
Fondamenti della Programmazione:
Metodi Evoluti

Prof. Enrico Nardelli

Lezione 2: Oggetti

Programming languages

The programming language is the notation that defines
the syntax and semantics of programs

There are many programming languages, some “general”,
some “specialized”

Programming languages are artificial notations, designed
for a specific purpose (programming).

Our programming language is Eiffel, an object-oriented
language

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 2

Object technology

We work with objects

Our style of programming:
Object-Oriented programming

Abbreviation: O-O

More generally, “Object Technology”: includes O-O
databases, O-O analysis, O-O design...

Software execution is made of operations on objects —
feature calls: every operation (feature) applies to an object
(the target of the call)

your_object your_feature

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 3

Object technology
Source: Simula 67 language, Oslo, mid-sixties
Spread very slowly in seventies

Smalltalk (Xerox PARC, 1970s) made O-O hip by combining it
with visual technologies
First OOPSLA in 1986 revealed O-O to the masses

Spread quickly in 1990s through
 O-O languages: Objective C, C++, Eiffel, Java, C#...
 O-O tools, O-O databases, O-O analysis...

Largely accepted today

Non O-O approaches are:
“procedural”, “functional”, “logic”.

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 4

About Eiffel

First version 1985, constantly refined and improved since

Focus: software quality, especially reliability, extendibility,
reusability. Emphasizes simplicity

Based on concepts of “Design by Contract”

Used for mission-critical projects in industry

Several implementations, including EiffelStudio from
Eiffel Software (the one we use), available open-source

International standard: ECMA and ISO (International
Standards Organization), 2006

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 5

Some Eiffel-based projects

Axa Rosenberg
Investment management: from $2 billion to >$100 billion

2 million lines

Chicago Board of Trade
Price reporting system
Eiffel + CORBA +
Solaris + Windows + …

Xontech (for Boeing)
Large-scale simulations
of missile defense

Swedish social security: accident reporting & management

etc.

The Chicago Board of Trade

(Eiffel) Price
Reporting System

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 6

So, why use Eiffel?

 Simple, clean O-O model
 Enables you to focus on concepts, not language
 Little language “baggage”
 Development environment (EiffelStudio)
 Portability: Windows / Linux / VMS & others
 Realism: not an “academic” language

Prepares you to learn other O-O languages if you need
to, e.g. C++, Java, C#

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 7

Simplicity

class First {

public static void main(String args[])

{

System.out.println("Hello World!");

}

}

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 8

class
APPLICATION

create
make

feature
make

do
Io.put(“Hello Eiffel world!”)

end
end

1st Java
program

1st Eiffel
program

Classes and objects

 The main concept in Object-Oriented programming is the
concept of Class.

 Classes are pieces of software code meant to model
concepts, e.g. “student”, “course”, “university”.

 Several classes make up a program in source code form.

 Objects are particular occurrences (“instances”) of
concepts (classes), e.g. “student Bill” or “student Lisa”.

 A class STUDENT may have zero or more instances.

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 9

Classes and objects (continued)

 Classes are like templates (or molds) defining status
and operations applicable to their instances.

 A sample class STUDENT can define:
 A student’s status: id, name and birthday
 Operations (“features”) applicable to all students: subscribe

to a course, register for an exam.
 Each instance (object) of class STUDENT will store a student’s

name, id and birthday and will be able to execute operations
such as subscribe to a course and register for an exam.

 Only the operations defined in a class can be applied
to its instances.

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 10

A class text

class
STUDENT

feature
self_present

-- Show personal info.
do

-- “To be filled in (by you!)”
end

end

Software
machine

Operations

Feature
name

Comment

Keywords have a special role: class, inherit, feature,
do, end.

Feature declaration

Pseudocode

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 11

The class name

--
class

STUDENT

feature
self_present

-- Show personal info.
do

name•show ;

id•show ;

exams•show

end
end

Filling in the feature body

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 12

Instruction
separator
(optional)

Feature call

The fundamental mechanism of program execution: apply
a “feature” to an “object”
Basic form: your_object your_feature

class
STUDENT

feature
self_present

-- Show personal info

do

name•show
id•show
exams•shows

end
end

Object (target of the call)

Feature of the call

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 13

Program formatting and style rules

Between adjacent elements:
break: one or more spaces, “tabs”,

“carriage returns”

All kinds of break are equivalent

Typographical variations (boldface, italics,
colors) do not affect the effect (semantics)
of programs

Use indentation to highlight the
structure of the program

class
STUDENT

feature
self_present

-- Show personal info

do
name•show
id•show
exams•show

end
end

Breaks

Breaks (best
to use tabs)

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 14

Another convention

For long names, use underscores “_”

WORKING_STUDENTS
self_present

We do not use “CamelCase”:

AShortButHardToDeCipherName

but underscores (sometimes called “Pascal_case”):

A_significantly_longer_but_still_perfectly_clear_name

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 15

Class name: all upper-case

Period in feature call

New names (for objects you
define) start with lower-case
letters

class
STUDENT

feature
self_present

-- Show personal info

do

name•show

id•show
exams•show

end
end

More style rules

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 16

For feature names, use full words,
not abbreviations

Always choose identifiers that
clearly identify the intended role

Use words from natural language
(preferably English) for the names
you define

For multi-word identifiers, use
underscores

class
STUDENT

feature
self_present

-- Show personal info

do

name•show
id•show
exams•show

end
end

Even more style rules

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 17

A final style rule

You may write more than one instruction on the same line

If you think it is needed (e.g. in a paper report) then use a semicolon

f (x) g (y)

Write one instruction per line

Omit semicolons

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 18

;

Entities

An entity is a name in the program that denotes possible
run-time values. There are two kinds of them:

Some are constant

Others are variable:
 Attributes ("general" visibility)
 Local variables (limited visibility)

 The technical term for visibility is "scope"

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 19

Constants

A constant entity is specified by providing its value
(called “manifest value”) together with its type (name’s
first letter is capitalized)

First_id: INTEGER = 1000
Map_title: STRING = “Plan of the metro"
Inches_to_centimeters: REAL = 2.54

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 20

Local entities

A local variable is specified inside a feature declaration
before its body (the do … end part)

feature
swap (a, b : ITEM)

-- Swap objects referred by `a’ and `b’
local

temp : ITEM
do

temp := a
a := b
b := temp

end
A local variable cannot use a feature name of the same
class or a formal parameter name of the same feature

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 21

Identifiers

An identifier starts with a letter, followed by zero or
more characters, each of which may be:
• A letter.
• A digit (0 to 9).
• An underscore character “_”.

Lexical rule for entity identifiers

You may choose your own identifiers as you please,
excluding keywords

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 22

Three basic distinctions

Syntax / Semantics

Instruction / Expression

Command / Query

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 23

The syntax of a program is the structure and form of its text

The semantics of a program is the set of properties of its
potential executions

Syntax and semantics

Syntax is the way you write a program:
characters grouped into words grouped into
bigger structures

Semantics is the effect you expect from this
program

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 24

Instructions and expressions

An expression, e.g. first_student•name, is not a value but
denotes future run-time values

An instruction, e.g. first_student•show, denotes an
operation to be executed at run time

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 25

In program texts:

 An instruction denotes a basic operation to be performed
during the program’s execution.

 An expression denotes a value used by an instruction for
its execution.

Definitions

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 26

Syntax and semantics

Syntax Semantics

Prescriptive Instruction Command

Descriptive Expression
Query
Value

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 27

Feature declaration

Class name

Comment

Feature body

Instructions

Feature names

class STUDENT

feature
explore

-- Show personal info.
do

name • show

exams • show

end
end

Syntax structure of a class

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 28

The lower level: lexical structure

The basic elements of a program text are tokens:
 Terminals

• Identifiers: names chosen by the programmer, e.g. Paris
or display

• Constants: self-explanatory values, e.g 34

 Keywords, e.g. class

 Special symbols: colon (:), “•” of feature calls

Tokens define the lexical structure of the language

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 29

Other representation: abstract syntax tree

Class declaration

Feature declaration

Feature body

Inheritance Features of the classClass name

Feature name Header comment

Instruction
(feature call)

Instruction
(feature call)

Target Feature Target Feature

STUDENT

PERSON

self_present -- show personal info

name show exams show

Root
Internal node
(Nonterminal)
Leaf
(Terminal)

Class name

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 30

Three levels of description

Lexical rules define how to
make up tokens out of
characters
Syntax rules define how to
make up specimens out of
tokens satisfying the lexical
rules
Semantic rules define the
effect of programming
satisfying the syntax rules

Rely on

Semantic rules

Rely on

Syntactic rules

Lexical rules

2-OGGETTI Rev. 2.4.1 (2021-22) di Enrico Nardelli (basato su touch.ethz.ch) 31

