False for x≥ -7 and x<0
Undefined for x = 0

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 23

07 >+
x

x

Semistrict boolean operators (2)

 Avoid division by zero:

(x /= 0) and (((x + 7) / x) > 0)

True for x<-7 or x>0
False for x≥ -7 and x≤0
Always defined

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 24

Semistrict boolean operators (3)

BUT:
 What happens when evaluating it?
 Program would crash during evaluation of division

We need a non-commutative version of and (and or):

Semistrict boolean operators

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 25

Semistrict operators (and then, or else)

a and then b: has same value as a and b if a and b are both
defined, and has False whenever a has value False even if b is
undefined

a or else b: has same value as a or b if a and b are both
defined, and has True whenever a has value True even if b is
undefined

(x /= 0) and then (((x + 7) / x) > 0)

Semistrict operators allow us to define an order of expression
evaluation (left to right).

Important for programming when undefined objects may cause
program crashes

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 26

Ordinary vs. Semistrict boolean operators

Use
 Ordinary boolean operators (and and or) if you can

guarantee that both operands are defined
 and then if a condition only makes sense when another is

true
 or else if a condition only makes sense when another is

false

Example:
 “If you are not single, then your spouse must sign the

contract”
is_single or else spouse_must_sign

not is_single and then spouse_must_sign

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 27

Semistrict implication

Example with implies:
 “If you are not single, then your spouse must sign the

contract.”
(not is_single) implies spouse_must_sign

Definition of implies: in our case, always semistrict!
 a implies b = (not a) or else b

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 28

Strict or semi-strict?

a = 0 or b = 0

a /= 0 and then b // a /= 0

a /= Void and b /= Void
a < 0 or else sqrt (a) > 2

 (a = b and b /= Void) and then a.age = 0

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals

29

5-LOGICA 29

Programming language notation for boolean operators

Eiffel keyword Common mathematical symbol

not ~ or ¬

or ∨
and ∧
= ⇔
implies 

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 30

Propositional and predicate calculus

Propositional calculus:
property p holds for a single object

Predicate calculus:
property p holds for several objects

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 31

Generalizing or

G : group of objects, p : property
Generalization of or:

Does at least one of the objects in G satisfy p ?
Is at least one station of Line 8 an exchange?

Station_Balard.is_exchange or Station_Lourmel.is_exchange or
Station_Boucicaut.is_exchange or

… (all stations of Line 8)

Existential quantifier: exists, or ∃
∃ s : Stations_8 | s.is_exchange

“There exists an s in Stations_8
such that s.is_exchange is true”

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 32

Generalizing and

Generalization of and:
Does every object in G satisfy p?

Are all stations of Tram 8 exchanges?
Station_Balard.is_exchange and Station_Lourmel.is_exchange
and Station_Boucicaut.is_exchange and …

(all stations of Line 8)

Universal quantifier: for_all, or ∀
∀ s: Stations_8 | s.is_exchange

“For all s in Stations8 | s.is_exchange is true”

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 33

Existentially quantified expression

Boolean expression:
∃ s : SOME_SET | s.some_property

 True if and only if at least one member of SOME_SET
satisfies property some_property

Proving
 True: Find one element of SOME_SET that satisfies the

property
 False: Prove that no element of SOME_SET satisfies the

property (test all elements)

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 34

Universally quantified expression

Boolean expression:
∀ s: SOME_SET | s.some_property

 True if and only if every member of SOME_SET satisfies
property some_property

Proving
 True: Prove that every element of SOME_SET satisfies the

property (test all elements)
 False: Find one element of SOME_SET that does not

satisfies the property

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 35

Duality

Generalization of DeMorgan’s laws:

not (∃ s : SOME_SET | P) = ∀ s : SOME_SET | not P

not (∀ s : SOME_SET | P) = ∃ s : SOME_SET | not P

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 36

Empty sets

∃s : SOME_SET | some_property

If SOME_SET is empty: always False

∀s : SOME_SET | some_property

If SOME_SET is empty: always True

5-LOGICA Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's originals 37

Rev. 2.4.1 (2021-22) by Enrico Nardelli from B.Meyer's
originals

38
Tautology / contradiction / satisfiable?

Let the range of variables be INTEGER
x < 0 or x >= 0

tautology
x > 0 implies x > 1

satisfiable
∀x | x > 0 implies x > 1

contradiction

∀x | x*y = y

satisfiable

∃y | ∀x | x*y = y

tautology

38

