
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 4: Contratti

Abstraction

To abstract is to capture the essence behind the details
and the specifics.
The client is interested in:

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

 a set of services that a software module provides, not its
internal representation

 what a service does, not how it does it

class

feature

 Object-oriented programming is all about finding right
abstractions

 However, the abstractions we choose can sometimes fail, and
we need to find new, more suitable ones.

4-CONTRATTI 2

Routine: algorithm abstraction

To abstract is to capture the essence of a concept,
ignoring details & specifics

Implies:
 Removing some information
 Giving a name to the result of the abstraction

In programming:
 Data abstraction: class attributes
 Algorithm (operational) abstraction: class routine

A routine is one of the two kinds of feature
... the other is attribute

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

A routine is also known as a method, or
a subprogram or a subroutine

A routine
r (arg : TYPE ; ...)

-- Header comment.
require

Preconditions (boolean expression)

local
local variables

do
Body (instructions)

ensure
Postconditions (boolean expression)

end

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Procedure: doesn’t return a result
p (arg : TYPE; ...)

do
......

end
 Yields a command
 Calls to a procedure are instructions

Function: returns a result
f (arg : TYPE; ...): RESULT_TYPE

... (rest as before) ...
 Yields a query
 Calls to a function are expressions

Remember: two kinds of routine

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 5

Features: the full story

A class declaration is structured in clauses:
 Note
 Class
 Inherit
 Create
 Feature (any number of categories)
 Invariant
 End

A class is characterized by its features

Each feature is an operation on the corresponding objects:
query or command

Features are grouped into categories for readability (e.g.
creation, access, status report, constants, basic operations,
conversions, etc.)

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 6

FeatureFeature

Features: the full story

Command

Query

Feature

Function

No result

Memory

Computation

Client view
(specification)

Internal view
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7

The Uniform Access principle

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

Uniform Access: an example

balance = list_of_deposits.total – list_of_withdrawals.total

list_of_deposits

list_of_withdrawals
(A1)

A call such as

your_account balance

could use an attribute or a function
4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

200 300 500 1000

800 100 100

list_of_deposits

list_of_withdrawals

balance 1000

(A2)

200 300 500 1000

800 100 100

The Uniform Access principle

Features should be accessible to clients the same way

whether implemented by storage or by computation

Expressed more technically:

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

Software construction

Finding appropriate classes is a central part of software
design

Also called the development of the architecture of a
program

Writing down the details is part of implementation

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

Style rule: header comments

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

Don’t even think of writing a feature

without immediately including a header

comment explaining what it’s about

4-CONTRATTI 12

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)4-CONTRATTI 13

Let's look at it again

Remember the BANK_ACCOUNT project?

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

We want to ensure only a positive sum is withdrawn

We want to ensure balance is always non negative

withdraw (sum : INTEGER)

-- Withdraw sum from the account

First variation

-- (Warning: use only if sum is positive and >= balance)

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

…still not good enough:
 A comment is just an informal explanation
 The constraint needs a more official status in the interface

Nice try, but…

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

Contracts

A contract is a semantic condition characterizing correct
usage properties of some construct

Three kinds for classes and features:
 Precondition
 Postcondition
 Class invariant

Specific contracts for iteration instructions:
 Loop invariant
 Loop variant

One generic version:
 Checking a property

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

Precondition

Property that a feature imposes on every client:

withdraw (sum : INTEGER)
-- Withdraw sum from the balance

require
not_negative: sum >= 0
covered: sum <= balance The precondition

of withdraw

A feature with no require clause is always applicable, as if it
had

require
always_OK: True

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

Assertions

:

Assertion

ConditionTag

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

not_negative sum >= 0

Precondition principle

A client that calls a feature without satisfying its
precondition is faulty (buggy) software.

A client calling a feature must make sure that the
precondition holds before the call

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Postcondition

Property that a feature guarantees on termination:

A feature with no ensure clause always satisfies its
postcondition, as if the postcondition reads

ensure
always_OK: True

close
-- Close the account balance

ensure
account_closed: closed = true

The postcondition
of close

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

Postcondition

Constraint on values before and after execution:

withdraw (sum : INTEGER)
-- Withdraw sum from the balance

ensure
decreased: balance = old balance - sum

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

Expression value
captured on entry

notation

Denotes value of an expression as it was on routine entry

Usable in postconditions only

CANNOT be used in the body

Another example:

deposit (sum : INTEGER)
-- Add sum to account.

require
positive: sum > 0

do
…

ensure
added: balance = old balance + sum

end

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

old

A feature must make sure that, if its precondition held
at the beginning of its execution, its postcondition will
hold at the end.

Postcondition principle

A feature that fails to ensure its postcondition is buggy
software.

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)4-CONTRATTI 24

Preconditions and postconditions

Establish contractual relations between client and
supplier

Precondition: obligation for clients
Postcondition: benefit for clients

All the clauses (assertions) in contracts must be true
They are checked in top down order
They are checked at run-time

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

Class invariants

The invariant expresses consistency requirements for
instances of a class between feature calls
For a class REGULAR_ACCOUNT

Each clause of the class invariant must be true:
• before each feature execution
• after each feature execution

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

invariant

limited: balance <= Max_amount

Comparison among contracts (1)

A pre-condition must be true before the execution of a
feature, not necessarily afterwards.

A post-condition must be true after the execution of its
feature, not necessarily before its execution or after the
execution of other features

A class invariant must be true before/after the
execution of each feature

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

Comparison among contracts (2)

A class invariant may be violated during the execution of
code internal to a feature

Class invariants of x instance of C are not checked:
• when leaving the feature (before its termination) to

execute
• features of other objects
• but class invariants of the called objects are checked!

• other features of x (called through an unqualified call)

• when re-entering the feature after execution of other
features

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

Contract to check a property
Use the check instructions (normally disabled in finalized mode)

Contains expression(s) ensuring that a certain property is satisfied at a
specific point

Help document a piece of software

some_feature …
do

… some implementation …
check

tag_A : boolean_expression_stating_property_A
tag_B : boolean_expression_stating_property_B
…

end
… some implementation …

end
4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

Contracts

Contracts are useful for debugging: getting the software
right
Contracts are useful for interface documentation, in
particular, documenting API
Contracts execution is under compiler control (see
Projects -> Settings under EiffelStudio)
Contract checking may be disabled in the finalized version
for better performances

Contracts for iteration instructions will be seen later

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Contracts outside of Eiffel

Java: Java Modeling Language (JML), iContract etc.

C#: Spec# (Microsoft Research extension)

UML: Object Constraint Language

Python

C++: Nana

etc.
4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Contracts in practice

4-CONTRATTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

