
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 3: Features



An object (previous lectures) is a software 
machine allowing programs to access and modify 
a collection of data

Classes

- Examples objects may represent:
 A city
 A tram line
 A route through the city
 An element of the GUI such as a button

- Each object belongs to a certain class, defining the 
applicable operations, or features
- Example:

 The class of all cities
 The class of all buttons
 etc.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Query
Command



Definitions: class, instance, generating class

Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch)

A class is the description of a set of possible run-time 
objects to which the same features are applicable 

If an object O is one of the objects described by a 
class C :
 O is an instance of C
C is the generating class of O

A class represents a category of things

An object represents one of these things

3-FEATURES 3



Objects vs. classes

Classes exist only in the software text:
 Defined by class text
 Describe properties of associated instances

Objects exist only during execution:
 Visible in program text through names denoting run-time 

objects

Example: Paris

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4



Expressions and their types

At run time, every object has a type: its generating class.
Examples:

 LINE for the object denoted by Line8

 INTEGER for the object denoted by Line8.count

In the program text, every expression has a type. 
Examples:

 LINE for Line8

 INTEGER for Line8.count

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 5



Two views of objects

Two viewpoints:
 1. An object has data, stored in memory.
 2. An object is a machine offering operations (features)

The connection:
 The operations (2) allow other objects to access and modify the 

object’s data (1)

“Marco”

341699

24/feb/1998

Name

ID

Birthdate

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 6



An object is a machine

An executing program is a machine
It’s made of smaller machines: objects

During execution there may be many objects (e.g. millions)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7



An object is a machine

A machine, hardware or software, is characterized by the 
operations (“features”) users may apply

prepend

animate

append
count stations

first last

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8



An object has an interface

count

first

count stations

first last

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

prepend

animate

append



Interface: definition

An interface of a "software module" is the set of 
mechanisms enabling its "users" to use it.

"users" are usually called "clients"

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10



An object has an implementation

count

first

count stations

first last

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

prepend

animate

append



Information hiding

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

count

first

count stations

first last

prepend

animate

append



The information hiding principle

The designer of every module
must specify which properties

are accessible to clients (public)
and which are internal (secret)

The programming language
must ensure that clients

can only use public properties 

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13



Client, supplier

Definitions

A client is a system of any kind — such as a software 
element, a non-software system, or a human user —
that uses a software "module".

For its clients, the "module" is a supplier.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14



Features with arguments

some_argument is a value that your_feature needs

Example: feature show must know what to show.

Same concept as function arguments in maths:
cos (x)

Features may have several arguments:

x•f (a b c d ) -- Separated by commas

In well written O-O software, most have 0 or 1 argument

your_object•your_feature (some_argument)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15



Feature declaration vs. feature call

 You declare a feature when you write it into a class.
set_name (a_name: STRING)

-- Set `name' to `a_name'.
do

name := a_name

end
 You call a feature when you apply it to an object. The 

object is called the target of this feature call.
a_person.set_name (“Peter”)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

Within comments, use ` and ' to 
quote names of arguments and

features. This is because they will be
taken into account by the automatic

refactoring tools.



Features: commands and queries

Feature: an operation available on a certain class of 
objects

Three kinds:
 Command - a feature that may modify an object 
 Query - a feature that accesses an object

 Creation procedure (seen later)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17



A command

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18



A query

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19



Commands

Goal: produce a change on an object, or several objects

Examples, for “Student” objects:

 Register an exam

 Add a course

 Modify the name

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20



Queries

Goal: obtain properties of objects 

Should not modify the object,
or any other object

Examples, for a “Student” object :
 What is the name?
 What is the ID ?
 How many exams has she taken?
 Which courses is she following?

You may work with the return values of queries
3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

“Marco”

341699

24/feb/1998



The command-query separation principle

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22



Kinds of features: commands and queries

 Commands
 Modify the state of objects
 Do not have a return value
 May or may not have arguments
 Examples: register a student to a course, assign an id to a student, 

record the grade a student got in an exam
 … other examples?

Queries 
 Should not modify the state of objects
 Do have a return value
 May or may not have arguments
 Examples: what is the age of a student? What is the id of a 

student? Is a student registered for a particular course? 
 … other examples?

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23



Query or command?

class DEMO 

feature
procedure_name (a1: T1; a2, a3: T2)

-- Comment
do

…
end

function_name (a1: T1; a2, a3: T2): T3
-- Comment

do
Result := …

end

attribute_name: T3
-- Comment

end

 no result
 body

 result
 body

 result
 no body

command

query

query

Predefined variable 
denoting the result

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24



FeatureFeature

Features: the full story

Command

Query

Feature

Function

No result

Memory

Computation

Client view
(specification)

Internal view 
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

The state of the object is
defined by the values of

its attributes



 Targets and arguments can be feature calls 
themselves.

Zurich.station("Central").set_position(Zurich.station("Haldenegg").position)

 Feature calls are interpreted left to right

General form of feature call instructions

argument

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

target feature

target

target feature

target

feature

feature

argument argument

command query



Current

 In object-oriented computation each feature call is 
performed on a certain object
 Inside the feature body we can access this object using 
the predefined entity Current
What is the type of Current ?
 It is the type of the object executing the feature’s 
body where Current is

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27



Unqualified vs. qualified feature calls (1)

 All features have to be called on some target (always an 
object.)

 It is possible to omit writing the target in a feature call. Such a 
call is unqualified. The implicit target is the current object. A 
qualified feature call has an explicit target.

 The current object (Current) in a feature is always the 
instance of the surrounding class.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28



Qualified or unqualified?

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

qualified

unqualified

unqualified

qualified

unqualified

qualified

qualified

Are the following feature calls qualified or
unqualified? What are the targets of these calls?

1) x .y

2) x

3) f (x.a)

4) x.y .z

5) x (y.f (a.b))

6) f (x.a).y (b)

7) Current .x



Result

 Inside every function you can use the predefined local 
variable Result (you needn’t and shouldn’t declare it)

 The return value of a function is whatever value the 
Result variable has at the end of the function execution

 Result (as well as regular local variables) is initialized, 
at the beginning of routine’s body, with the default value 
of its type 

 Every regular local variable is declared with some type; 
and what is the type of Result?

It's the function return type!   

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30



Compilation error?
class PERSON

feature
…
exchange_names (other: PERSON)

do
Result := other.name

other.set_name (name)
set_name (Result.name)

end

name_with_semicolon: STRING

do
create Result.make_from_string (name) 
Result.append(‘;’) 
print (Result)

end
end

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

Error: Result can not 
be used in a procedure

This is the mechanism to 
bring object to life (to be 

seen later).



Entity: the final definition

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

 attribute name

formal argument name
local variable name
Result
Current

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 32

 variable attribute

 constant attribute

Only a variable can be used in a creation instruction and in the 
left part of an assignment  

Variables

Read-only entities

Help to avoid side 
effects!



The scope of names

Attributes:
 are declared anywhere inside a feature clause, but not 

inside a feature declaration
 are visible anywhere inside the class

Formal arguments:
 are declared after the feature name
 are only visible inside the feature body and its contracts

Local variables:
 are declared in a local clause inside the feature declaration
 are only visible inside the feature body (are not visible in 

its contracts!)

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 33



Is everything an object oriented call?

some_target.some_feature (some_arguments) 

For example:

Paris.display
Line6.extend (Station_Parade_Platz) 

x := a + b ???????

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 34



Features with zero 
arguments allow 
alias for prefix

notation

Features with one 
argument allow 

alias for infix
notation

Same string can be 
alias for different 

features if they have 
different number of 

arguments

expanded class INTEGER feature

plus alias "+" (other : INTEGER): INTEGER
-- Sum with other

external “built_in" end

minus alias "-" (other : INTEGER): INTEGER
-- Decrement by other

external “built_in" end

times alias "*" (other : INTEGER): INTEGER
-- Product by other

external “built_in" end

opposite alias "-" : INTEGER
-- Unary minus

external “built_in" end
...

end

Calls such as  i.plus (j ) can now be written i + j
and calls such as  i.opposite as -i

Operator aliases for features

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 35



Static view

 A program consists of a set of classes.

 Features are declared in classes. They define 
operations on objects created from classes.

 Queries answer questions. The answer is provided in a 
variable called Result.

 Commands execute actions. They do not provide any 
result, so there is no variable called Result that we can 
use.

Another name for a class is type.
Class and Type are not exactly the same, but they are 
close enough for now, and we will learn the difference 
later on. 
3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 36



Declaring the type of an object

 The type of any object you use in your program must 
be declared somewhere.

 Where can such declarations appear in a program?
 in feature declarations
• formal argument types
• return type for queries

 in the local clauses of routines

This is where you 
declare any objects that 
only the routine needs 

and knows.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 37



class DEMO 

feature
procedure_name (a1: T1; a2, a3: T2)

-- Comment
local

l1: T3
do

…
end

function_name (a1: T1; a2, a3: T2): T3

-- Comment
do

…
end

attribute_name: T3

-- Comment
end

Declaring the type of an object

formal argument type

local variable type

return type

return type

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 38

formal argument type

formal argument type

formal argument type



Dynamic view

 When the program is being executed (at “runtime”) 
we have a set of objects (instances) created from the 
classes (types).

 The creation of an object implies that a piece of 
memory is allocated in the computer to represent the 
object itself.

 Objects interact with each other by calling features 
on each other.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 39



Static view vs. dynamic view

 Queries (attributes and functions) have a result type. 
When executing the query, you get an object of that 
type.

 Routines have formal arguments of certain types. 
During the execution you pass objects of the same (or 
compatible) type as actual arguments to a routine call.

 Local variables are declared in their own section, 
associating names with types. Invoking a local returns the 
current object of that type referred to by that variable.

3-FEATURES Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 40


