Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

| ezione 3: Features

Classes

e . . . 2
An object (previous lectures) is a software

machine allowing programs to access and modify

2 collection of data \ /\ >
- Examples objects may represent:
= Acity (Query
= Atram line Gomrmand

= A route through the city
= An element of the GUI such as a button

- Each object belongs to a certain class, defining the
applicable operations, or features

- Example:
= The class of all cities
= The class of all buttons
= etc.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Definitions: class, instance, generating class

ﬁclass is the description of a set of possible run—timh

objects to which the same features are applicable

If an object O is one of the objects described by a
class C:

> Ois an instance of C

K >C is the generating class of O

)

A class represents a category of things

An object represents one of these things

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

Objects vs. classes

Classes exist only in the software text:
= Defined by class text

= Describe properties of associated instances

Objects exist only during execution:
= Visible in program text through names denoting run-time

objects

Example: Paris

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

Expressions and their types

At run time, every object has a type: its generating class.
Examples:

= LINE for the object denoted by Line8

= INTEGER for the object denoted by Line8.count

In the program text, every expression has a type.
Examples:

= [INE for Line8

= INTEGER for Line8.count

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 5

Two views of objects

\\

[Name J
__ D]
Birthdate J

Two viewpoints:

= 1. An object has data, stored in memory.

= 2. An object is a machine offering operations (features)

The connection:

“Marco”

341699
24/feb/1998

= The operations (2) allow other objects to access and modify the
object’s data (1)

3-FEATURES

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

P0ee

An object is a machine

An executing program is a machine

It’s made of smaller machines: objects

During execution there may be many objects (e.g. millions)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7

P0ee

An object is a machine

A machine, hardware or software, is characterized by the
operations (“features”) users may apply

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

P0ee

An object has an interface

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

Interface: definition

- N

An interface of a "software module" is the set of
mechanisms enabling its "users" to use it.

"users" are usually called "clients"

(& J

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

P0ee

An object has an implementation

thsu.’E?BJ GU
L a8t
- Mmrﬁz'

: Y- WUGZ0
: Urrsom-p
i res-ziamas]

animate

"~ animate

prepend

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

P0ee

Information hiding

HYE‘S!N‘\GBJ 60 i

it h&%lﬂfﬁgi

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

The information hiding principle

/ The designer of every module \
must specify which properties
are accessible to clients (public)
and which are internal (secret)

The programming language
must ensure that clients

\ can only use public properties /

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

—_———

Client, supplier

/ Definitions \

A client is a system of any kind — such as a software
element, a non-software system, or a human user —
that uses a software "module".

For its clients, the "module” is a supplier.

- /

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

Features with arguments

:

"~/

your_object,your_feature (some_argument)

some_argument is a value that your_feature needs
Example: feature show must know what to show.

Same concept as function arguments in maths:
cos (x)
Features may have several arguments:

x.f (a, by ¢, d) -- Separated by commas

In well written O-O software, most have 0 or 1 argument

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

—_———

Feature declaration vs. feature call

> You declare a feature when you write it into a class.
set_name (a_name: STRING)

-- Set name' to a_name'.

do — |
Within comments, use ~ and ' to
name := a hame quote names of arguments and

features. This is because they will be
taken into account by the automatic
end refactoring tools.

> You call a feature when you apply it to an object. The
object is called the target of this feature call.

a_person.set_name ("Peter”)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

Features: commands and queries

Feature: an operation available on a certain class of
objects

Three kinds:
= Command - a feature that may modify an object

= Query - a feature that accesses an object

= Creation procedure (seen later)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

P0ee

A command

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

A query

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

Commands

Goal: produce a change on an object, or several objects

Examples, for “Student” objects:

= Register an exam
= Add a course

= Modify the name

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Queries

Goal: obtain properties of objects

Should not modify the object,
or any other object

Examples, for a “Student” object :
= What is the name?
= WhatisthelD?
= How many exams has she taken?

= Which courses is she following?

341699
24/feb/1998

You may work with the return values of queries

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

21

The command-query separation principle

/

N

Asking a question

should not change the answer

~

)

3-FEATURES

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

Kinds of features: commands and queries

P0ee

» Commands

Modify the state of objects
Do not have a return value
May or may not have arguments

Examples: register a student to a course, assign an id to a student,
record the grade a student got in an exam

... other examples?

» Queries

3-FEATURES

Should not modify the state of objects
Do have a return value
May or may not have arguments

Examples: what is the age of a student? What is the id of a
student? Is a student registered for a particular course?

... other examples?

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

Query or command?

class DEMO

feature 2 command

procedure_name (al: T1; a2, a3: T2)
-- Comment

do

end

2 query

function_name (al: T1; a2, a3: T2): T3

-- Comment
do / Predefined variable
Result := ... denoting the result

end

2 query

attribute_name: T3
-- Comment

end

YV VYV

Y VYV

YV VYV

no result

body

result

body

result

no body

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

24

Features: the full story

Client view Internal view
(specification) (implementation)

Command— Procedure

No result Routine
Computak

Feature Feature

Memory

Returns result

Function
W‘
Attribute

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

Query

The state of the object is

defined by the values of
its attributes

—_———

General form of feature call instructions

» Targets and arguments can be feature calls

themselves. command query
argument argument
/_Aﬁ /_M
Zurich.station("Central").set_positionwation("Haldenegg").position)
N ~ N ~ > —_— —
target feature target feature
= _
Y
target feature
_ _
Y
target feature argument

» Feature calls are interpreted left to right

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Current

» In object-oriented computation each feature call is
performed on a certain object

» Inside the feature body we can access this object using
the predefined entity Current

» What is the type of Current ?

> It is the type of the object executing the feature’s
body where Current is

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

DEO
Unqualified vs. qualified feature calls (1)

» All features have to be called on some target (always an
object.)

»> It is possible to omit writing the target in a feature call. Such a
call is unqualified. The implicit target is the current object. A
qualified feature call has an explicit target.

»> The current object (Current) in a feature is always the
instance of the surrounding class.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

—_———

Qualified or unqualified?

Are the following feature calls qualified or
unqualified? What are the targets of these calls?

1) [xly | qualified
2) x ; unqualified
3) f(x.a) | unqualified |
4) - ——
5) x(y.f(a.b)) unqualified
6) y (b) qualified
7) [Current].x qualified

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

(@loKElo)
Result

» Inside every function you can use the predefined local
variable Result (you needn’t and shouldn’t declare it)

» The return value of a function is whatever value the
Result variable has at the end of the function execution

» Result (as well as regular local variables) is initialized,
at the beginning of routine’s body, with the default value
of its type

» Every regular local variable is declared with some type;
and what is the type of Result?

»>It's the function return type!

Compilation error?

class PERSON

feature

exchange_names (other: PERSON)
do

Result := other.name

other.set_name (name)

set_name (Result.name) This is the mechanism to
end bring object to life (to be
seen later).

name_with_semicolon: STRING

do
create Result.make_from_string (name)
Result.append(‘;’)
print (Result)

end

end

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Entity: the final definition @I

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

» attribute name
>[variab|e attribute

Variables }

k
>[constant attribute]
>?ormal argument name
>]oca| variable name
>:Result
>

Current

Read-only entities]

Only a variable can be used in a creation instruction and in the
left part of an assignment

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

P0ee

The scope of names

Attributes:

= are declared anywhere inside a feature clause, but not
inside a feature declaration

= are visible anywhere inside the class
Formal arguments:

= are declared after the feature name

= are only visible inside the feature body and its contracts
Local variables:

= are declared in a local clause inside the feature declaration

= are only visible inside the feature body (are not visible in
its contracts!)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33

Is everything an object oriented call?

some_target.some_feature (some_arguments)

For example:

Paris.display
Line6.extend (Station_Parade_Platz)

xi=a+hbh 222777

0000000

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34

Operator aliases for features

expanded class INTEGER feature

plus alias "+" (other : INTEGER): INTEGER
-- Sum with other
external “built_in" end

Features with one

: i ' . argument allow
minus alias "-" (other : INTEGER): INTEGER iy Y .

- [?ecrement by other T
external "built_in" end J

times alias """ (other: INTEGER): INTEGER
-- Product by other
external “built_in" end

Features with zero
arguments allow
alias for prefix
notation

(N J

opposite alias "-" : INTEGER

external “built_in .
- Same string can be\

alias for different
features if they have
different number of
arguments y

end

Calls such as i.plus(j) can now be written 7+
and calls such as i.opposite as -7

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35

Static view

»> A program consists of a set of classes.

» Features are declared in classes. They define
operations on objects created from classes.

= Queries answer questions. The answer is provided in a
variable called Result.

= Commands execute actions. They do not provide any
result, so there is no variable called Result that we can
use.

» Another name for a class is type.

»Class and Type are not exactly the same, but they are
close enough for now, and we will learn the difference
later on.

—_———

Declaring the type of an object

» The type of any object you use in your program must
be declared somewhere.

» Where can such declarations appear in a program?
= in feature declarations
* formal argument types
* return type for queries

= in the local clauses of routines

AN

This is where you
declare any objects that
only the routine needs
and knows.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37

Declaring the type of an object

class DEMO

feature

formal argument type

s

procedure_name (al: T1; a2, a3: T2)

-- Comment

local

formal argument type

[1: T3

do

end

function_name (al: T1; a2, a3: T2): T3 = return type |

local variable type

formal argument type

s

-- Comment

do

end

e

formal argument type

attribute_name: T3 ﬁ return type |

-- Comment
end

3-FEATURES

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

38

Dynamic view

» When the program is being executed (at “runtime”)
we have a set of objects (instances) created from the
classes (types).

» The creation of an object implies that a piece of
memory is allocated in the computer to represent the
object itself.

» Objects interact with each other by calling features
on each other.

P0ee

Static view vs. dynamic view

» Queries (attributes and functions) have a result type.
When executing the query, you get an object of that

type.

» Routines have formal arguments of certain types.
During the execution you pass objects of the same (or
compatible) type as actual arguments to a routine call.

» Local variables are declared in their own section,
associating names with types. Invoking a local returns the
current object of that type referred to by that variable.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40

