Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 4: Contratti

Abstraction

To abstract is to capture the essence behind the details
and the specifics.

The client is interested in:

" aset of services that a software module provides, not its
internal representation

class
= what a service does, not how it does it

feature

* Object-oriented programming is all about finding right
abstractions

= However, the abstractions we choose can sometimes fail, and

we need to find new, more suitable ones.
4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Routine: algorithm abstraction

To abstract is to capture the essence of a concept,
ignoring details & specifics

Implies:
= Removing some information
= Giving a name to the result of the abstraction

A routine is also known as a method, or
a subprogram or a subroutine ’

In programming;:
= Data abstraction: class attributes
= Algorithm (operational) abstraction: class routine

A routine is one of the two kinds of feature
.. the other is attribute

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

-
A routine
r(arg: TYPE; ...
-- Header comment.
require
Preconditions (boolean expression)

local
local variables

do
Body (instructions)

ensure
Postconditions (boolean expression)

end

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Remember: two kinds of routine

Procedure: doesn’t return a result
p (arg: TYPE; ..)
do

end
= Yields a command
= Calls to a procedure are instructions

Function: returns a result
f(arg: TYPE ...):(RESULT TYPE]

... (rest as before) ...

= Yields a query
= Calls to a function are expressions

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

Features: the full story

A class declaration is structured in clauses:
= Note
= C(Class
= Inherit
= Create
= Feature (any number of categories)
= |nvariant

= End
A class is characterized by its features

Each feature is an operation on the corresponding objects:
query or command

Features are grouped into categories for readability (e.g.
creation, access, status report, constants, basic operations,
conversions, etc.)

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 6

Features: the full story

Client view Internal view
(specification) (implementation)

Command_—_> PrOcedure \
No result Routine
ComputEA

Feature

Feature
Memory
Returns result ;
Function
%putativon
uer
Y~
Attribute

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7

The Uniform Access principle

It doesn't matter to the client

whether you look up or compute)
N

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

Uniform Access: an example

(A1)
list_of withdrawals

balance = list_of deposits.total — list_of withdrawals.total

list_of deposits 200 300 500 1000
(AZ) list_of withdrawals | 300 100 100
balance 1000
\

A call such as

your_account.balance

\could use an attribute or a function p

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

The Uniform Access principle

Expressed more technically:

(4 N
Features should be accessible to clients the same way

whether implemented by storage or by computation
< J

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

Software construction

Finding appropriate classes is a central part of software

design

Also called the development of the architecture of a
program

Writing down the details is part of implementation

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

Style rule: header comments

- N

Don’t even think of writing a feature

without immediately including a header

comment explaining what it’s about y

-

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

4-CONTRATTI

13

OO0
Remember the BANK_ACCOUNT project?

Let's look at it again

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

First variation

We want to ensure only a positive sum is withdrawn

We want to ensure balance is always non negative

/Withdraw (sum: INTEGER) 4

-- Withdraw sum from the account

[—— (Warning: use only if sum is positive and >= balance)]

o /

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

: OO0
Nice try, but...

...still not good enough:
= A comment is just an informal explanation

= The constraint needs a more official status in the interface

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

Contracts

A contract is a semantic condition characterizing correct
usage properties of some construct

Three kinds for classes and features:
= Precondition
= Postcondition
= (Class invariant

Specific contracts for iteration instructions:
= Loop invariant
= Loop variant

One generic version:
= Checking a property

Precondition

Property that a feature imposes on every client:

/Withdraw (sum: INTEGER) \
-- Withdraw sum from the balance
4 .)
require
not_negative: sum >= 0

\ _ covered: sum <= balance . The precondition
L of withdraw

A feature with no require clause is always applicable, as if it

had
require

always_OK: True

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

Assertions

Condition]

[not_negative][sum >= 0]

N _
—~,

Assertion

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

Precondition principle

A client calling a feature must make sure that the
precondition holds before the call

A client that calls a feature without satisfying its
precondition is faulty (buggy) software.

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Postcondition

Property that a feature guarantees on termination:

/;Lme ﬁ\\

-- Close the account balance
a g

ensure

account_closed: closed = true

K < J The postcondition]

L of close

A feature with no ensure clause always satisfies its
postcondition, as if the postcondition reads

ensure

always_OK: True

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

Postcondition

Constraint on values before and after execution:

/Withdraw (sum: INTEGER) \

-- Withdraw sum from the balance

-)
ensure

decreased: balance = old balance - sum

S N J

Expression value
captured on entry

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

old |\notation

Denotes value of an expression as it was on routine entry
Usable in postconditions only

CANNOT be used in the body

Another example:

deposit (sum: INTEGER)
-- Add sum to account.
require
positive: sum> 0

do

ensure

added: balance = old balance + sum
end

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

Postcondition principle

(0
A feature must make sure that, if its precondition held

at the beginning of its execution, its postcondition will

hold at the end.
\ J

A feature that fails to ensure its postcondition is buggy
software.

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

Preconditions and postconditions

Establish contractual relations between client and
supplier

Precondition: obligation for clients

Postcondition: benefit for clients

All the clauses (assertions) in contracts must be true

—

ney are checked in top down order

They are checked at run-time

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

Class invariants

The invariant expresses consistency requirements for
instances of a class between feature calls

For a class REGULAR _ACCOUNT

invariant

limited: balance <= Max amount

Each clause of the class invariant must be true:
* before each feature execution

 after each feature execution

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Comparison among contracts (1)

A pre-condition must be true before the execution of a
feature, not necessarily afterwards.

A post-condition must be true after the execution of its
feature, not necessarily before its execution or after the
execution of other features

A class invariant must be true before/after the
execution of each feature

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

Comparison among contracts (2)

A class invariant may be violated during the execution of
code internal to a feature

Class invariants of x instance of C are not checked:
* when leaving the feature (before its termination) to
execute
- features of other objects

* but class invariants of the called objects are checked!

- other features of x (called through an unqualified call)

* when re-entering the feature after execution of other
features

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

Qe
Contract to check a property

Use the check instructions (normally disabled in finalized mode)

Contains expression(s) ensuring that a certain property is satisfied at a
specific point

Help document a piece of software

some_feature ...
do
... some implementation ...
check
tag A : boolean_expression_stating property A
tag B : boolean_expression_stating property B

end
... some implementation ...

end
4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

Contracts

Contracts are useful for debugging: getting the software
right

Contracts are useful for interface documentation, in
particular, documenting API

Contracts execution is under compiler control (see
Projects -> Settings under EiffelStudio)

Contract checking may be disabled in the finalized version
for better performances

Contracts for iteration instructions will be seen later

: : (@lolcle)
Contracts outside of Eiffel e

Java: Java Modeling Language (JML), iContract etc.
C#: Spec# (Microsoft Research extension)

UML: Object Constraint Language

Python

C++: Nana

etc.

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Contracts in practice

Let's add contracts to the
bank account example!

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

